af_amix.c 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
/*
 * Audio Mix Filter
 * Copyright (c) 2012 Justin Ruggles <justin.ruggles@gmail.com>
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Audio Mix Filter
 *
 * Mixes audio from multiple sources into a single output. The channel layout,
 * sample rate, and sample format will be the same for all inputs and the
 * output.
 */

#include "libavutil/audioconvert.h"
#include "libavutil/audio_fifo.h"
#include "libavutil/avassert.h"
#include "libavutil/avstring.h"
35
#include "libavutil/common.h"
36
#include "libavutil/float_dsp.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
#include "libavutil/mathematics.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"

#include "audio.h"
#include "avfilter.h"
#include "formats.h"
#include "internal.h"

#define INPUT_OFF      0    /**< input has reached EOF */
#define INPUT_ON       1    /**< input is active */
#define INPUT_INACTIVE 2    /**< input is on, but is currently inactive */

#define DURATION_LONGEST  0
#define DURATION_SHORTEST 1
#define DURATION_FIRST    2


typedef struct FrameInfo {
    int nb_samples;
    int64_t pts;
    struct FrameInfo *next;
} FrameInfo;

/**
 * Linked list used to store timestamps and frame sizes of all frames in the
 * FIFO for the first input.
 *
 * This is needed to keep timestamps synchronized for the case where multiple
 * input frames are pushed to the filter for processing before a frame is
 * requested by the output link.
 */
typedef struct FrameList {
    int nb_frames;
    int nb_samples;
    FrameInfo *list;
    FrameInfo *end;
} FrameList;

static void frame_list_clear(FrameList *frame_list)
{
    if (frame_list) {
        while (frame_list->list) {
            FrameInfo *info = frame_list->list;
            frame_list->list = info->next;
            av_free(info);
        }
        frame_list->nb_frames  = 0;
        frame_list->nb_samples = 0;
        frame_list->end        = NULL;
    }
}

static int frame_list_next_frame_size(FrameList *frame_list)
{
    if (!frame_list->list)
        return 0;
    return frame_list->list->nb_samples;
}

static int64_t frame_list_next_pts(FrameList *frame_list)
{
    if (!frame_list->list)
        return AV_NOPTS_VALUE;
    return frame_list->list->pts;
}

static void frame_list_remove_samples(FrameList *frame_list, int nb_samples)
{
    if (nb_samples >= frame_list->nb_samples) {
        frame_list_clear(frame_list);
    } else {
        int samples = nb_samples;
        while (samples > 0) {
            FrameInfo *info = frame_list->list;
            av_assert0(info != NULL);
            if (info->nb_samples <= samples) {
                samples -= info->nb_samples;
                frame_list->list = info->next;
                if (!frame_list->list)
                    frame_list->end = NULL;
                frame_list->nb_frames--;
                frame_list->nb_samples -= info->nb_samples;
                av_free(info);
            } else {
                info->nb_samples       -= samples;
                info->pts              += samples;
                frame_list->nb_samples -= samples;
                samples = 0;
            }
        }
    }
}

static int frame_list_add_frame(FrameList *frame_list, int nb_samples, int64_t pts)
{
    FrameInfo *info = av_malloc(sizeof(*info));
    if (!info)
        return AVERROR(ENOMEM);
    info->nb_samples = nb_samples;
    info->pts        = pts;
    info->next       = NULL;

    if (!frame_list->list) {
        frame_list->list = info;
        frame_list->end  = info;
    } else {
        av_assert0(frame_list->end != NULL);
        frame_list->end->next = info;
        frame_list->end       = info;
    }
    frame_list->nb_frames++;
    frame_list->nb_samples += nb_samples;

    return 0;
}


typedef struct MixContext {
    const AVClass *class;       /**< class for AVOptions */
157
    AVFloatDSPContext fdsp;
158 159 160 161 162 163 164 165

    int nb_inputs;              /**< number of inputs */
    int active_inputs;          /**< number of input currently active */
    int duration_mode;          /**< mode for determining duration */
    float dropout_transition;   /**< transition time when an input drops out */

    int nb_channels;            /**< number of channels */
    int sample_rate;            /**< sample rate */
166
    int planar;
167 168 169 170 171 172 173 174 175 176 177 178
    AVAudioFifo **fifos;        /**< audio fifo for each input */
    uint8_t *input_state;       /**< current state of each input */
    float *input_scale;         /**< mixing scale factor for each input */
    float scale_norm;           /**< normalization factor for all inputs */
    int64_t next_pts;           /**< calculated pts for next output frame */
    FrameList *frame_list;      /**< list of frame info for the first input */
} MixContext;

