Commit c6b9039f authored by John Koleszar's avatar John Koleszar

Restyle code

Approximate the Google style guide[1] so that that there's a written
document to follow and tools to check compliance[2].

[1]: http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
[2]: http://google-styleguide.googlecode.com/svn/trunk/cpplint/cpplint.py

Change-Id: Idf40e3d8dddcc72150f6af127b13e5dab838685f
parent 8697c6e4

Too many changes to show.

To preserve performance only 146 of 146+ files are displayed.

......@@ -25,241 +25,214 @@ extern void die(const char *fmt, ...);
#endif
struct arg arg_init(char **argv)
{
struct arg a;
a.argv = argv;
a.argv_step = 1;
a.name = NULL;
a.val = NULL;
a.def = NULL;
return a;
struct arg arg_init(char **argv) {
struct arg a;
a.argv = argv;
a.argv_step = 1;
a.name = NULL;
a.val = NULL;
a.def = NULL;
return a;
}
int arg_match(struct arg *arg_, const struct arg_def *def, char **argv)
{
struct arg arg;
int arg_match(struct arg *arg_, const struct arg_def *def, char **argv) {
struct arg arg;
if (!argv[0] || argv[0][0] != '-')
return 0;
if (!argv[0] || argv[0][0] != '-')
return 0;
arg = arg_init(argv);
arg = arg_init(argv);
if (def->short_name
&& strlen(arg.argv[0]) == strlen(def->short_name) + 1
&& !strcmp(arg.argv[0] + 1, def->short_name))
{
if (def->short_name
&& strlen(arg.argv[0]) == strlen(def->short_name) + 1
&& !strcmp(arg.argv[0] + 1, def->short_name)) {
arg.name = arg.argv[0] + 1;
arg.val = def->has_val ? arg.argv[1] : NULL;
arg.argv_step = def->has_val ? 2 : 1;
}
else if (def->long_name)
{
int name_len = strlen(def->long_name);
if (strlen(arg.argv[0]) >= name_len + 2
&& arg.argv[0][1] == '-'
&& !strncmp(arg.argv[0] + 2, def->long_name, name_len)
&& (arg.argv[0][name_len+2] == '='
|| arg.argv[0][name_len+2] == '\0'))
{
arg.name = arg.argv[0] + 2;
arg.val = arg.name[name_len] == '=' ? arg.name + name_len + 1 : NULL;
arg.argv_step = 1;
}
arg.name = arg.argv[0] + 1;
arg.val = def->has_val ? arg.argv[1] : NULL;
arg.argv_step = def->has_val ? 2 : 1;
} else if (def->long_name) {
int name_len = strlen(def->long_name);
if (strlen(arg.argv[0]) >= name_len + 2
&& arg.argv[0][1] == '-'
&& !strncmp(arg.argv[0] + 2, def->long_name, name_len)
&& (arg.argv[0][name_len + 2] == '='
|| arg.argv[0][name_len + 2] == '\0')) {
arg.name = arg.argv[0] + 2;
arg.val = arg.name[name_len] == '=' ? arg.name + name_len + 1 : NULL;
arg.argv_step = 1;
}
}
if (arg.name && !arg.val && def->has_val)
die("Error: option %s requires argument.\n", arg.name);
if (arg.name && !arg.val && def->has_val)
die("Error: option %s requires argument.\n", arg.name);
if (arg.name && arg.val && !def->has_val)
die("Error: option %s requires no argument.\n", arg.name);
if (arg.name && arg.val && !def->has_val)
die("Error: option %s requires no argument.\n", arg.name);
if (arg.name
&& (arg.val || !def->has_val))
{
arg.def = def;
*arg_ = arg;
return 1;
}
if (arg.name
&& (arg.val || !def->has_val)) {
arg.def = def;
*arg_ = arg;
return 1;
}
return 0;
return 0;
}
const char *arg_next(struct arg *arg)
{
if (arg->argv[0])
arg->argv += arg->argv_step;
const char *arg_next(struct arg *arg) {
if (arg->argv[0])
arg->argv += arg->argv_step;
return *arg->argv;
return *arg->argv;
}
char **argv_dup(int argc, const char **argv)
{
char **new_argv = malloc((argc + 1) * sizeof(*argv));
char **argv_dup(int argc, const char **argv) {
char **new_argv = malloc((argc + 1) * sizeof(*argv));
memcpy(new_argv, argv, argc * sizeof(*argv));
new_argv[argc] = NULL;
return new_argv;
memcpy(new_argv, argv, argc * sizeof(*argv));
new_argv[argc] = NULL;
return new_argv;
}
void arg_show_usage(FILE *fp, const struct arg_def *const *defs)
{
