ripemd160.c 13.6 KB
Newer Older
1 2 3
/*
 *  RIPE MD-160 implementation
 *
4
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
5
 *
6
 *  This file is part of mbed TLS (https://tls.mbed.org)
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  This program is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 *
 *  This program is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

/*
 *  The RIPEMD-160 algorithm was designed by RIPE in 1996
25
 *  http://homes.esat.kuleuven.be/~bosselae/mbedtls_ripemd160.html
26 27 28
 *  http://ehash.iaik.tugraz.at/wiki/RIPEMD-160
 */

29
#if !defined(MBEDTLS_CONFIG_FILE)
30
#include "mbedtls/config.h"
31
#else
32
#include MBEDTLS_CONFIG_FILE
33
#endif
34

35
#if defined(MBEDTLS_RIPEMD160_C)
36

37
#include "mbedtls/ripemd160.h"
38

39 40
#include <string.h>

41 42
#if defined(MBEDTLS_SELF_TEST)
#if defined(MBEDTLS_PLATFORM_C)
43
#include "mbedtls/platform.h"
44
#else
45
#include <stdio.h>
46 47 48
#define mbedtls_printf printf
#endif /* MBEDTLS_PLATFORM_C */
#endif /* MBEDTLS_SELF_TEST */
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*
 * 32-bit integer manipulation macros (little endian)
 */
#ifndef GET_UINT32_LE
#define GET_UINT32_LE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ]       )             \
        | ( (uint32_t) (b)[(i) + 1] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 2] << 16 )             \
        | ( (uint32_t) (b)[(i) + 3] << 24 );            \
}
#endif

#ifndef PUT_UINT32_LE
64 65 66 67 68 69
#define PUT_UINT32_LE(n,b,i)                                    \
{                                                               \
    (b)[(i)    ] = (unsigned char) ( ( (n)       ) & 0xFF );    \
    (b)[(i) + 1] = (unsigned char) ( ( (n) >>  8 ) & 0xFF );    \
    (b)[(i) + 2] = (unsigned char) ( ( (n) >> 16 ) & 0xFF );    \
    (b)[(i) + 3] = (unsigned char) ( ( (n) >> 24 ) & 0xFF );    \
70 71 72
}
#endif

73
/* Implementation that should never be optimized out by the compiler */
74
static void mbedtls_zeroize( void *v, size_t n ) {
75 76 77
    volatile unsigned char *p = v; while( n-- ) *p++ = 0;
}

78
void mbedtls_ripemd160_init( mbedtls_ripemd160_context *ctx )
79
{
80
    memset( ctx, 0, sizeof( mbedtls_ripemd160_context ) );
81 82
}

83
void mbedtls_ripemd160_free( mbedtls_ripemd160_context *ctx )
84 85 86 87
{
    if( ctx == NULL )
        return;

88
    mbedtls_zeroize( ctx, sizeof( mbedtls_ripemd160_context ) );
89 90
}

91 92 93 94 95 96
void mbedtls_ripemd160_clone( mbedtls_ripemd160_context *dst,
                        const mbedtls_ripemd160_context *src )
{
    *dst = *src;
}

97
/*
98
 * RIPEMD-160 context setup
99
 */
100
void mbedtls_ripemd160_starts( mbedtls_ripemd160_context *ctx )
101 102 103 104 105 106 107 108 109 110 111
{
    ctx->total[0] = 0;
    ctx->total[1] = 0;

    ctx->state[0] = 0x67452301;
    ctx->state[1] = 0xEFCDAB89;
    ctx->state[2] = 0x98BADCFE;
    ctx->state[3] = 0x10325476;
    ctx->state[4] = 0xC3D2E1F0;
}

112
#if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT)
113 114 115
/*
 * Process one block
 */
116
void mbedtls_ripemd160_process( mbedtls_ripemd160_context *ctx, const unsigned char data[64] )
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
{
    uint32_t A, B, C, D, E, Ap, Bp, Cp, Dp, Ep, X[16];