#define OFFSET(x) offsetof(MixContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM
static const AVOption options[] = {
    { "inputs", "Number of inputs.",
179
            OFFSET(nb_inputs), AV_OPT_TYPE_INT, { .i64 = 2 }, 1, 32, A },
180
    { "duration", "How to determine the end-of-stream.",
181
            OFFSET(duration_mode), AV_OPT_TYPE_INT, { .i64 = DURATION_LONGEST }, 0,  2, A, "duration" },
182 183 184
        { "longest",  "Duration of longest input.",  0, AV_OPT_TYPE_CONST, { .i64 = DURATION_LONGEST  }, INT_MIN, INT_MAX, A, "duration" },
        { "shortest", "Duration of shortest input.", 0, AV_OPT_TYPE_CONST, { .i64 = DURATION_SHORTEST }, INT_MIN, INT_MAX, A, "duration" },
        { "first",    "Duration of first input.",    0, AV_OPT_TYPE_CONST, { .i64 = DURATION_FIRST    }, INT_MIN, INT_MAX, A, "duration" },
185 186
    { "dropout_transition", "Transition time, in seconds, for volume "
                            "renormalization when an input stream ends.",
187
            OFFSET(dropout_transition), AV_OPT_TYPE_FLOAT, { .dbl = 2.0 }, 0, INT_MAX, A },
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    { NULL },
};

static const AVClass amix_class = {
    .class_name = "amix filter",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};


/**
 * Update the scaling factors to apply to each input during mixing.
 *
 * This balances the full volume range between active inputs and handles
 * volume transitions when EOF is encountered on an input but mixing continues
 * with the remaining inputs.
 */
static void calculate_scales(MixContext *s, int nb_samples)
{
    int i;

    if (s->scale_norm > s->active_inputs) {
        s->scale_norm -= nb_samples / (s->dropout_transition * s->sample_rate);
        s->scale_norm = FFMAX(s->scale_norm, s->active_inputs);
    }

    for (i = 0; i < s->nb_inputs; i++) {
        if (s->input_state[i] == INPUT_ON)
            s->input_scale[i] = 1.0f / s->scale_norm;
        else
            s->input_scale[i] = 0.0f;
    }
}

static int config_output(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    MixContext *s      = ctx->priv;
    int i;
    char buf[64];

230
    s->planar          = av_sample_fmt_is_planar(outlink->format);
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    s->sample_rate     = outlink->sample_rate;
    outlink->time_base = (AVRational){ 1, outlink->sample_rate };
    s->next_pts        = AV_NOPTS_VALUE;

    s->frame_list = av_mallocz(sizeof(*s->frame_list));
    if (!s->frame_list)
        return AVERROR(ENOMEM);

    s->fifos = av_mallocz(s->nb_inputs * sizeof(*s->fifos));
    if (!s->fifos)
        return AVERROR(ENOMEM);

    s->nb_channels = av_get_channel_layout_nb_channels(outlink->channel_layout);
    for (i = 0; i < s->nb_inputs; i++) {
        s->fifos[i] = av_audio_fifo_alloc(outlink->format, s->nb_channels, 1024);
        if (!s->fifos[i])
            return AVERROR(ENOMEM);
    }

    s->input_state = av_malloc(s->nb_inputs);
    if (!s->input_state)
        return AVERROR(ENOMEM);
    memset(s->input_state, INPUT_ON, s->nb_inputs);
    s->active_inputs = s->nb_inputs;

    s->input_scale = av_mallocz(s->nb_inputs * sizeof(*s->input_scale));
    if (!s->input_scale)
        return AVERROR(ENOMEM);
    s->scale_norm = s->active_inputs;
    calculate_scales(s, 0);

    av_get_channel_layout_string(buf, sizeof(buf), -1, outlink->channel_layout);

    av_log(ctx, AV_LOG_VERBOSE,
265
           "inputs:%d fmt:%s srate:%d cl:%s\n", s->nb_inputs,
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
           av_get_sample_fmt_name(outlink->format), outlink->sample_rate, buf);

    return 0;
}

/**
 * Read samples from the input FIFOs, mix, and write to the output link.
 */
static int output_frame(AVFilterLink *outlink, int nb_samples)
{
    AVFilterContext *ctx = outlink->src;
    MixContext      *s = ctx->priv;
    AVFilterBufferRef *out_buf, *in_buf;
    int i;

    calculate_scales(s, nb_samples);

    out_buf = ff_get_audio_buffer(outlink, AV_PERM_WRITE, nb_samples);
    if (!out_buf)
        return AVERROR(ENOMEM);

    in_buf = ff_get_audio_buffer(outlink, AV_PERM_WRITE, nb_samples);
288 289
    if (!in_buf) {
        avfilter_unref_buffer(out_buf);
290
        return AVERROR(ENOMEM);
291
    }
292 293 294

    for (i = 0; i < s->nb_inputs; i++) {
        if (s->input_state[i] == INPUT_ON) {
295 296
            int planes, plane_size, p;