char option_text[40] = {0};
void arg_show_usage(FILE *fp, const struct arg_def *const *defs) {
char option_text[40] = {0};
for (; *defs; defs++)
{
const struct arg_def *def = *defs;
char *short_val = def->has_val ? " <arg>" : "";
char *long_val = def->has_val ? "=<arg>" : "";
for (; *defs; defs++) {
const struct arg_def *def = *defs;
char *short_val = def->has_val ? " <arg>" : "";
char *long_val = def->has_val ? "=<arg>" : "";
if (def->short_name && def->long_name)
{
char *comma = def->has_val ? "," : ", ";
if (def->short_name && def->long_name) {
char *comma = def->has_val ? "," : ", ";
snprintf(option_text, 37, "-%s%s%s --%s%6s",
def->short_name, short_val, comma,
def->long_name, long_val);
}
else if (def->short_name)
snprintf(option_text, 37, "-%s%s",
def->short_name, short_val);
else if (def->long_name)
snprintf(option_text, 37, " --%s%s",
def->long_name, long_val);
snprintf(option_text, 37, "-%s%s%s --%s%6s",
def->short_name, short_val, comma,
def->long_name, long_val);
} else if (def->short_name)
snprintf(option_text, 37, "-%s%s",
def->short_name, short_val);
else if (def->long_name)
snprintf(option_text, 37, " --%s%s",
def->long_name, long_val);
fprintf(fp, " %-37s\t%s\n", option_text, def->desc);
fprintf(fp, " %-37s\t%s\n", option_text, def->desc);
if(def->enums)
{
const struct arg_enum_list *listptr;
if (def->enums) {
const struct arg_enum_list *listptr;
fprintf(fp, " %-37s\t ", "");
fprintf(fp, " %-37s\t ", "");
for(listptr = def->enums; listptr->name; listptr++)
fprintf(fp, "%s%s", listptr->name,
listptr[1].name ? ", " : "\n");
}
for (listptr = def->enums; listptr->name; listptr++)
fprintf(fp, "%s%s", listptr->name,
listptr[1].name ? ", " : "\n");
}
}
}
unsigned int arg_parse_uint(const struct arg *arg)
{
long int rawval;
char *endptr;
unsigned int arg_parse_uint(const struct arg *arg) {
long int rawval;
char *endptr;
rawval = strtol(arg->val, &endptr, 10);
rawval = strtol(arg->val, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '\0')
{
if (rawval >= 0 && rawval <= UINT_MAX)
return rawval;
if (arg->val[0] != '\0' && endptr[0] == '\0') {
if (rawval >= 0 && rawval <= UINT_MAX)
return rawval;
die("Option %s: Value %ld out of range for unsigned int\n",
arg->name, rawval);
}
die("Option %s: Value %ld out of range for unsigned int\n",
arg->name, rawval);
}
die("Option %s: Invalid character '%c'\n", arg->name, *endptr);
return 0;
die("Option %s: Invalid character '%c'\n", arg->name, *endptr);
return 0;
}
int arg_parse_int(const struct arg *arg)
{
long int rawval;
char *endptr;
int arg_parse_int(const struct arg *arg) {
long int rawval;
char *endptr;
rawval = strtol(arg->val, &endptr, 10);
rawval = strtol(arg->val, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '\0')
{
if (rawval >= INT_MIN && rawval <= INT_MAX)
return rawval;
if (arg->val[0] != '\0' && endptr[0] == '\0') {
if (rawval >= INT_MIN && rawval <= INT_MAX)
return rawval;
die("Option %s: Value %ld out of range for signed int\n",
arg->name, rawval);
}
die("Option %s: Value %ld out of range for signed int\n",
arg->name, rawval);
}
die("Option %s: Invalid character '%c'\n", arg->name, *endptr);
return 0;
die("Option %s: Invalid character '%c'\n", arg->name, *endptr);
return 0;
}
struct vpx_rational
{
int num; /**< fraction numerator */
int den; /**< fraction denominator */
struct vpx_rational {
int num; /**< fraction numerator */
int den; /**< fraction denominator */
};
struct vpx_rational arg_parse_rational(const struct arg *arg)
{
long int rawval;
char *endptr;
struct vpx_rational rat;
/* parse numerator */
rawval = strtol(arg->val, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '/')
{
