resample2.c 7.36 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
/*
 * audio resampling
 * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 *
 */
 
/**
 * @file resample2.c
 * audio resampling
 * @author Michael Niedermayer <michaelni@gmx.at>
 */

#include "avcodec.h"
#include "common.h"

#define PHASE_SHIFT 10
#define PHASE_COUNT (1<<PHASE_SHIFT)
#define PHASE_MASK (PHASE_COUNT-1)
#define FILTER_SHIFT 15

typedef struct AVResampleContext{
    short *filter_bank;
    int filter_length;
    int ideal_dst_incr;
    int dst_incr;
    int index;
    int frac;
    int src_incr;
    int compensation_distance;
}AVResampleContext;

/**
 * 0th order modified bessel function of the first kind.
 */
double bessel(double x){
    double v=1;
    double t=1;
    int i;
    
    for(i=1; i<50; i++){
        t *= i;
        v += pow(x*x/4, i)/(t*t);
    }
    return v;
}

/**
 * builds a polyphase filterbank.
 * @param factor resampling factor
 * @param scale wanted sum of coefficients for each filter
 * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2->kaiser windowed sinc beta=16
 */
void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type){
    int ph, i, v;
    double x, y, w, tab[tap_count];
    const int center= (tap_count-1)/2;

    /* if upsampling, only need to interpolate, no filter */
    if (factor > 1.0)
        factor = 1.0;

    for(ph=0;ph<phase_count;ph++) {
        double norm = 0;
        double e= 0;
        for(i=0;i<tap_count;i++) {
            x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
            if (x == 0) y = 1.0;
            else        y = sin(x) / x;
            switch(type){
            case 0:{
                const float d= -0.5; //first order derivative = -0.5
                x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
                if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
                else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
                break;}
            case 1:
                w = 2.0*x / (factor*tap_count) + M_PI;
                y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
                break;
            case 2:
                w = 2.0*x / (factor*tap_count*M_PI);
96
                y *= bessel(16*sqrt(FFMAX(1-w*w, 0)));
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                break;
            }

            tab[i] = y;
            norm += y;
        }

        /* normalize so that an uniform color remains the same */
        for(i=0;i<tap_count;i++) {
            v = clip(lrintf(tab[i] * scale / norm) + e, -32768, 32767);
            filter[ph * tap_count + i] = v;
            e += tab[i] * scale / norm - v;
        }
    }
}

/**
 * initalizes a audio resampler.
 * note, if either rate is not a integer then simply scale both rates up so they are
 */
AVResampleContext *av_resample_init(int out_rate, int in_rate){
    AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
    double factor= FFMIN(out_rate / (double)in_rate, 1.0);

    memset(c, 0, sizeof(AVResampleContext));

    c->filter_length= ceil(16.0/factor);
    c->filter_bank= av_mallocz(c->filter_length*(PHASE_COUNT+1)*sizeof(short));
    av_build_filter(c->filter_bank, factor, c->filter_length, PHASE_COUNT, 1<<FILTER_SHIFT, 1);
    c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 1]= (1<<FILTER_SHIFT)-1;
    c->filter_bank[c->filter_length*PHASE_COUNT + (c->filter_length-1) + 2]= 1;

    c->src_incr= out_rate;
    c->ideal_dst_incr= c->dst_incr= in_rate * PHASE_COUNT;
    c->index= -PHASE_COUNT*((c->filter_length-1)/2);

    return c;
}

void av_resample_close(AVResampleContext *c){
    av_freep(&c->filter_bank);
    av_freep(&c);
}

void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
142
//    sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
143
    c->compensation_distance= compensation_distance;
144
    c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
}

/**
 * resamples.
 * @param src an array of unconsumed samples
 * @param consumed the number of samples of src which have been consumed are returned here
 * @param src_size the number of unconsumed samples available
 * @param dst_size the amount of space in samples available in dst
 * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
 * @return the number of samples written in dst or -1 if an error occured
 */
int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
    int dst_index, i;
    int index= c->index;
    int frac= c->frac;
    int dst_incr_frac= c->dst_incr % c->src_incr;
    int dst_incr=      c->dst_incr / c->src_incr;
    
    if(c->compensation_distance && c->compensation_distance < dst_size)
        dst_size= c->compensation_distance;
    
    for(dst_index=0; dst_index < dst_size; dst_index++){
        short *filter= c->filter_bank + c->filter_length*(index & PHASE_MASK);
        int sample_index= index >> PHASE_SHIFT;
        int val=0;
        
        if(sample_index < 0){
            for(i=0; i<c->filter_length; i++)
                val += src[ABS(sample_index + i)] * filter[i];
        }else if(sample_index + c->filter_length > src_size){
            break;
        }else{
#if 0
            int64_t v=0;
            int sub_phase= (frac<<12) / c->src_incr;
            for(i=0; i<c->filter_length; i++){
                int64_t coeff= filter[i]*(4096 - sub_phase) + filter[i + c->filter_length]*sub_phase;
                v += src[sample_index + i] * coeff;
            }
            val= v>>12;
#else
            for(i=0; i<c->filter_length; i++){
                val += src[sample_index + i] * filter[i];
            }
#endif
        }

        val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
        dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;

        frac += dst_incr_frac;
        index += dst_incr;
        if(frac >= c->src_incr){
            frac -= c->src_incr;
            index++;
        }
    }
    if(update_ctx){
        if(c->compensation_distance){
204
            c->compensation_distance -= dst_index;
205 206 207 208 209 210 211
            if(!c->compensation_distance)
                c->dst_incr= c->ideal_dst_incr;
        }
        c->frac= frac;
        c->index=0;
    }
    *consumed= index >> PHASE_SHIFT;
212 213 214 215 216 217 218 219
#if 0    
    if(update_ctx && !c->compensation_distance){
#undef rand
        av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
    }
#endif
    
220 221
    return dst_index;
}