ac3enc_template.c 16 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
/*
 * AC-3 encoder float/fixed template
 * Copyright (c) 2000 Fabrice Bellard
 * Copyright (c) 2006-2011 Justin Ruggles <justin.ruggles@gmail.com>
 * Copyright (c) 2006-2010 Prakash Punnoor <prakash@punnoor.de>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * AC-3 encoder float/fixed template
 */

#include <stdint.h>

#include "ac3enc.h"


34 35 36 37 38 39 40 41 42 43 44
/* prototypes for static functions in ac3enc_fixed.c and ac3enc_float.c */

static void scale_coefficients(AC3EncodeContext *s);

static void apply_window(DSPContext *dsp, SampleType *output,
                         const SampleType *input, const SampleType *window,
                         unsigned int len);

static int normalize_samples(AC3EncodeContext *s);


45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
int AC3_NAME(allocate_sample_buffers)(AC3EncodeContext *s)
{
    int ch;

    FF_ALLOC_OR_GOTO(s->avctx, s->windowed_samples, AC3_WINDOW_SIZE *
                     sizeof(*s->windowed_samples), alloc_fail);
    FF_ALLOC_OR_GOTO(s->avctx, s->planar_samples, s->channels * sizeof(*s->planar_samples),
                     alloc_fail);
    for (ch = 0; ch < s->channels; ch++) {
        FF_ALLOCZ_OR_GOTO(s->avctx, s->planar_samples[ch],
                          (AC3_FRAME_SIZE+AC3_BLOCK_SIZE) * sizeof(**s->planar_samples),
                          alloc_fail);
    }

    return 0;
alloc_fail:
    return AVERROR(ENOMEM);
}


65 66 67 68
/**
 * Deinterleave input samples.
 * Channels are reordered from Libav's default order to AC-3 order.
 */
69 70
static void deinterleave_input_samples(AC3EncodeContext *s,
                                       const SampleType *samples)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
{
    int ch, i;

    /* deinterleave and remap input samples */
    for (ch = 0; ch < s->channels; ch++) {
        const SampleType *sptr;
        int sinc;

        /* copy last 256 samples of previous frame to the start of the current frame */
        memcpy(&s->planar_samples[ch][0], &s->planar_samples[ch][AC3_FRAME_SIZE],
               AC3_BLOCK_SIZE * sizeof(s->planar_samples[0][0]));

        /* deinterleave */
        sinc = s->channels;
        sptr = samples + s->channel_map[ch];
        for (i = AC3_BLOCK_SIZE; i < AC3_FRAME_SIZE+AC3_BLOCK_SIZE; i++) {
            s->planar_samples[ch][i] = *sptr;
            sptr += sinc;
        }
    }
}


/**
 * Apply the MDCT to input samples to generate frequency coefficients.
 * This applies the KBD window and normalizes the input to reduce precision
 * loss due to fixed-point calculations.
 */
99
static void apply_mdct(AC3EncodeContext *s)
100 101 102 103 104 105 106 107
{
    int blk, ch;

    for (ch = 0; ch < s->channels; ch++) {
        for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
            AC3Block *block = &s->blocks[blk];
            const SampleType *input_samples = &s->planar_samples[ch][blk * AC3_BLOCK_SIZE];

108 109
            apply_window(&s->dsp, s->windowed_samples, input_samples,
                         s->mdct->window, AC3_WINDOW_SIZE);
110 111

            if (s->fixed_point)
112
                block->coeff_shift[ch+1] = normalize_samples(s);
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

            s->mdct->fft.mdct_calcw(&s->mdct->fft, block->mdct_coef[ch+1],
                                    s->windowed_samples);
        }
    }
}


/**
 * Calculate a single coupling coordinate.
 */
static inline float calc_cpl_coord(float energy_ch, float energy_cpl)
{
    float coord = 0.125;
    if (energy_cpl > 0)
        coord *= sqrtf(energy_ch / energy_cpl);
    return coord;
}