297 298
            av_audio_fifo_read(s->fifos[i], (void **)in_buf->extended_data,
                               nb_samples);
299 300 301 302 303 304 305 306 307 308

            planes     = s->planar ? s->nb_channels : 1;
            plane_size = nb_samples * (s->planar ? 1 : s->nb_channels);
            plane_size = FFALIGN(plane_size, 16);

            for (p = 0; p < planes; p++) {
                s->fdsp.vector_fmac_scalar((float *)out_buf->extended_data[p],
                                           (float *) in_buf->extended_data[p],
                                           s->input_scale[i], plane_size);
            }
309 310 311 312 313 314 315 316
        }
    }
    avfilter_unref_buffer(in_buf);

    out_buf->pts = s->next_pts;
    if (s->next_pts != AV_NOPTS_VALUE)
        s->next_pts += nb_samples;

317
    return ff_filter_samples(outlink, out_buf);
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
}

/**
 * Returns the smallest number of samples available in the input FIFOs other
 * than that of the first input.
 */
static int get_available_samples(MixContext *s)
{
    int i;
    int available_samples = INT_MAX;

    av_assert0(s->nb_inputs > 1);

    for (i = 1; i < s->nb_inputs; i++) {
        int nb_samples;
        if (s->input_state[i] == INPUT_OFF)
            continue;
        nb_samples = av_audio_fifo_size(s->fifos[i]);
        available_samples = FFMIN(available_samples, nb_samples);
    }
    if (available_samples == INT_MAX)
        return 0;
    return available_samples;
}

/**
 * Requests a frame, if needed, from each input link other than the first.
 */
static int request_samples(AVFilterContext *ctx, int min_samples)
{
    MixContext *s = ctx->priv;
    int i, ret;

    av_assert0(s->nb_inputs > 1);

    for (i = 1; i < s->nb_inputs; i++) {
        ret = 0;
        if (s->input_state[i] == INPUT_OFF)
            continue;
        while (!ret && av_audio_fifo_size(s->fifos[i]) < min_samples)
358
            ret = ff_request_frame(ctx->inputs[i]);
359 360 361 362 363
        if (ret == AVERROR_EOF) {
            if (av_audio_fifo_size(s->fifos[i]) == 0) {
                s->input_state[i] = INPUT_OFF;
                continue;
            }
364
        } else if (ret < 0)
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
            return ret;
    }
    return 0;
}

/**
 * Calculates the number of active inputs and determines EOF based on the
 * duration option.
 *
 * @return 0 if mixing should continue, or AVERROR_EOF if mixing should stop.
 */
static int calc_active_inputs(MixContext *s)
{
    int i;
    int active_inputs = 0;
    for (i = 0; i < s->nb_inputs; i++)
        active_inputs += !!(s->input_state[i] != INPUT_OFF);
    s->active_inputs = active_inputs;

    if (!active_inputs ||
        (s->duration_mode == DURATION_FIRST && s->input_state[0] == INPUT_OFF) ||
        (s->duration_mode == DURATION_SHORTEST && active_inputs != s->nb_inputs))
        return AVERROR_EOF;
    return 0;
}

static int request_frame(AVFilterLink *outlink)
{
    AVFilterContext *ctx = outlink->src;
    MixContext      *s = ctx->priv;
    int ret;
    int wanted_samples, available_samples;

398 399 400 401
    ret = calc_active_inputs(s);
    if (ret < 0)
        return ret;

402 403 404 405 406 407 408 409 410 411 412
    if (s->input_state[0] == INPUT_OFF) {
        ret = request_samples(ctx, 1);
        if (ret < 0)
            return ret;

        ret = calc_active_inputs(s);
        if (ret < 0)
            return ret;

        available_samples = get_available_samples(s);
        if (!available_samples)
413
            return AVERROR(EAGAIN);
414 415 416 417 418

        return output_frame(outlink, available_samples);
    }

    if (s->frame_list->nb_frames == 0) {
419
        ret = ff_request_frame(ctx->inputs[0]);
420 421 422 423 424 425
        if (ret == AVERROR_EOF) {
            s->input_state[0] = INPUT_OFF;
            if (s->nb_inputs == 1)
                return AVERROR_EOF;
            else
                return AVERROR(EAGAIN);
426
        } else if (ret < 0)
427 428 429 430 431 432 433
            return ret;
    }
    av_assert0(s->frame_list->nb_frames > 0);

    wanted_samples = frame_list_next_frame_size(s->frame_list);

    if (s->active_inputs > 1) {
434 435 436 437 438 439 440
        ret = request_samples(ctx, wanted_samples);
        if (ret < 0)
            return ret;

        ret = calc_active_inputs(s);
        if (ret < 0)
            return ret;
441
    }
442