    GET_UINT32_LE( X[ 0], data,  0 );
    GET_UINT32_LE( X[ 1], data,  4 );
    GET_UINT32_LE( X[ 2], data,  8 );
    GET_UINT32_LE( X[ 3], data, 12 );
    GET_UINT32_LE( X[ 4], data, 16 );
    GET_UINT32_LE( X[ 5], data, 20 );
    GET_UINT32_LE( X[ 6], data, 24 );
    GET_UINT32_LE( X[ 7], data, 28 );
    GET_UINT32_LE( X[ 8], data, 32 );
    GET_UINT32_LE( X[ 9], data, 36 );
    GET_UINT32_LE( X[10], data, 40 );
    GET_UINT32_LE( X[11], data, 44 );
    GET_UINT32_LE( X[12], data, 48 );
    GET_UINT32_LE( X[13], data, 52 );
    GET_UINT32_LE( X[14], data, 56 );
    GET_UINT32_LE( X[15], data, 60 );

    A = Ap = ctx->state[0];
    B = Bp = ctx->state[1];
    C = Cp = ctx->state[2];
    D = Dp = ctx->state[3];
    E = Ep = ctx->state[4];

#define F1( x, y, z )   ( x ^ y ^ z )
#define F2( x, y, z )   ( ( x & y ) | ( ~x & z ) )
#define F3( x, y, z )   ( ( x | ~y ) ^ z )
#define F4( x, y, z )   ( ( x & z ) | ( y & ~z ) )
#define F5( x, y, z )   ( x ^ ( y | ~z ) )

#define S( x, n ) ( ( x << n ) | ( x >> (32 - n) ) )

#define P( a, b, c, d, e, r, s, f, k )      \
    a += f( b, c, d ) + X[r] + k;           \
    a = S( a, s ) + e;                      \
    c = S( c, 10 );

#define P2( a, b, c, d, e, r, s, rp, sp )   \
    P( a, b, c, d, e, r, s, F, K );         \
    P( a ## p, b ## p, c ## p, d ## p, e ## p, rp, sp, Fp, Kp );

#define F   F1
#define K   0x00000000
#define Fp  F5
#define Kp  0x50A28BE6
    P2( A, B, C, D, E,  0, 11,  5,  8 );
    P2( E, A, B, C, D,  1, 14, 14,  9 );
    P2( D, E, A, B, C,  2, 15,  7,  9 );
    P2( C, D, E, A, B,  3, 12,  0, 11 );
    P2( B, C, D, E, A,  4,  5,  9, 13 );
    P2( A, B, C, D, E,  5,  8,  2, 15 );
    P2( E, A, B, C, D,  6,  7, 11, 15 );
    P2( D, E, A, B, C,  7,  9,  4,  5 );
    P2( C, D, E, A, B,  8, 11, 13,  7 );
    P2( B, C, D, E, A,  9, 13,  6,  7 );
    P2( A, B, C, D, E, 10, 14, 15,  8 );
    P2( E, A, B, C, D, 11, 15,  8, 11 );
    P2( D, E, A, B, C, 12,  6,  1, 14 );
    P2( C, D, E, A, B, 13,  7, 10, 14 );
    P2( B, C, D, E, A, 14,  9,  3, 12 );
    P2( A, B, C, D, E, 15,  8, 12,  6 );
#undef F
#undef K
#undef Fp
#undef Kp

#define F   F2
#define K   0x5A827999
#define Fp  F4
#define Kp  0x5C4DD124
    P2( E, A, B, C, D,  7,  7,  6,  9 );
    P2( D, E, A, B, C,  4,  6, 11, 13 );
    P2( C, D, E, A, B, 13,  8,  3, 15 );
    P2( B, C, D, E, A,  1, 13,  7,  7 );
    P2( A, B, C, D, E, 10, 11,  0, 12 );
    P2( E, A, B, C, D,  6,  9, 13,  8 );
    P2( D, E, A, B, C, 15,  7,  5,  9 );
    P2( C, D, E, A, B,  3, 15, 10, 11 );
    P2( B, C, D, E, A, 12,  7, 14,  7 );
    P2( A, B, C, D, E,  0, 12, 15,  7 );
    P2( E, A, B, C, D,  9, 15,  8, 12 );
    P2( D, E, A, B, C,  5,  9, 12,  7 );
    P2( C, D, E, A, B,  2, 11,  4,  6 );
    P2( B, C, D, E, A, 14,  7,  9, 15 );
    P2( A, B, C, D, E, 11, 13,  1, 13 );
    P2( E, A, B, C, D,  8, 12,  2, 11 );
#undef F
#undef K
#undef Fp
#undef Kp

