fastssim.c 15 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 *
 *  This code was originally written by: Nathan E. Egge, at the Daala
 *  project.
 */
13
#include <assert.h>
14
#include <math.h>
15
#include <stdlib.h>
16 17
#include <string.h>
#include "./vpx_config.h"
18 19
#include "./vpx_dsp_rtcd.h"
#include "vpx_dsp/ssim.h"
20
#include "vpx_ports/system_state.h"
21

22 23 24 25 26
typedef struct fs_level fs_level;
typedef struct fs_ctx fs_ctx;

#define SSIM_C1 (255 * 255 * 0.01 * 0.01)
#define SSIM_C2 (255 * 255 * 0.03 * 0.03)
27 28 29 30 31 32
#if CONFIG_VP9_HIGHBITDEPTH
#define SSIM_C1_10 (1023 * 1023 * 0.01 * 0.01)
#define SSIM_C1_12 (4095 * 4095 * 0.01 * 0.01)
#define SSIM_C2_10 (1023 * 1023 * 0.03 * 0.03)
#define SSIM_C2_12 (4095 * 4095 * 0.03 * 0.03)
#endif
33 34 35 36
#define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b))
#define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b))

struct fs_level {
37 38
  uint32_t *im1;
  uint32_t *im2;
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
  double *ssim;
  int w;
  int h;
};

struct fs_ctx {
  fs_level *level;
  int nlevels;
  unsigned *col_buf;
};

static void fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) {
  unsigned char *data;
  size_t data_size;
  int lw;
  int lh;
  int l;
  lw = (_w + 1) >> 1;
  lh = (_h + 1) >> 1;
  data_size = _nlevels * sizeof(fs_level)
      + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf);
  for (l = 0; l < _nlevels; l++) {
    size_t im_size;
    size_t level_size;
    im_size = lw * (size_t) lh;
    level_size = 2 * im_size * sizeof(*_ctx->level[l].im1);
    level_size += sizeof(*_ctx->level[l].ssim) - 1;
    level_size /= sizeof(*_ctx->level[l].ssim);
    level_size += im_size;
    level_size *= sizeof(*_ctx->level[l].ssim);
    data_size += level_size;
    lw = (lw + 1) >> 1;
    lh = (lh + 1) >> 1;
  }
  data = (unsigned char *) malloc(data_size);
  _ctx->level = (fs_level *) data;
  _ctx->nlevels = _nlevels;
  data += _nlevels * sizeof(*_ctx->level);
  lw = (_w + 1) >> 1;
  lh = (_h + 1) >> 1;
  for (l = 0; l < _nlevels; l++) {
    size_t im_size;
    size_t level_size;
    _ctx->level[l].w = lw;
    _ctx->level[l].h = lh;
    im_size = lw * (size_t) lh;
    level_size = 2 * im_size * sizeof(*_ctx->level[l].im1);
    level_size += sizeof(*_ctx->level[l].ssim) - 1;
    level_size /= sizeof(*_ctx->level[l].ssim);
    level_size *= sizeof(*_ctx->level[l].ssim);
89
    _ctx->level[l].im1 = (uint32_t *)data;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    _ctx->level[l].im2 = _ctx->level[l].im1 + im_size;
    data += level_size;
    _ctx->level[l].ssim = (double *) data;
    data += im_size * sizeof(*_ctx->level[l].ssim);
    lw = (lw + 1) >> 1;
    lh = (lh + 1) >> 1;
  }
  _ctx->col_buf = (unsigned *) data;
}