443
    if (s->active_inputs > 1) {
444 445
        available_samples = get_available_samples(s);
        if (!available_samples)
446
            return AVERROR(EAGAIN);
447 448 449 450 451 452 453 454 455 456 457
        available_samples = FFMIN(available_samples, wanted_samples);
    } else {
        available_samples = wanted_samples;
    }

    s->next_pts = frame_list_next_pts(s->frame_list);
    frame_list_remove_samples(s->frame_list, available_samples);

    return output_frame(outlink, available_samples);
}

458
static int filter_samples(AVFilterLink *inlink, AVFilterBufferRef *buf)
459 460 461 462
{
    AVFilterContext  *ctx = inlink->dst;
    MixContext       *s = ctx->priv;
    AVFilterLink *outlink = ctx->outputs[0];
463
    int i, ret = 0;
464

465
    for (i = 0; i < ctx->nb_inputs; i++)
466 467
        if (ctx->inputs[i] == inlink)
            break;
468
    if (i >= ctx->nb_inputs) {
469
        av_log(ctx, AV_LOG_ERROR, "unknown input link\n");
470 471
        ret = AVERROR(EINVAL);
        goto fail;
472 473 474 475 476
    }

    if (i == 0) {
        int64_t pts = av_rescale_q(buf->pts, inlink->time_base,
                                   outlink->time_base);
477 478 479
        ret = frame_list_add_frame(s->frame_list, buf->audio->nb_samples, pts);
        if (ret < 0)
            goto fail;
480 481
    }

482 483
    ret = av_audio_fifo_write(s->fifos[i], (void **)buf->extended_data,
                              buf->audio->nb_samples);
484

485
fail:
486
    avfilter_unref_buffer(buf);
487 488

    return ret;
489 490
}

491
static int init(AVFilterContext *ctx, const char *args)
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
{
    MixContext *s = ctx->priv;
    int i, ret;

    s->class = &amix_class;
    av_opt_set_defaults(s);

    if ((ret = av_set_options_string(s, args, "=", ":")) < 0) {
        av_log(ctx, AV_LOG_ERROR, "Error parsing options string '%s'.\n", args);
        return ret;
    }
    av_opt_free(s);

    for (i = 0; i < s->nb_inputs; i++) {
        char name[32];
        AVFilterPad pad = { 0 };

        snprintf(name, sizeof(name), "input%d", i);
        pad.type           = AVMEDIA_TYPE_AUDIO;
        pad.name           = av_strdup(name);
        pad.filter_samples = filter_samples;

514
        ff_insert_inpad(ctx, i, &pad);
515 516
    }

517 518
    avpriv_float_dsp_init(&s->fdsp, 0);

519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    return 0;
}

static void uninit(AVFilterContext *ctx)
{
    int i;
    MixContext *s = ctx->priv;

    if (s->fifos) {
        for (i = 0; i < s->nb_inputs; i++)
            av_audio_fifo_free(s->fifos[i]);
        av_freep(&s->fifos);
    }
    frame_list_clear(s->frame_list);
    av_freep(&s->frame_list);
    av_freep(&s->input_state);
    av_freep(&s->input_scale);

537
    for (i = 0; i < ctx->nb_inputs; i++)
538 539 540 541 542 543
        av_freep(&ctx->input_pads[i].name);
}

static int query_formats(AVFilterContext *ctx)
{
    AVFilterFormats *formats = NULL;
544
    ff_add_format(&formats, AV_SAMPLE_FMT_FLT);
545
    ff_add_format(&formats, AV_SAMPLE_FMT_FLTP);
546
    ff_set_common_formats(ctx, formats);
547 548 549 550 551
    ff_set_common_channel_layouts(ctx, ff_all_channel_layouts());
    ff_set_common_samplerates(ctx, ff_all_samplerates());
    return 0;
}

552 553 554 555 556 557 558 559 560 561
static const AVFilterPad avfilter_af_amix_outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_AUDIO,
        .config_props  = config_output,
        .request_frame = request_frame
    },
    { NULL }
};

562 563 564 565 566 567 568 569 570
AVFilter avfilter_af_amix = {
    .name          = "amix",
    .description   = NULL_IF_CONFIG_SMALL("Audio mixing."),
    .priv_size     = sizeof(MixContext),

    .init           = init,
    .uninit         = uninit,
    .query_formats  = query_formats,

571
    .inputs    = NULL,
572
    .outputs   = avfilter_af_amix_outputs,
573
};