#define F   F3
#define K   0x6ED9EBA1
#define Fp  F3
#define Kp  0x6D703EF3
    P2( D, E, A, B, C,  3, 11, 15,  9 );
    P2( C, D, E, A, B, 10, 13,  5,  7 );
    P2( B, C, D, E, A, 14,  6,  1, 15 );
    P2( A, B, C, D, E,  4,  7,  3, 11 );
    P2( E, A, B, C, D,  9, 14,  7,  8 );
    P2( D, E, A, B, C, 15,  9, 14,  6 );
    P2( C, D, E, A, B,  8, 13,  6,  6 );
    P2( B, C, D, E, A,  1, 15,  9, 14 );
    P2( A, B, C, D, E,  2, 14, 11, 12 );
    P2( E, A, B, C, D,  7,  8,  8, 13 );
    P2( D, E, A, B, C,  0, 13, 12,  5 );
    P2( C, D, E, A, B,  6,  6,  2, 14 );
    P2( B, C, D, E, A, 13,  5, 10, 13 );
    P2( A, B, C, D, E, 11, 12,  0, 13 );
    P2( E, A, B, C, D,  5,  7,  4,  7 );
    P2( D, E, A, B, C, 12,  5, 13,  5 );
#undef F
#undef K
#undef Fp
#undef Kp

#define F   F4
#define K   0x8F1BBCDC
#define Fp  F2
#define Kp  0x7A6D76E9
    P2( C, D, E, A, B,  1, 11,  8, 15 );
    P2( B, C, D, E, A,  9, 12,  6,  5 );
    P2( A, B, C, D, E, 11, 14,  4,  8 );
    P2( E, A, B, C, D, 10, 15,  1, 11 );
    P2( D, E, A, B, C,  0, 14,  3, 14 );
    P2( C, D, E, A, B,  8, 15, 11, 14 );
    P2( B, C, D, E, A, 12,  9, 15,  6 );
    P2( A, B, C, D, E,  4,  8,  0, 14 );
    P2( E, A, B, C, D, 13,  9,  5,  6 );
    P2( D, E, A, B, C,  3, 14, 12,  9 );
    P2( C, D, E, A, B,  7,  5,  2, 12 );
    P2( B, C, D, E, A, 15,  6, 13,  9 );
    P2( A, B, C, D, E, 14,  8,  9, 12 );
    P2( E, A, B, C, D,  5,  6,  7,  5 );
    P2( D, E, A, B, C,  6,  5, 10, 15 );
    P2( C, D, E, A, B,  2, 12, 14,  8 );
#undef F
#undef K
#undef Fp
#undef Kp

#define F   F5
#define K   0xA953FD4E
#define Fp  F1
#define Kp  0x00000000
    P2( B, C, D, E, A,  4,  9, 12,  8 );
    P2( A, B, C, D, E,  0, 15, 15,  5 );
    P2( E, A, B, C, D,  5,  5, 10, 12 );
    P2( D, E, A, B, C,  9, 11,  4,  9 );
    P2( C, D, E, A, B,  7,  6,  1, 12 );
    P2( B, C, D, E, A, 12,  8,  5,  5 );
    P2( A, B, C, D, E,  2, 13,  8, 14 );
    P2( E, A, B, C, D, 10, 12,  7,  6 );
    P2( D, E, A, B, C, 14,  5,  6,  8 );
    P2( C, D, E, A, B,  1, 12,  2, 13 );
    P2( B, C, D, E, A,  3, 13, 13,  6 );
    P2( A, B, C, D, E,  8, 14, 14,  5 );
    P2( E, A, B, C, D, 11, 11,  0, 15 );
    P2( D, E, A, B, C,  6,  8,  3, 13 );
    P2( C, D, E, A, B, 15,  5,  9, 11 );
    P2( B, C, D, E, A, 13,  6, 11, 11 );
#undef F
#undef K
#undef Fp
#undef Kp