/**
 * Calculate coupling channel and coupling coordinates.
 * TODO: Currently this is only used for the floating-point encoder. I was
 *       able to make it work for the fixed-point encoder, but quality was
 *       generally lower in most cases than not using coupling. If a more
 *       adaptive coupling strategy were to be implemented it might be useful
 *       at that time to use coupling for the fixed-point encoder as well.
 */
141
static void apply_channel_coupling(AC3EncodeContext *s)
142 143 144 145 146 147
{
#if CONFIG_AC3ENC_FLOAT
    LOCAL_ALIGNED_16(float,   cpl_coords,       [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
    LOCAL_ALIGNED_16(int32_t, fixed_cpl_coords, [AC3_MAX_BLOCKS], [AC3_MAX_CHANNELS][16]);
    int blk, ch, bnd, i, j;
    CoefSumType energy[AC3_MAX_BLOCKS][AC3_MAX_CHANNELS][16] = {{{0}}};
148
    int cpl_start, num_cpl_coefs;
149 150 151 152

    memset(cpl_coords,       0, AC3_MAX_BLOCKS * sizeof(*cpl_coords));
    memset(fixed_cpl_coords, 0, AC3_MAX_BLOCKS * sizeof(*fixed_cpl_coords));

153 154 155 156 157 158
    /* align start to 16-byte boundary. align length to multiple of 32.
        note: coupling start bin % 4 will always be 1 */
    cpl_start     = s->start_freq[CPL_CH] - 1;
    num_cpl_coefs = FFALIGN(s->num_cpl_subbands * 12 + 1, 32);
    cpl_start     = FFMIN(256, cpl_start + num_cpl_coefs) - num_cpl_coefs;

159 160 161
    /* calculate coupling channel from fbw channels */
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
162
        CoefType *cpl_coef = &block->mdct_coef[CPL_CH][cpl_start];
163 164
        if (!block->cpl_in_use)
            continue;
165
        memset(cpl_coef, 0, num_cpl_coefs * sizeof(*cpl_coef));
166
        for (ch = 1; ch <= s->fbw_channels; ch++) {
167
            CoefType *ch_coef = &block->mdct_coef[ch][cpl_start];
168 169 170 171 172 173 174
            if (!block->channel_in_cpl[ch])
                continue;
            for (i = 0; i < num_cpl_coefs; i++)
                cpl_coef[i] += ch_coef[i];
        }

        /* coefficients must be clipped to +/- 1.0 in order to be encoded */
175
        s->dsp.vector_clipf(cpl_coef, cpl_coef, -1.0f, 1.0f, num_cpl_coefs);
176 177

        /* scale coupling coefficients from float to 24-bit fixed-point */
178 179
        s->ac3dsp.float_to_fixed24(&block->fixed_coef[CPL_CH][cpl_start],
                                   cpl_coef, num_cpl_coefs);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
    }

    /* calculate energy in each band in coupling channel and each fbw channel */
    /* TODO: possibly use SIMD to speed up energy calculation */
    bnd = 0;
    i = s->start_freq[CPL_CH];
    while (i < s->cpl_end_freq) {
        int band_size = s->cpl_band_sizes[bnd];
        for (ch = CPL_CH; ch <= s->fbw_channels; ch++) {
            for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
                AC3Block *block = &s->blocks[blk];
                if (!block->cpl_in_use || (ch > CPL_CH && !block->channel_in_cpl[ch]))
                    continue;
                for (j = 0; j < band_size; j++) {
                    CoefType v = block->mdct_coef[ch][i+j];
                    MAC_COEF(energy[blk][ch][bnd], v, v);
                }
            }
        }
        i += band_size;
        bnd++;
    }

    /* determine which blocks to send new coupling coordinates for */
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block  = &s->blocks[blk];
        AC3Block *block0 = blk ? &s->blocks[blk-1] : NULL;
        int new_coords = 0;
        CoefSumType coord_diff[AC3_MAX_CHANNELS] = {0,};

        if (block->cpl_in_use) {
            /* calculate coupling coordinates for all blocks and calculate the
               average difference between coordinates in successive blocks */
            for (ch = 1; ch <= s->fbw_channels; ch++) {
                if (!block->channel_in_cpl[ch])
                    continue;

                for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                    cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy[blk][ch][bnd],
                                                              energy[blk][CPL_CH][bnd]);
                    if (blk > 0 && block0->cpl_in_use &&
                        block0->channel_in_cpl[ch]) {
                        coord_diff[ch] += fabs(cpl_coords[blk-1][ch][bnd] -
                                               cpl_coords[blk  ][ch][bnd]);
                    }
                }
                coord_diff[ch] /= s->num_cpl_bands;
            }