static void fs_ctx_clear(fs_ctx *_ctx) {
  free(_ctx->level);
}

static void fs_downsample_level(fs_ctx *_ctx, int _l) {
105 106 107 108
  const uint32_t *src1;
  const uint32_t *src2;
  uint32_t *dst1;
  uint32_t *dst2;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
  int w2;
  int h2;
  int w;
  int h;
  int i;
  int j;
  w = _ctx->level[_l].w;
  h = _ctx->level[_l].h;
  dst1 = _ctx->level[_l].im1;
  dst2 = _ctx->level[_l].im2;
  w2 = _ctx->level[_l - 1].w;
  h2 = _ctx->level[_l - 1].h;
  src1 = _ctx->level[_l - 1].im1;
  src2 = _ctx->level[_l - 1].im2;
  for (j = 0; j < h; j++) {
    int j0offs;
    int j1offs;
    j0offs = 2 * j * w2;
    j1offs = FS_MINI(2 * j + 1, h2) * w2;
    for (i = 0; i < w; i++) {
      int i0;
      int i1;
      i0 = 2 * i;
      i1 = FS_MINI(i0 + 1, w2);
      dst1[j * w + i] = src1[j0offs + i0] + src1[j0offs + i1]
          + src1[j1offs + i0] + src1[j1offs + i1];
      dst2[j * w + i] = src2[j0offs + i0] + src2[j0offs + i1]
          + src2[j1offs + i0] + src2[j1offs + i1];
    }
  }
}

141 142 143 144 145 146
static void fs_downsample_level0(fs_ctx *_ctx, const uint8_t *_src1,
                                 int _s1ystride, const uint8_t *_src2,
                                 int _s2ystride, int _w, int _h,
                                 uint32_t bd, uint32_t shift) {
  uint32_t *dst1;
  uint32_t *dst2;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
  int w;
  int h;
  int i;
  int j;
  w = _ctx->level[0].w;
  h = _ctx->level[0].h;
  dst1 = _ctx->level[0].im1;
  dst2 = _ctx->level[0].im2;
  for (j = 0; j < h; j++) {
    int j0;
    int j1;
    j0 = 2 * j;
    j1 = FS_MINI(j0 + 1, _h);
    for (i = 0; i < w; i++) {
      int i0;
      int i1;
      i0 = 2 * i;
      i1 = FS_MINI(i0 + 1, _w);
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
      if (bd == 8 && shift == 0) {
        dst1[j * w + i] = _src1[j0 * _s1ystride + i0]
            + _src1[j0 * _s1ystride + i1] + _src1[j1 * _s1ystride + i0]
            + _src1[j1 * _s1ystride + i1];
        dst2[j * w + i] = _src2[j0 * _s2ystride + i0]
            + _src2[j0 * _s2ystride + i1] + _src2[j1 * _s2ystride + i0]
            + _src2[j1 * _s2ystride + i1];
      } else {
        uint16_t * src1s = CONVERT_TO_SHORTPTR(_src1);
        uint16_t * src2s = CONVERT_TO_SHORTPTR(_src2);
        dst1[j * w + i] = (src1s[j0 * _s1ystride + i0] >> shift)
              + (src1s[j0 * _s1ystride + i1] >> shift)
              + (src1s[j1 * _s1ystride + i0] >> shift)
              + (src1s[j1 * _s1ystride + i1] >> shift);
        dst2[j * w + i] = (src2s[j0 * _s2ystride + i0] >> shift)
              + (src2s[j0 * _s2ystride + i1] >> shift)
              + (src2s[j1 * _s2ystride + i0] >> shift)
              + (src2s[j1 * _s2ystride + i1] >> shift);
      }
184 185 186 187
    }
  }
}