    C             = ctx->state[1] + C + Dp;
    ctx->state[1] = ctx->state[2] + D + Ep;
    ctx->state[2] = ctx->state[3] + E + Ap;
    ctx->state[3] = ctx->state[4] + A + Bp;
    ctx->state[4] = ctx->state[0] + B + Cp;
    ctx->state[0] = C;
}
292
#endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */
293 294

/*
295
 * RIPEMD-160 process buffer
296
 */
297
void mbedtls_ripemd160_update( mbedtls_ripemd160_context *ctx,
298
                       const unsigned char *input, size_t ilen )
299 300 301 302
{
    size_t fill;
    uint32_t left;

303
    if( ilen == 0 )
304 305 306 307 308 309 310 311 312 313 314 315 316 317
        return;

    left = ctx->total[0] & 0x3F;
    fill = 64 - left;

    ctx->total[0] += (uint32_t) ilen;
    ctx->total[0] &= 0xFFFFFFFF;

    if( ctx->total[0] < (uint32_t) ilen )
        ctx->total[1]++;

    if( left && ilen >= fill )
    {
        memcpy( (void *) (ctx->buffer + left), input, fill );
318
        mbedtls_ripemd160_process( ctx, ctx->buffer );
319 320 321 322 323 324 325
        input += fill;
        ilen  -= fill;
        left = 0;
    }

    while( ilen >= 64 )
    {
326
        mbedtls_ripemd160_process( ctx, input );
327 328 329 330 331 332 333 334 335 336
        input += 64;
        ilen  -= 64;
    }

    if( ilen > 0 )
    {
        memcpy( (void *) (ctx->buffer + left), input, ilen );
    }
}

337
static const unsigned char ripemd160_padding[64] =
338 339 340 341 342 343 344 345
{
 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

/*
346
 * RIPEMD-160 final digest
347
 */
348
void mbedtls_ripemd160_finish( mbedtls_ripemd160_context *ctx, unsigned char output[20] )
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
{
    uint32_t last, padn;
    uint32_t high, low;
    unsigned char msglen[8];

    high = ( ctx->total[0] >> 29 )
         | ( ctx->total[1] <<  3 );
    low  = ( ctx->total[0] <<  3 );

    PUT_UINT32_LE( low,  msglen, 0 );
    PUT_UINT32_LE( high, msglen, 4 );

    last = ctx->total[0] & 0x3F;
    padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );

364 365
    mbedtls_ripemd160_update( ctx, ripemd160_padding, padn );
    mbedtls_ripemd160_update( ctx, msglen, 8 );
366 367 368 369 370 371 372 373 374

    PUT_UINT32_LE( ctx->state[0], output,  0 );
    PUT_UINT32_LE( ctx->state[1], output,  4 );
    PUT_UINT32_LE( ctx->state[2], output,  8 );
    PUT_UINT32_LE( ctx->state[3], output, 12 );
    PUT_UINT32_LE( ctx->state[4], output, 16 );
}

/*
375
 * output = RIPEMD-160( input buffer )
376
 */
377
void mbedtls_ripemd160( const unsigned char *input, size_t ilen,
378
                unsigned char output[20] )
379
{
380
    mbedtls_ripemd160_context ctx;
381

382 383 384 385 386
    mbedtls_ripemd160_init( &ctx );
    mbedtls_ripemd160_starts( &ctx );
    mbedtls_ripemd160_update( &ctx, input, ilen );
    mbedtls_ripemd160_finish( &ctx, output );
    mbedtls_ripemd160_free( &ctx );
387 388
}