if (rawval >= INT_MIN && rawval <= INT_MAX)
rat.num = rawval;
else die("Option %s: Value %ld out of range for signed int\n",
arg->name, rawval);
}
else die("Option %s: Expected / at '%c'\n", arg->name, *endptr);
/* parse denominator */
rawval = strtol(endptr + 1, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '\0')
{
if (rawval >= INT_MIN && rawval <= INT_MAX)
rat.den = rawval;
else die("Option %s: Value %ld out of range for signed int\n",
arg->name, rawval);
}
else die("Option %s: Invalid character '%c'\n", arg->name, *endptr);
return rat;
struct vpx_rational arg_parse_rational(const struct arg *arg) {
long int rawval;
char *endptr;
struct vpx_rational rat;
/* parse numerator */
rawval = strtol(arg->val, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '/') {
if (rawval >= INT_MIN && rawval <= INT_MAX)
rat.num = rawval;
else die("Option %s: Value %ld out of range for signed int\n",
arg->name, rawval);
} else die("Option %s: Expected / at '%c'\n", arg->name, *endptr);
/* parse denominator */
rawval = strtol(endptr + 1, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '\0') {
if (rawval >= INT_MIN && rawval <= INT_MAX)
rat.den = rawval;
else die("Option %s: Value %ld out of range for signed int\n",
arg->name, rawval);
} else die("Option %s: Invalid character '%c'\n", arg->name, *endptr);
return rat;
}
int arg_parse_enum(const struct arg *arg)
{
const struct arg_enum_list *listptr;
long int rawval;
char *endptr;
/* First see if the value can be parsed as a raw value */
rawval = strtol(arg->val, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '\0')
{
/* Got a raw value, make sure it's valid */
for(listptr = arg->def->enums; listptr->name; listptr++)
if(listptr->val == rawval)
return rawval;
}
int arg_parse_enum(const struct arg *arg) {
const struct arg_enum_list *listptr;
long int rawval;
char *endptr;
/* Next see if it can be parsed as a string */
for(listptr = arg->def->enums; listptr->name; listptr++)
if(!strcmp(arg->val, listptr->name))
return listptr->val;
/* First see if the value can be parsed as a raw value */
rawval = strtol(arg->val, &endptr, 10);
if (arg->val[0] != '\0' && endptr[0] == '\0') {
/* Got a raw value, make sure it's valid */
for (listptr = arg->def->enums; listptr->name; listptr++)
if (listptr->val == rawval)
return rawval;
}
die("Option %s: Invalid value '%s'\n", arg->name, arg->val);
return 0;
/* Next see if it can be parsed as a string */
for (listptr = arg->def->enums; listptr->name; listptr++)
if (!strcmp(arg->val, listptr->name))
return listptr->val;
die("Option %s: Invalid value '%s'\n", arg->name, arg->val);
return 0;
}
int arg_parse_enum_or_int(const struct arg *arg)
{
if(arg->def->enums)
return arg_parse_enum(arg);
return arg_parse_int(arg);
int arg_parse_enum_or_int(const struct arg *arg) {
if (arg->def->enums)
return arg_parse_enum(arg);
return arg_parse_int(arg);
}
......@@ -13,29 +13,26 @@
#define ARGS_H
#include <stdio.h>
struct arg
{
char **argv;
const char *name;
const char *val;
unsigned int argv_step;
const struct arg_def *def;
struct arg {
char **argv;
const char *name;
const char *val;
unsigned int argv_step;
const struct arg_def *def;
};
struct arg_enum_list
{
const char *name;
int val;
struct arg_enum_list {
const char *name;
int val;
};
#define ARG_ENUM_LIST_END {0}
typedef struct arg_def
{
const char *short_name;
const char *long_name;
int has_val;
const char *desc;
const struct arg_enum_list *enums;
typedef struct arg_def {
const char *short_name;
const char *long_name;
int has_val;
const char *desc;
const struct arg_enum_list *enums;
} arg_def_t;
#define ARG_DEF(s,l,v,d) {s,l,v,d, NULL}
#define ARG_DEF_ENUM(s,l,v,d,e) {s,l,v,d,e}
......
