Commit 359a6796 authored by Ranjit Kumar Tulabandu's avatar Ranjit Kumar Tulabandu Committed by Yunqing Wang
Browse files

Changes to facilitate row based multi-threading of ARNR filtering

Change-Id: I2fd72af00afbbeb903e4fe364611abcc148f2fbb
parent 106c620a
......@@ -420,6 +420,14 @@ typedef struct {
double max_cpb_size; // in bits
} LevelConstraint;
typedef struct ARNRFilterData {
YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS];
int strength;
int frame_count;
int alt_ref_index;
struct scale_factors sf;
} ARNRFilterData;
typedef struct VP9_COMP {
QUANTS quants;
ThreadData td;
......@@ -662,6 +670,7 @@ typedef struct VP9_COMP {
MultiThreadHandle multi_thread_ctxt;
void (*row_mt_sync_read_ptr)(VP9RowMTSync *const, int, int);
void (*row_mt_sync_write_ptr)(VP9RowMTSync *const, int, int, const int);
ARNRFilterData arnr_filter_data;
int new_mt;
// Previous Partition Info
......
......@@ -45,8 +45,8 @@ static unsigned int do_16x16_motion_iteration(VP9_COMP *cpi, const MV *ref_mv,
mv_sf->search_method = HEX;
vp9_full_pixel_search(cpi, x, BLOCK_16X16, &ref_full, step_param,
x->errorperbit, cond_cost_list(cpi, cost_list), ref_mv,
dst_mv, 0, 0);
cpi->sf.mv.search_method, x->errorperbit,
cond_cost_list(cpi, cost_list), ref_mv, dst_mv, 0, 0);
mv_sf->search_method = old_search_method;
// Try sub-pixel MC
......
......@@ -2364,11 +2364,11 @@ static int is_exhaustive_allowed(VP9_COMP *cpi, MACROBLOCK *x) {
}
int vp9_full_pixel_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
MV *mvp_full, int step_param, int error_per_bit,
int *cost_list, const MV *ref_mv, MV *tmp_mv,
int var_max, int rd) {
MV *mvp_full, int step_param, int search_method,
int error_per_bit, int *cost_list, const MV *ref_mv,
MV *tmp_mv, int var_max, int rd) {
const SPEED_FEATURES *const sf = &cpi->sf;
const SEARCH_METHODS method = sf->mv.search_method;
const SEARCH_METHODS method = (SEARCH_METHODS)search_method;
vp9_variance_fn_ptr_t *fn_ptr = &cpi->fn_ptr[bsize];
int var = 0;
if (cost_list) {
......
......@@ -105,9 +105,9 @@ int vp9_refining_search_8p_c(const MACROBLOCK *x, MV *ref_mv, int error_per_bit,
struct VP9_COMP;
int vp9_full_pixel_search(struct VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
MV *mvp_full, int step_param, int error_per_bit,
int *cost_list, const MV *ref_mv, MV *tmp_mv,
int var_max, int rd);
MV *mvp_full, int step_param, int search_method,
int error_per_bit, int *cost_list, const MV *ref_mv,
MV *tmp_mv, int var_max, int rd);
#ifdef __cplusplus
} // extern "C"
......
......@@ -184,9 +184,9 @@ static int combined_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
else
center_mv = tmp_mv->as_mv;
vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list), &center_mv,
&tmp_mv->as_mv, INT_MAX, 0);
vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb,
cond_cost_list(cpi, cost_list), &center_mv, &tmp_mv->as_mv, INT_MAX, 0);
x->mv_limits = tmp_mv_limits;
......@@ -2260,10 +2260,10 @@ void vp9_pick_inter_mode_sub8x8(VP9_COMP *cpi, MACROBLOCK *x, int mi_row,
vp9_set_mv_search_range(&x->mv_limits,
&mbmi_ext->ref_mvs[0]->as_mv);
vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param,
x->sadperbit4, cond_cost_list(cpi, cost_list),
&mbmi_ext->ref_mvs[ref_frame][0].as_mv,
&tmp_mv, INT_MAX, 0);
vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method,
x->sadperbit4, cond_cost_list(cpi, cost_list),
&mbmi_ext->ref_mvs[ref_frame][0].as_mv, &tmp_mv, INT_MAX, 0);
x->mv_limits = tmp_mv_limits;
......