            /* send new coordinates if this is the first block, if previous
             * block did not use coupling but this block does, the channels
             * using coupling has changed from the previous block, or the
             * coordinate difference from the last block for any channel is
             * greater than a threshold value. */
            if (blk == 0) {
                new_coords = 1;
            } else if (!block0->cpl_in_use) {
                new_coords = 1;
            } else {
                for (ch = 1; ch <= s->fbw_channels; ch++) {
                    if (block->channel_in_cpl[ch] && !block0->channel_in_cpl[ch]) {
                        new_coords = 1;
                        break;
                    }
                }
                if (!new_coords) {
                    for (ch = 1; ch <= s->fbw_channels; ch++) {
                        if (block->channel_in_cpl[ch] && coord_diff[ch] > 0.04) {
                            new_coords = 1;
                            break;
                        }
                    }
                }
            }
        }
        block->new_cpl_coords = new_coords;
    }

    /* calculate final coupling coordinates, taking into account reusing of
       coordinates in successive blocks */
    for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
        blk = 0;
        while (blk < AC3_MAX_BLOCKS) {
            int blk1;
            CoefSumType energy_cpl;
            AC3Block *block  = &s->blocks[blk];

            if (!block->cpl_in_use) {
                blk++;
                continue;
            }

            energy_cpl = energy[blk][CPL_CH][bnd];
            blk1 = blk+1;
            while (!s->blocks[blk1].new_cpl_coords && blk1 < AC3_MAX_BLOCKS) {
                if (s->blocks[blk1].cpl_in_use)
                    energy_cpl += energy[blk1][CPL_CH][bnd];
                blk1++;
            }

            for (ch = 1; ch <= s->fbw_channels; ch++) {
                CoefType energy_ch;
                if (!block->channel_in_cpl[ch])
                    continue;
                energy_ch = energy[blk][ch][bnd];
                blk1 = blk+1;
                while (!s->blocks[blk1].new_cpl_coords && blk1 < AC3_MAX_BLOCKS) {
                    if (s->blocks[blk1].cpl_in_use)
                        energy_ch += energy[blk1][ch][bnd];
                    blk1++;
                }
                cpl_coords[blk][ch][bnd] = calc_cpl_coord(energy_ch, energy_cpl);
            }
            blk = blk1;
        }
    }

    /* calculate exponents/mantissas for coupling coordinates */
    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        AC3Block *block = &s->blocks[blk];
        if (!block->cpl_in_use || !block->new_cpl_coords)
            continue;

        s->ac3dsp.float_to_fixed24(fixed_cpl_coords[blk][1],
                                   cpl_coords[blk][1],
                                   s->fbw_channels * 16);
        s->ac3dsp.extract_exponents(block->cpl_coord_exp[1],
                                    fixed_cpl_coords[blk][1],
                                    s->fbw_channels * 16);

        for (ch = 1; ch <= s->fbw_channels; ch++) {
            int bnd, min_exp, max_exp, master_exp;

            /* determine master exponent */
            min_exp = max_exp = block->cpl_coord_exp[ch][0];
            for (bnd = 1; bnd < s->num_cpl_bands; bnd++) {
                int exp = block->cpl_coord_exp[ch][bnd];
                min_exp = FFMIN(exp, min_exp);
                max_exp = FFMAX(exp, max_exp);
            }
            master_exp = ((max_exp - 15) + 2) / 3;
            master_exp = FFMAX(master_exp, 0);
            while (min_exp < master_exp * 3)
                master_exp--;
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                block->cpl_coord_exp[ch][bnd] = av_clip(block->cpl_coord_exp[ch][bnd] -
                                                        master_exp * 3, 0, 15);
            }
            block->cpl_master_exp[ch] = master_exp;