......@@ -17,21 +17,19 @@
#include "vpx_config.h"
#include "vpx/vpx_integer.h"
typedef enum
{
OUTPUT_FMT_PLAIN,
OUTPUT_FMT_RVDS,
OUTPUT_FMT_GAS,
typedef enum {
OUTPUT_FMT_PLAIN,
OUTPUT_FMT_RVDS,
OUTPUT_FMT_GAS,
} output_fmt_t;
int log_msg(const char *fmt, ...)
{
int res;
va_list ap;
va_start(ap, fmt);
res = vfprintf(stderr, fmt, ap);
va_end(ap);
return res;
int log_msg(const char *fmt, ...) {
int res;
va_list ap;
va_start(ap, fmt);
res = vfprintf(stderr, fmt, ap);
va_end(ap);
return res;
}
#if defined(__GNUC__) && __GNUC__
......@@ -40,175 +38,148 @@ int log_msg(const char *fmt, ...)
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
int parse_macho(uint8_t *base_buf, size_t sz)
{
int i, j;
struct mach_header header;
uint8_t *buf = base_buf;
int base_data_section = 0;
int bits = 0;
/* We can read in mach_header for 32 and 64 bit architectures
* because it's identical to mach_header_64 except for the last
* element (uint32_t reserved), which we don't use. Then, when
* we know which architecture we're looking at, increment buf
* appropriately.
*/
memcpy(&header, buf, sizeof(struct mach_header));
if (header.magic == MH_MAGIC)
{
if (header.cputype == CPU_TYPE_ARM
|| header.cputype == CPU_TYPE_X86)
{
bits = 32;
buf += sizeof(struct mach_header);
}
else
{
log_msg("Bad cputype for object file. Currently only tested for CPU_TYPE_[ARM|X86].\n");
goto bail;
}
int parse_macho(uint8_t *base_buf, size_t sz) {
int i, j;
struct mach_header header;
uint8_t *buf = base_buf;
int base_data_section = 0;
int bits = 0;
/* We can read in mach_header for 32 and 64 bit architectures
* because it's identical to mach_header_64 except for the last
* element (uint32_t reserved), which we don't use. Then, when
* we know which architecture we're looking at, increment buf
* appropriately.