188
static void fs_apply_luminance(fs_ctx *_ctx, int _l, int bit_depth) {
189 190
  unsigned *col_sums_x;
  unsigned *col_sums_y;
191 192
  uint32_t *im1;
  uint32_t *im2;
193 194 195 196 197 198 199 200
  double *ssim;
  double c1;
  int w;
  int h;
  int j0offs;
  int j1offs;
  int i;
  int j;
201 202 203 204 205 206 207 208 209
  double ssim_c1 = SSIM_C1;
#if CONFIG_VP9_HIGHBITDEPTH
  if (bit_depth == 10)
    ssim_c1 = SSIM_C1_10;
  if (bit_depth == 12)
    ssim_c1 = SSIM_C1_12;
#else
  assert(bit_depth == 8);
#endif
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  w = _ctx->level[_l].w;
  h = _ctx->level[_l].h;
  col_sums_x = _ctx->col_buf;
  col_sums_y = col_sums_x + w;
  im1 = _ctx->level[_l].im1;
  im2 = _ctx->level[_l].im2;
  for (i = 0; i < w; i++)
    col_sums_x[i] = 5 * im1[i];
  for (i = 0; i < w; i++)
    col_sums_y[i] = 5 * im2[i];
  for (j = 1; j < 4; j++) {
    j1offs = FS_MINI(j, h - 1) * w;
    for (i = 0; i < w; i++)
      col_sums_x[i] += im1[j1offs + i];
    for (i = 0; i < w; i++)
      col_sums_y[i] += im2[j1offs + i];
  }
  ssim = _ctx->level[_l].ssim;
228
  c1 = (double) (ssim_c1 * 4096 * (1 << 4 * _l));
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  for (j = 0; j < h; j++) {
    unsigned mux;
    unsigned muy;
    int i0;
    int i1;
    mux = 5 * col_sums_x[0];
    muy = 5 * col_sums_y[0];
    for (i = 1; i < 4; i++) {
      i1 = FS_MINI(i, w - 1);
      mux += col_sums_x[i1];
      muy += col_sums_y[i1];
    }
    for (i = 0; i < w; i++) {
      ssim[j * w + i] *= (2 * mux * (double) muy + c1)
          / (mux * (double) mux + muy * (double) muy + c1);
      if (i + 1 < w) {
        i0 = FS_MAXI(0, i - 4);
        i1 = FS_MINI(i + 4, w - 1);
        mux += col_sums_x[i1] - col_sums_x[i0];
        muy += col_sums_x[i1] - col_sums_x[i0];
      }
    }
    if (j + 1 < h) {
      j0offs = FS_MAXI(0, j - 4) * w;
      for (i = 0; i < w; i++)
        col_sums_x[i] -= im1[j0offs + i];
      for (i = 0; i < w; i++)
        col_sums_y[i] -= im2[j0offs + i];
      j1offs = FS_MINI(j + 4, h - 1) * w;
      for (i = 0; i < w; i++)
        col_sums_x[i] += im1[j1offs + i];
      for (i = 0; i < w; i++)
        col_sums_y[i] += im2[j1offs + i];
    }
  }
}

#define FS_COL_SET(_col, _joffs, _ioffs) \
  do { \
    unsigned gx; \
    unsigned gy; \
    gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
    gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
    col_sums_gx2[(_col)] = gx * (double)gx; \
    col_sums_gy2[(_col)] = gy * (double)gy; \
    col_sums_gxgy[(_col)] = gx * (double)gy; \
  } \
  while (0)

#define FS_COL_ADD(_col, _joffs, _ioffs) \
  do { \
    unsigned gx; \
    unsigned gy; \
    gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
    gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
    col_sums_gx2[(_col)] += gx * (double)gx; \
    col_sums_gy2[(_col)] += gy * (double)gy; \
    col_sums_gxgy[(_col)] += gx * (double)gy; \
  } \
  while (0)

#define FS_COL_SUB(_col, _joffs, _ioffs) \
  do { \
    unsigned gx; \
    unsigned gy; \
    gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
    gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \
    col_sums_gx2[(_col)] -= gx * (double)gx; \
    col_sums_gy2[(_col)] -= gy * (double)gy; \
    col_sums_gxgy[(_col)] -= gx * (double)gy; \
  } \
  while (0)

#define FS_COL_COPY(_col1, _col2) \
  do { \
    col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)]; \
    col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)]; \
    col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \
  } \
  while (0)