......@@ -1998,7 +1998,8 @@ static int64_t rd_pick_best_sub8x8_mode(
vp9_set_mv_search_range(&x->mv_limits, &bsi->ref_mv[0]->as_mv);
bestsme = vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, sadpb,
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method,
sadpb,
sf->mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
&bsi->ref_mv[0]->as_mv, new_mv, INT_MAX, 1);
......@@ -2403,9 +2404,9 @@ static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
mvp_full.col >>= 3;
mvp_full.row >>= 3;
bestsme = vp9_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, sadpb,
cond_cost_list(cpi, cost_list), &ref_mv,
&tmp_mv->as_mv, INT_MAX, 1);
bestsme = vp9_full_pixel_search(
cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, sadpb,
cond_cost_list(cpi, cost_list), &ref_mv, &tmp_mv->as_mv, INT_MAX, 1);
x->mv_limits = tmp_mv_limits;
......
<
......@@ -15,6 +15,7 @@
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vp9/encoder/vp9_mcomp.h"
......@@ -209,13 +210,14 @@ void vp9_highbd_temporal_filter_apply_c(
#endif // CONFIG_VP9_HIGHBITDEPTH
static uint32_t temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
ThreadData *td,
uint8_t *arf_frame_buf,
uint8_t *frame_ptr_buf,
int stride) {
MACROBLOCK *const x = &cpi->td.mb;
int stride, MV *ref_mv) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MV_SPEED_FEATURES *const mv_sf = &cpi->sf.mv;
const SEARCH_METHODS old_search_method = mv_sf->search_method;
const SEARCH_METHODS search_method = HEX;
int step_param;
int sadpb = x->sadperbit16;
uint32_t bestsme = UINT_MAX;
......@@ -225,7 +227,6 @@ static uint32_t temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
MV best_ref_mv1 = { 0, 0 };
MV best_ref_mv1_full; /* full-pixel value of best_ref_mv1 */
MV *ref_mv = &x->e_mbd.mi[0]->bmi[0].as_mv[0].as_mv;
// Save input state
struct buf_2d src = x->plane[0].src;
......@@ -243,11 +244,9 @@ static uint32_t temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
step_param = mv_sf->reduce_first_step_size;
step_param = VPXMIN(step_param, MAX_MVSEARCH_STEPS - 2);
mv_sf->search_method = HEX;
vp9_full_pixel_search(cpi, x, BLOCK_16X16, &best_ref_mv1_full, step_param,
sadpb, cond_cost_list(cpi, cost_list), &best_ref_mv1,
ref_mv, 0, 0);
mv_sf->search_method = old_search_method;
search_method, sadpb, cond_cost_list(cpi, cost_list),
&best_ref_mv1, ref_mv, 0, 0);
// Ignore mv costing by sending NULL pointer instead of cost array
bestsme = cpi->find_fractional_mv_step(
......@@ -263,22 +262,24 @@ static uint32_t temporal_filter_find_matching_mb_c(VP9_COMP *cpi,
return bestsme;
}
static void temporal_filter_iterate_c(VP9_COMP *cpi,
YV12_BUFFER_CONFIG **frames,
int frame_count, int alt_ref_index,
int strength,
struct scale_factors *scale) {
static void temporal_filter_iterate_row_c(VP9_COMP *cpi, ThreadData *td,
int mb_row, int mb_col_start,
int mb_col_end) {
ARNRFilterData *arnr_filter_data = &cpi->arnr_filter_data;
YV12_BUFFER_CONFIG **frames = arnr_filter_data->frames;
int frame_count = arnr_filter_data->frame_count;
int alt_ref_index = arnr_filter_data->alt_ref_index;
int strength = arnr_filter_data->strength;
struct scale_factors *scale = &arnr_filter_data->sf;
int byte;
int frame;
int mb_col, mb_row;
int mb_col;
unsigned int filter_weight;
int mb_cols = (frames[alt_ref_index]->y_crop_width + 15) >> 4;
int mb_rows = (frames[alt_ref_index]->y_crop_height + 15) >> 4;
int mb_y_offset = 0;
int mb_uv_offset = 0;
DECLARE_ALIGNED(16, unsigned int, accumulator[16 * 16 * 3]);