389
#if defined(MBEDTLS_SELF_TEST)
390
/*
391
 * Test vectors from the RIPEMD-160 paper and
392
 * http://homes.esat.kuleuven.be/~bosselae/mbedtls_ripemd160.html#HMAC
393
 */
394 395
#define TESTS   8
#define KEYS    2
396
static const char *ripemd160_test_input[TESTS] =
397 398 399 400 401 402 403 404 405 406 407 408
{
    "",
    "a",
    "abc",
    "message digest",
    "abcdefghijklmnopqrstuvwxyz",
    "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
    "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789",
    "1234567890123456789012345678901234567890"
        "1234567890123456789012345678901234567890",
};

409
static const unsigned char ripemd160_test_md[TESTS][20] =
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
{
    { 0x9c, 0x11, 0x85, 0xa5, 0xc5, 0xe9, 0xfc, 0x54, 0x61, 0x28,
      0x08, 0x97, 0x7e, 0xe8, 0xf5, 0x48, 0xb2, 0x25, 0x8d, 0x31 },
    { 0x0b, 0xdc, 0x9d, 0x2d, 0x25, 0x6b, 0x3e, 0xe9, 0xda, 0xae,
      0x34, 0x7b, 0xe6, 0xf4, 0xdc, 0x83, 0x5a, 0x46, 0x7f, 0xfe },
    { 0x8e, 0xb2, 0x08, 0xf7, 0xe0, 0x5d, 0x98, 0x7a, 0x9b, 0x04,
      0x4a, 0x8e, 0x98, 0xc6, 0xb0, 0x87, 0xf1, 0x5a, 0x0b, 0xfc },
    { 0x5d, 0x06, 0x89, 0xef, 0x49, 0xd2, 0xfa, 0xe5, 0x72, 0xb8,
      0x81, 0xb1, 0x23, 0xa8, 0x5f, 0xfa, 0x21, 0x59, 0x5f, 0x36 },
    { 0xf7, 0x1c, 0x27, 0x10, 0x9c, 0x69, 0x2c, 0x1b, 0x56, 0xbb,
      0xdc, 0xeb, 0x5b, 0x9d, 0x28, 0x65, 0xb3, 0x70, 0x8d, 0xbc },
    { 0x12, 0xa0, 0x53, 0x38, 0x4a, 0x9c, 0x0c, 0x88, 0xe4, 0x05,
      0xa0, 0x6c, 0x27, 0xdc, 0xf4, 0x9a, 0xda, 0x62, 0xeb, 0x2b },
    { 0xb0, 0xe2, 0x0b, 0x6e, 0x31, 0x16, 0x64, 0x02, 0x86, 0xed,
      0x3a, 0x87, 0xa5, 0x71, 0x30, 0x79, 0xb2, 0x1f, 0x51, 0x89 },
    { 0x9b, 0x75, 0x2e, 0x45, 0x57, 0x3d, 0x4b, 0x39, 0xf4, 0xdb,
      0xd3, 0x32, 0x3c, 0xab, 0x82, 0xbf, 0x63, 0x32, 0x6b, 0xfb },
};

/*
 * Checkup routine
 */
432
int mbedtls_ripemd160_self_test( int verbose )
433
{
434
    int i;
435 436 437 438
    unsigned char output[20];

    memset( output, 0, sizeof output );

439
    for( i = 0; i < TESTS; i++ )
440 441
    {
        if( verbose != 0 )
442
            mbedtls_printf( "  RIPEMD-160 test #%d: ", i + 1 );
443

444
        mbedtls_ripemd160( (const unsigned char *) ripemd160_test_input[i],
445 446
                   strlen( ripemd160_test_input[i] ),
                   output );
447

448
        if( memcmp( output, ripemd160_test_md[i], 20 ) != 0 )
449 450
        {
            if( verbose != 0 )
451
                mbedtls_printf( "failed\n" );
452 453 454 455 456

            return( 1 );
        }

        if( verbose != 0 )
457
            mbedtls_printf( "passed\n" );
458
    }
459 460 461 462

    return( 0 );
}

463
#endif /* MBEDTLS_SELF_TEST */
464

465
#endif /* MBEDTLS_RIPEMD160_C */