*/
memcpy(&header, buf, sizeof(struct mach_header));
if (header.magic == MH_MAGIC) {
if (header.cputype == CPU_TYPE_ARM
|| header.cputype == CPU_TYPE_X86) {
bits = 32;
buf += sizeof(struct mach_header);
} else {
log_msg("Bad cputype for object file. Currently only tested for CPU_TYPE_[ARM|X86].\n");
goto bail;
}
else if (header.magic == MH_MAGIC_64)
{
if (header.cputype == CPU_TYPE_X86_64)
{
bits = 64;
buf += sizeof(struct mach_header_64);
}
else
{
log_msg("Bad cputype for object file. Currently only tested for CPU_TYPE_X86_64.\n");
goto bail;
}
} else if (header.magic == MH_MAGIC_64) {
if (header.cputype == CPU_TYPE_X86_64) {
bits = 64;
buf += sizeof(struct mach_header_64);
} else {
log_msg("Bad cputype for object file. Currently only tested for CPU_TYPE_X86_64.\n");
goto bail;
}
else
{
log_msg("Bad magic number for object file. 0x%x or 0x%x expected, 0x%x found.\n",
MH_MAGIC, MH_MAGIC_64, header.magic);
} else {
log_msg("Bad magic number for object file. 0x%x or 0x%x expected, 0x%x found.\n",
MH_MAGIC, MH_MAGIC_64, header.magic);
goto bail;
}
if (header.filetype != MH_OBJECT) {
log_msg("Bad filetype for object file. Currently only tested for MH_OBJECT.\n");
goto bail;
}
for (i = 0; i < header.ncmds; i++) {
struct load_command lc;
memcpy(&lc, buf, sizeof(struct load_command));
if (lc.cmd == LC_SEGMENT) {
uint8_t *seg_buf = buf;
struct section s;
struct segment_command seg_c;
memcpy(&seg_c, seg_buf, sizeof(struct segment_command));
seg_buf += sizeof(struct segment_command);
/* Although each section is given it's own offset, nlist.n_value
* references the offset of the first section. This isn't
* apparent without debug information because the offset of the
* data section is the same as the first section. However, with
* debug sections mixed in, the offset of the debug section
* increases but n_value still references the first section.
*/
if (seg_c.nsects < 1) {
log_msg("Not enough sections\n");
goto bail;
}
}
memcpy(&s, seg_buf, sizeof(struct section));
base_data_section = s.offset;
} else if (lc.cmd == LC_SEGMENT_64) {
uint8_t *seg_buf = buf;
struct section_64 s;
struct segment_command_64 seg_c;
memcpy(&seg_c, seg_buf, sizeof(struct segment_command_64));
seg_buf += sizeof(struct segment_command_64);
if (header.filetype != MH_OBJECT)
{
log_msg("Bad filetype for object file. Currently only tested for MH_OBJECT.\n");
/* Explanation in LG_SEGMENT */
if (seg_c.nsects < 1) {
log_msg("Not enough sections\n");
goto bail;
}
}
for (i = 0; i < header.ncmds; i++)
{
struct load_command lc;
memcpy(&lc, buf, sizeof(struct load_command));
if (lc.cmd == LC_SEGMENT)
{
uint8_t *seg_buf = buf;
struct section s;
struct segment_command seg_c;
memcpy(&seg_c, seg_buf, sizeof(struct segment_command));
seg_buf += sizeof(struct segment_command);
/* Although each section is given it's own offset, nlist.n_value
* references the offset of the first section. This isn't
* apparent without debug information because the offset of the
* data section is the same as the first section. However, with
* debug sections mixed in, the offset of the debug section
* increases but n_value still references the first section.
*/
if (seg_c.nsects < 1)
{
log_msg("Not enough sections\n");
goto bail;
}
memcpy(&s, seg_buf, sizeof(struct section_64));
base_data_section = s.offset;
} else if (lc.cmd == LC_SYMTAB) {
if (base_data_section != 0) {
struct symtab_command sc;
uint8_t *sym_buf = base_buf;
uint8_t *str_buf = base_buf;
memcpy(&s, seg_buf, sizeof(struct section));
base_data_section = s.offset;
}
else if (lc.cmd == LC_SEGMENT_64)
{
uint8_t *seg_buf = buf;
struct section_64 s;
struct segment_command_64 seg_c;
memcpy(&seg_c, seg_buf, sizeof(struct segment_command_64));
seg_buf += sizeof(struct segment_command_64);
/* Explanation in LG_SEGMENT */
if (seg_c.nsects < 1)
{
log_msg("Not enough sections\n");
goto bail;
}
memcpy(&sc, buf, sizeof(struct symtab_command));