DECLARE_ALIGNED(16, uint16_t, count[16 * 16 * 3]);
MACROBLOCKD *mbd = &cpi->td.mb.e_mbd;
MACROBLOCKD *mbd = &td->mb.e_mbd;
YV12_BUFFER_CONFIG *f = frames[alt_ref_index];
uint8_t *dst1, *dst2;
#if CONFIG_VP9_HIGHBITDEPTH
......@@ -290,10 +291,11 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
#endif
const int mb_uv_height = 16 >> mbd->plane[1].subsampling_y;
const int mb_uv_width = 16 >> mbd->plane[1].subsampling_x;
// Addition of the tile col level offsets
int mb_y_offset = mb_row * 16 * (f->y_stride) + 16 * mb_col_start;
int mb_uv_offset =
mb_row * mb_uv_height * f->uv_stride + mb_uv_width * mb_col_start;
// Save input state
uint8_t *input_buffer[MAX_MB_PLANE];
int i;
#if CONFIG_VP9_HIGHBITDEPTH
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
predictor = CONVERT_TO_BYTEPTR(predictor16);
......@@ -302,102 +304,83 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
}
#endif
for (i = 0; i < MAX_MB_PLANE; i++) input_buffer[i] = mbd->plane[i].pre[0].buf;
for (mb_row = 0; mb_row < mb_rows; mb_row++) {
// Source frames are extended to 16 pixels. This is different than
// L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
// A 6/8 tap filter is used for motion search. This requires 2 pixels
// before and 3 pixels after. So the largest Y mv on a border would
// then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
// Y and therefore only extended by 8. The largest mv that a UV block
// can support is 8 - VP9_INTERP_EXTEND. A UV mv is half of a Y mv.
// (16 - VP9_INTERP_EXTEND) >> 1 which is greater than
// 8 - VP9_INTERP_EXTEND.
// To keep the mv in play for both Y and UV planes the max that it
// can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1).
cpi->td.mb.mv_limits.row_min =
-((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
cpi->td.mb.mv_limits.row_max =
((mb_rows - 1 - mb_row) * 16) + (17 - 2 * VP9_INTERP_EXTEND);
for (mb_col = 0; mb_col < mb_cols; mb_col++) {
int i, j, k;
int stride;
memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
cpi->td.mb.mv_limits.col_min =
-((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
cpi->td.mb.mv_limits.col_max =
((mb_cols - 1 - mb_col) * 16) + (17 - 2 * VP9_INTERP_EXTEND);
for (frame = 0; frame < frame_count; frame++) {
const uint32_t thresh_low = 10000;
const uint32_t thresh_high = 20000;
if (frames[frame] == NULL) continue;
mbd->mi[0]->bmi[0].as_mv[0].as_mv.row = 0;
mbd->mi[0]->bmi[0].as_mv[0].as_mv.col = 0;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
// Find best match in this frame by MC
uint32_t err = temporal_filter_find_matching_mb_c(
cpi, frames[alt_ref_index]->y_buffer + mb_y_offset,
frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride);
// Assign higher weight to matching MB if its error
// score is lower. If not applying MC default behavior
// is to weight all MBs equal.
filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0;
}
// Source frames are extended to 16 pixels. This is different than
// L/A/G reference frames that have a border of 32 (VP9ENCBORDERINPIXELS)
// A 6/8 tap filter is used for motion search. This requires 2 pixels
// before and 3 pixels after. So the largest Y mv on a border would
// then be 16 - VP9_INTERP_EXTEND. The UV blocks are half the size of the
// Y and therefore only extended by 8. The largest mv that a UV block
// can support is 8 - VP9_INTERP_EXTEND. A UV mv is half of a Y mv.
// (16 - VP9_INTERP_EXTEND) >> 1 which is greater than
// 8 - VP9_INTERP_EXTEND.