#define FS_COL_HALVE(_col1, _col2) \
  do { \
    col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5; \
    col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5; \
    col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \
  } \
  while (0)

#define FS_COL_DOUBLE(_col1, _col2) \
  do { \
    col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2; \
    col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2; \
    col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \
  } \
  while (0)

326 327 328
static void fs_calc_structure(fs_ctx *_ctx, int _l, int bit_depth) {
  uint32_t *im1;
  uint32_t *im2;
329 330 331 332 333 334 335 336 337 338 339 340
  unsigned *gx_buf;
  unsigned *gy_buf;
  double *ssim;
  double col_sums_gx2[8];
  double col_sums_gy2[8];
  double col_sums_gxgy[8];
  double c2;
  int stride;
  int w;
  int h;
  int i;
  int j;
341 342 343 344 345 346 347 348 349 350
  double ssim_c2 = SSIM_C2;
#if CONFIG_VP9_HIGHBITDEPTH
  if (bit_depth == 10)
    ssim_c2 = SSIM_C2_10;
  if (bit_depth == 12)
    ssim_c2 = SSIM_C2_12;
#else
  assert(bit_depth == 8);
#endif

351 352 353 354 355 356 357 358 359
  w = _ctx->level[_l].w;
  h = _ctx->level[_l].h;
  im1 = _ctx->level[_l].im1;
  im2 = _ctx->level[_l].im2;
  ssim = _ctx->level[_l].ssim;
  gx_buf = _ctx->col_buf;
  stride = w + 8;
  gy_buf = gx_buf + 8 * stride;
  memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf));
360
  c2 = ssim_c2 * (1 << 4 * _l) * 16 * 104;
361 362 363 364 365 366 367
  for (j = 0; j < h + 4; j++) {
    if (j < h - 1) {
      for (i = 0; i < w - 1; i++) {
        unsigned g1;
        unsigned g2;
        unsigned gx;
        unsigned gy;
368 369
        g1 = abs((int)im1[(j + 1) * w + i + 1] - (int)im1[j * w + i]);
        g2 = abs((int)im1[(j + 1) * w + i] - (int)im1[j * w + i + 1]);
370
        gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2);
371 372
        g1 = abs((int)im2[(j + 1) * w + i + 1] - (int)im2[j * w + i]);
        g2 = abs((int)im2[(j + 1) * w + i] - (int)im2[j * w + i + 1]);
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        gy = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2);
        gx_buf[(j & 7) * stride + i + 4] = gx;
        gy_buf[(j & 7) * stride + i + 4] = gy;
      }
    } else {
      memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf));
      memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf));
    }
    if (j >= 4) {
      int k;
      col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0;
      col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0;
      col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] =
          col_sums_gxgy[0] = 0;
      for (i = 4; i < 8; i++) {
        FS_COL_SET(i, -1, 0);
        FS_COL_ADD(i, 0, 0);
        for (k = 1; k < 8 - i; k++) {
          FS_COL_DOUBLE(i, i);
          FS_COL_ADD(i, -k - 1, 0);
          FS_COL_ADD(i, k, 0);
        }
      }
      for (i = 0; i < w; i++) {
        double mugx2;
        double mugy2;
        double mugxgy;
        mugx2 = col_sums_gx2[0];
        for (k = 1; k < 8; k++)
          mugx2 += col_sums_gx2[k];
        mugy2 = col_sums_gy2[0];
        for (k = 1; k < 8; k++)
          mugy2 += col_sums_gy2[k];
        mugxgy = col_sums_gxgy[0];
        for (k = 1; k < 8; k++)
          mugxgy += col_sums_gxgy[k];
        ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2);
        if (i + 1 < w) {
          FS_COL_SET(0, -1, 1);
          FS_COL_ADD(0, 0, 1);
          FS_COL_SUB(2, -3, 2);
          FS_COL_SUB(2, 2, 2);
          FS_COL_HALVE(1, 2);
          FS_COL_SUB(3, -4, 3);
          FS_COL_SUB(3, 3, 3);
          FS_COL_HALVE(2, 3);
          FS_COL_COPY(3, 4);
          FS_COL_DOUBLE(4, 5);
          FS_COL_ADD(4, -4, 5);
          FS_COL_ADD(4, 3, 5);
          FS_COL_DOUBLE(5, 6);
          FS_COL_ADD(5, -3, 6);
          FS_COL_ADD(5, 2, 6);
          FS_COL_DOUBLE(6, 7);
          FS_COL_ADD(6, -2, 7);
          FS_COL_ADD(6, 1, 7);
          FS_COL_SET(7, -1, 8);
          FS_COL_ADD(7, 0, 8);
        }
      }
    }
  }
}

