Commit 72b69e38 authored by Brian Murray's avatar Brian Murray Committed by Simon Butcher

Minor fixes to comments

parent 53e23b68
......@@ -57,7 +57,8 @@ void mbedtls_cmac_init( mbedtls_cmac_context *ctx );
* \brief Initialize the CMAC context
*
* \param ctx CMAC context to be initialized
* \param cipher cipher to use
* \param cipher cipher to use.
Cipher block size must be 8 bytes or 16 bytes.
* \param key encryption key
* \param keybits encryption key size in bits (must be acceptable by the cipher)
*
......@@ -84,8 +85,8 @@ void mbedtls_cmac_free( mbedtls_cmac_context *ctx );
* \param in_len length of the input data in bytes
* \param tag buffer for holding the generated tag
* \param tag_len length of the tag to generate in bytes
* Must be 2, 4, 6, 8 if cipher block size is 64
* Must be 2, 4, 6, 8, 10, 12, 14 or 16 if cipher block size is 128
* Must be 2, 4, 6, 8 if cipher block size is 8
* Must be 2, 4, 6, 8, 10, 12, 14 or 16 if cipher block size is 16
*
* \return 0 if successful
*/
......@@ -101,8 +102,8 @@ int mbedtls_cmac_generate( mbedtls_cmac_context *ctx,
* \param in_len length of the input data in bytes
* \param tag buffer holding the tag to verify
* \param tag_len length of the tag to verify in bytes
* Must be 2, 4, 6, 8 if cipher block size is 64
* Must be 2, 4, 6, 8, 10, 12, 14 or 16 if cipher block size is 128
* Must be 2, 4, 6, 8 if cipher block size is 8
* Must be 2, 4, 6, 8, 10, 12, 14 or 16 if cipher block size is 16
* \return 0 if successful and authenticated
* MBEDTLS_ERR_CMAC_VERIFY_FAILED if tag does not match
*/
......@@ -119,7 +120,7 @@ int mbedtls_cmac_verify( mbedtls_cmac_context *ctx,
* \param key_len PRF key length
* \param input buffer holding the input data
* \param in_len length of the input data in bytes
* \param tag buffer holding the tag to verify (16 bytes)
* \param tag buffer holding the generated pseudorandom output
*
* \return 0 if successful
*/
......
......@@ -64,7 +64,7 @@ void mbedtls_cmac_init( mbedtls_cmac_context *ctx )
/*
* Multiplication by u in the Galois field of GF(2^n)
*
* As explained in the paper, this can be computed:
* As explained in NIST SP 800-38B, this can be computed:
* If MSB(p) = 0, then p = (p << 1)
* If MSB(p) = 1, then p = (p << 1) ^ R_n
* with R_64 = 0x1B and R_128 = 0x87
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment