vp8_fdct4x4_test.cc 4.84 KB
Newer Older
1
/*
2 3 4 5 6 7 8 9
 *  Copyright (c) 2013 The WebM project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
10 11 12 13 14 15 16 17

#include <math.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>

Yaowu Xu's avatar
Yaowu Xu committed
18
#include "./vp8_rtcd.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164

#include "test/acm_random.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "vpx/vpx_integer.h"

namespace {

const int cospi8sqrt2minus1 = 20091;
const int sinpi8sqrt2 = 35468;

void reference_idct4x4(const int16_t *input, int16_t *output) {
  const int16_t *ip = input;
  int16_t *op = output;

  for (int i = 0; i < 4; ++i) {
    const int a1 = ip[0] + ip[8];
    const int b1 = ip[0] - ip[8];
    const int temp1 = (ip[4] * sinpi8sqrt2) >> 16;
    const int temp2 = ip[12] + ((ip[12] * cospi8sqrt2minus1) >> 16);
    const int c1 = temp1 - temp2;
    const int temp3 = ip[4] + ((ip[4] * cospi8sqrt2minus1) >> 16);
    const int temp4 = (ip[12] * sinpi8sqrt2) >> 16;
    const int d1 = temp3 + temp4;
    op[0] = a1 + d1;
    op[12] = a1 - d1;
    op[4] = b1 + c1;
    op[8] = b1 - c1;
    ++ip;
    ++op;
  }
  ip = output;
  op = output;
  for (int i = 0; i < 4; ++i) {
    const int a1 = ip[0] + ip[2];
    const int b1 = ip[0] - ip[2];
    const int temp1 = (ip[1] * sinpi8sqrt2) >> 16;
    const int temp2 = ip[3] + ((ip[3] * cospi8sqrt2minus1) >> 16);
    const int c1 = temp1 - temp2;
    const int temp3 = ip[1] + ((ip[1] * cospi8sqrt2minus1) >> 16);
    const int temp4 = (ip[3] * sinpi8sqrt2) >> 16;
    const int d1 = temp3 + temp4;
    op[0] = (a1 + d1 + 4) >> 3;
    op[3] = (a1 - d1 + 4) >> 3;
    op[1] = (b1 + c1 + 4) >> 3;
    op[2] = (b1 - c1 + 4) >> 3;
    ip += 4;
    op += 4;
  }
}

using libvpx_test::ACMRandom;

TEST(Vp8FdctTest, SignBiasCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int16_t test_input_block[16];
  int16_t test_output_block[16];
  const int pitch = 8;
  int count_sign_block[16][2];
  const int count_test_block = 1000000;

  memset(count_sign_block, 0, sizeof(count_sign_block));

  for (int i = 0; i < count_test_block; ++i) {
    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 16; ++j)
      test_input_block[j] = rnd.Rand8() - rnd.Rand8();

    vp8_short_fdct4x4_c(test_input_block, test_output_block, pitch);

    for (int j = 0; j < 16; ++j) {
      if (test_output_block[j] < 0)
        ++count_sign_block[j][0];
      else if (test_output_block[j] > 0)
        ++count_sign_block[j][1];
    }
  }

  bool bias_acceptable = true;
  for (int j = 0; j < 16; ++j)
    bias_acceptable = bias_acceptable &&
    (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 10000);

  EXPECT_EQ(true, bias_acceptable)
    << "Error: 4x4 FDCT has a sign bias > 1% for input range [-255, 255]";

  memset(count_sign_block, 0, sizeof(count_sign_block));

  for (int i = 0; i < count_test_block; ++i) {
    // Initialize a test block with input range [-15, 15].
    for (int j = 0; j < 16; ++j)
      test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);

    vp8_short_fdct4x4_c(test_input_block, test_output_block, pitch);

    for (int j = 0; j < 16; ++j) {
      if (test_output_block[j] < 0)
        ++count_sign_block[j][0];
      else if (test_output_block[j] > 0)
        ++count_sign_block[j][1];
    }
  }

  bias_acceptable = true;
  for (int j = 0; j < 16; ++j)
    bias_acceptable = bias_acceptable &&
    (abs(count_sign_block[j][0] - count_sign_block[j][1]) < 100000);

  EXPECT_EQ(true, bias_acceptable)
    << "Error: 4x4 FDCT has a sign bias > 10% for input range [-15, 15]";
};

TEST(Vp8FdctTest, RoundTripErrorCheck) {
  ACMRandom rnd(ACMRandom::DeterministicSeed());
  int max_error = 0;
  double total_error = 0;
  const int count_test_block = 1000000;
  for (int i = 0; i < count_test_block; ++i) {
    int16_t test_input_block[16];
    int16_t test_temp_block[16];
    int16_t test_output_block[16];

    // Initialize a test block with input range [-255, 255].
    for (int j = 0; j < 16; ++j)
      test_input_block[j] = rnd.Rand8() - rnd.Rand8();

    const int pitch = 8;
    vp8_short_fdct4x4_c(test_input_block, test_temp_block, pitch);
    reference_idct4x4(test_temp_block, test_output_block);

    for (int j = 0; j < 16; ++j) {
      const int diff = test_input_block[j] - test_output_block[j];
      const int error = diff * diff;
      if (max_error < error)
        max_error = error;
      total_error += error;
    }
  }

  EXPECT_GE(1, max_error )
    << "Error: FDCT/IDCT has an individual roundtrip error > 1";

  EXPECT_GE(count_test_block, total_error)
    << "Error: FDCT/IDCT has average roundtrip error > 1 per block";
};

}  // namespace