// To keep the mv in play for both Y and UV planes the max that it
// can be on a border is therefore 16 - (2*VP9_INTERP_EXTEND+1).
td->mb.mv_limits.row_min = -((mb_row * 16) + (17 - 2 * VP9_INTERP_EXTEND));
td->mb.mv_limits.row_max =
((mb_rows - 1 - mb_row) * 16) + (17 - 2 * VP9_INTERP_EXTEND);
for (mb_col = mb_col_start; mb_col < mb_col_end; mb_col++) {
int i, j, k;
int stride;
MV ref_mv;
memset(accumulator, 0, 16 * 16 * 3 * sizeof(accumulator[0]));
memset(count, 0, 16 * 16 * 3 * sizeof(count[0]));
td->mb.mv_limits.col_min = -((mb_col * 16) + (17 - 2 * VP9_INTERP_EXTEND));
td->mb.mv_limits.col_max =
((mb_cols - 1 - mb_col) * 16) + (17 - 2 * VP9_INTERP_EXTEND);
for (frame = 0; frame < frame_count; frame++) {
const uint32_t thresh_low = 10000;
const uint32_t thresh_high = 20000;
if (frames[frame] == NULL) continue;
ref_mv.row = 0;
ref_mv.col = 0;
if (frame == alt_ref_index) {
filter_weight = 2;
} else {
// Find best match in this frame by MC
uint32_t err = temporal_filter_find_matching_mb_c(
cpi, td, frames[alt_ref_index]->y_buffer + mb_y_offset,
frames[frame]->y_buffer + mb_y_offset, frames[frame]->y_stride,
&ref_mv);
// Assign higher weight to matching MB if its error
// score is lower. If not applying MC default behavior
// is to weight all MBs equal.
filter_weight = err < thresh_low ? 2 : err < thresh_high ? 1 : 0;
}
if (filter_weight != 0) {
// Construct the predictors
temporal_filter_predictors_mb_c(
mbd, frames[frame]->y_buffer + mb_y_offset,
frames[frame]->u_buffer + mb_uv_offset,
frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride,
mb_uv_width, mb_uv_height, mbd->mi[0]->bmi[0].as_mv[0].as_mv.row,
mbd->mi[0]->bmi[0].as_mv[0].as_mv.col, predictor, scale,
mb_col * 16, mb_row * 16);
if (filter_weight != 0) {
// Construct the predictors
temporal_filter_predictors_mb_c(
mbd, frames[frame]->y_buffer + mb_y_offset,
frames[frame]->u_buffer + mb_uv_offset,
frames[frame]->v_buffer + mb_uv_offset, frames[frame]->y_stride,
mb_uv_width, mb_uv_height, ref_mv.row, ref_mv.col, predictor, scale,
mb_col * 16, mb_row * 16);
#if CONFIG_VP9_HIGHBITDEPTH
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int adj_strength = strength + 2 * (mbd->bd - 8);
// Apply the filter (YUV)
vp9_highbd_temporal_filter_apply_c(
f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16,
adj_strength, filter_weight, accumulator, count);
vp9_highbd_temporal_filter_apply_c(
f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
mb_uv_width, mb_uv_height, adj_strength, filter_weight,
accumulator + 256, count + 256);
vp9_highbd_temporal_filter_apply_c(
f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
mb_uv_width, mb_uv_height, adj_strength, filter_weight,
accumulator + 512, count + 512);
} else {
// Apply the filter (YUV)
vp9_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, 16, strength,
filter_weight, accumulator, count);
vp9_temporal_filter_apply_c(
f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
mb_uv_width, mb_uv_height, strength, filter_weight,
accumulator + 256, count + 256);
vp9_temporal_filter_apply_c(
f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
mb_uv_width, mb_uv_height, strength, filter_weight,
accumulator + 512, count + 512);
}
#else
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int adj_strength = strength + 2 * (mbd->bd - 8);
// Apply the filter (YUV)
vp9_highbd_temporal_filter_apply_c(
f->y_buffer + mb_y_offset, f->y_stride, predictor, 16, 16,
adj_strength, filter_weight, accumulator, count);
vp9_highbd_temporal_filter_apply_c(
f->u_buffer + mb_uv_offset, f->uv_stride, predictor + 256,
mb_uv_width, mb_uv_height, adj_strength, filter_weight,
accumulator + 256, count + 256);
vp9_highbd_temporal_filter_apply_c(
f->v_buffer + mb_uv_offset, f->uv_stride, predictor + 512,
mb_uv_width, mb_uv_height, adj_strength, filter_weight,
accumulator + 512, count + 512);
} else {
// Apply the filter (YUV)
// TODO(jingning): Need SIMD optimization for this.
vp9_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, 16, strength,
filter_weight, accumulator, count);
......@@ -409,108 +392,78 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
predictor + 512, mb_uv_width,
mb_uv_height, strength, filter_weight,
accumulator + 512, count + 512);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
#else
// Apply the filter (YUV)
// TODO(jingning): Need SIMD optimization for this.
vp9_temporal_filter_apply_c(f->y_buffer + mb_y_offset, f->y_stride,
predictor, 16, 16, strength, filter_weight,
accumulator, count);
vp9_temporal_filter_apply_c(f->u_buffer + mb_uv_offset, f->uv_stride,
predictor + 256, mb_uv_width, mb_uv_height,
strength, filter_weight, accumulator + 256,
count + 256);
vp9_temporal_filter_apply_c(f->v_buffer + mb_uv_offset, f->uv_stride,
predictor + 512, mb_uv_width, mb_uv_height,
strength, filter_weight, accumulator + 512,
count + 512);
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
#if CONFIG_VP9_HIGHBITDEPTH
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst1_16;
uint16_t *dst2_16;
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.y_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
dst1_16[byte] = (uint16_t)pval;
// move to next pixel
byte++;
}
if (mbd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
uint16_t *dst1_16;
uint16_t *dst2_16;
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.y_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
byte += stride - 16;
dst1_16[byte] = (uint16_t)pval;
// move to next pixel
byte++;
}
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
dst2_16 = CONVERT_TO_SHORTPTR(dst2);
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + 256;
// U
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
dst1_16[byte] = (uint16_t)pval;
// V
pval = accumulator[m] + (count[m] >> 1);
pval *= fixed_divide[count[m]];
pval >>= 19;
dst2_16[byte] = (uint16_t)pval;
// move to next pixel
byte++;
}
byte += stride - 16;
}
byte += stride - mb_uv_width;
}
} else {
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
// move to next pixel
byte++;
}
byte += stride - 16;
}
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
dst1_16 = CONVERT_TO_SHORTPTR(dst1);
dst2_16 = CONVERT_TO_SHORTPTR(dst2);
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + 256;
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;
for (i = 0, k = 256; i < mb_uv_height; i++) {
for (j = 0; j < mb_uv_width; j++, k++) {
int m = k + 256;
// U
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
// V
pval = accumulator[m] + (count[m] >> 1);
pval *= fixed_divide[count[m]];
pval >>= 19;
dst2[byte] = (uint8_t)pval;
// move to next pixel
byte++;
}
byte += stride - mb_uv_width;
// U
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
dst1_16[byte] = (uint16_t)pval;
// V
pval = accumulator[m] + (count[m] >> 1);
pval *= fixed_divide[count[m]];
pval >>= 19;
dst2_16[byte] = (uint16_t)pval;
// move to next pixel
byte++;
}
byte += stride - mb_uv_width;
}
#else
} else {
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
......@@ -554,12 +507,93 @@ static void temporal_filter_iterate_c(VP9_COMP *cpi,
}
byte += stride - mb_uv_width;
}
}
#else
// Normalize filter output to produce AltRef frame
dst1 = cpi->alt_ref_buffer.y_buffer;
stride = cpi->alt_ref_buffer.y_stride;
byte = mb_y_offset;
for (i = 0, k = 0; i < 16; i++) {
for (j = 0; j < 16; j++, k++) {
unsigned int pval = accumulator[k] + (count[k] >> 1);
pval *= fixed_divide[count[k]];
pval >>= 19;
dst1[byte] = (uint8_t)pval;
// move to next pixel
byte++;
}
byte += stride - 16;
}
dst1 = cpi->alt_ref_buffer.u_buffer;
dst2 = cpi->alt_ref_buffer.v_buffer;
stride = cpi->alt_ref_buffer.uv_stride;
byte = mb_uv_offset;