            /* quantize mantissas */
            for (bnd = 0; bnd < s->num_cpl_bands; bnd++) {
                int cpl_exp  = block->cpl_coord_exp[ch][bnd];
                int cpl_mant = (fixed_cpl_coords[blk][ch][bnd] << (5 + cpl_exp + master_exp * 3)) >> 24;
                if (cpl_exp == 15)
                    cpl_mant >>= 1;
                else
                    cpl_mant -= 16;

                block->cpl_coord_mant[ch][bnd] = cpl_mant;
            }
        }
    }

    if (CONFIG_EAC3_ENCODER && s->eac3)
        ff_eac3_set_cpl_states(s);
#endif /* CONFIG_AC3ENC_FLOAT */
}


/**
 * Determine rematrixing flags for each block and band.
 */
353
static void compute_rematrixing_strategy(AC3EncodeContext *s)
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
{
    int nb_coefs;
    int blk, bnd, i;
    AC3Block *block, *av_uninit(block0);

    if (s->channel_mode != AC3_CHMODE_STEREO)
        return;

    for (blk = 0; blk < AC3_MAX_BLOCKS; blk++) {
        block = &s->blocks[blk];
        block->new_rematrixing_strategy = !blk;

        if (!s->rematrixing_enabled) {
            block0 = block;
            continue;
        }

        block->num_rematrixing_bands = 4;
        if (block->cpl_in_use) {
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] <= 61);
            block->num_rematrixing_bands -= (s->start_freq[CPL_CH] == 37);
            if (blk && block->num_rematrixing_bands != block0->num_rematrixing_bands)
                block->new_rematrixing_strategy = 1;
        }
        nb_coefs = FFMIN(block->end_freq[1], block->end_freq[2]);

        for (bnd = 0; bnd < block->num_rematrixing_bands; bnd++) {
            /* calculate calculate sum of squared coeffs for one band in one block */
            int start = ff_ac3_rematrix_band_tab[bnd];
            int end   = FFMIN(nb_coefs, ff_ac3_rematrix_band_tab[bnd+1]);
            CoefSumType sum[4] = {0,};
            for (i = start; i < end; i++) {
                CoefType lt = block->mdct_coef[1][i];
                CoefType rt = block->mdct_coef[2][i];
                CoefType md = lt + rt;
                CoefType sd = lt - rt;
                MAC_COEF(sum[0], lt, lt);
                MAC_COEF(sum[1], rt, rt);
                MAC_COEF(sum[2], md, md);
                MAC_COEF(sum[3], sd, sd);
            }

            /* compare sums to determine if rematrixing will be used for this band */
            if (FFMIN(sum[2], sum[3]) < FFMIN(sum[0], sum[1]))
                block->rematrixing_flags[bnd] = 1;
            else
                block->rematrixing_flags[bnd] = 0;

            /* determine if new rematrixing flags will be sent */
            if (blk &&
                block->rematrixing_flags[bnd] != block0->rematrixing_flags[bnd]) {
                block->new_rematrixing_strategy = 1;
            }
        }
        block0 = block;
    }
}
411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461


/**
 * Encode a single AC-3 frame.
 */
int AC3_NAME(encode_frame)(AVCodecContext *avctx, unsigned char *frame,
                           int buf_size, void *data)
{
    AC3EncodeContext *s = avctx->priv_data;
    const SampleType *samples = data;
    int ret;

    if (!s->eac3 && s->options.allow_per_frame_metadata) {
        ret = ff_ac3_validate_metadata(avctx);
        if (ret)
            return ret;
    }

    if (s->bit_alloc.sr_code == 1 || s->eac3)
        ff_ac3_adjust_frame_size(s);

    deinterleave_input_samples(s, samples);

    apply_mdct(s);

    scale_coefficients(s);

    s->cpl_on = s->cpl_enabled;
    ff_ac3_compute_coupling_strategy(s);

    if (s->cpl_on)
        apply_channel_coupling(s);

    compute_rematrixing_strategy(s);

    ff_ac3_apply_rematrixing(s);

    ff_ac3_process_exponents(s);

    ret = ff_ac3_compute_bit_allocation(s);
    if (ret) {
        av_log(avctx, AV_LOG_ERROR, "Bit allocation failed. Try increasing the bitrate.\n");
        return ret;
    }

    ff_ac3_quantize_mantissas(s);

    ff_ac3_output_frame(s, frame);

    return s->frame_size;
}