#define FS_NLEVELS (4)

/*These weights were derived from the default weights found in Wang's original
 Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}.
 We drop the finest scale and renormalize the rest to sum to 1.*/

static const double FS_WEIGHTS[FS_NLEVELS] = {0.2989654541015625,
    0.3141326904296875, 0.2473602294921875, 0.1395416259765625};

static double fs_average(fs_ctx *_ctx, int _l) {
  double *ssim;
  double ret;
  int w;
  int h;
  int i;
  int j;
  w = _ctx->level[_l].w;
  h = _ctx->level[_l].h;
  ssim = _ctx->level[_l].ssim;
  ret = 0;
  for (j = 0; j < h; j++)
    for (i = 0; i < w; i++)
      ret += ssim[j * w + i];
  return pow(ret / (w * h), FS_WEIGHTS[_l]);
}

463 464 465 466 467 468 469 470 471 472
static double convert_ssim_db(double _ssim, double _weight) {
  assert(_weight >= _ssim);
  if ((_weight - _ssim) < 1e-10)
    return MAX_SSIM_DB;
  return 10 * (log10(_weight) - log10(_weight - _ssim));
}

static double calc_ssim(const uint8_t *_src, int _systride,
                        const uint8_t *_dst, int _dystride,
                        int _w, int _h, uint32_t _bd, uint32_t _shift) {
473 474 475 476 477
  fs_ctx ctx;
  double ret;
  int l;
  ret = 1;
  fs_ctx_init(&ctx, _w, _h, FS_NLEVELS);
478 479
  fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride,
                       _w, _h, _bd, _shift);
480
  for (l = 0; l < FS_NLEVELS - 1; l++) {
481
    fs_calc_structure(&ctx, l, _bd);
482 483 484
    ret *= fs_average(&ctx, l);
    fs_downsample_level(&ctx, l + 1);
  }
485 486
  fs_calc_structure(&ctx, l, _bd);
  fs_apply_luminance(&ctx, l, _bd);
487 488 489 490 491
  ret *= fs_average(&ctx, l);
  fs_ctx_clear(&ctx);
  return ret;
}

492 493
double vpx_calc_fastssim(const YV12_BUFFER_CONFIG *source,
                         const YV12_BUFFER_CONFIG *dest,
494 495
                         double *ssim_y, double *ssim_u, double *ssim_v,
                         uint32_t bd, uint32_t in_bd) {
496
  double ssimv;
497
  uint32_t bd_shift = 0;
498
  vpx_clear_system_state();
499 500
  assert(bd >= in_bd);
  bd_shift = bd - in_bd;
501 502 503

  *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer,
                      dest->y_stride, source->y_crop_width,
504
                      source->y_crop_height, in_bd, bd_shift);
505 506
  *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer,
                      dest->uv_stride, source->uv_crop_width,
507
                      source->uv_crop_height, in_bd, bd_shift);
508 509
  *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer,
                      dest->uv_stride, source->uv_crop_width,
510
                      source->uv_crop_height, in_bd, bd_shift);
511

512
  ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v));
513 514
  return convert_ssim_db(ssimv, 1.0);
}