• Paul Wilkins's avatar
    Firstpass.c refactoring · 0529320a
    Paul Wilkins authored
    Removed unused function.
    
    Added tentative code to take error score of an older frame
    into account when calculating Q range. However, for now
    it is disabled pending merging other changes and testing.
    
    Change-Id: Ie89955e70319dac31b79e3b833e3352712a061ec
    0529320a
firstpass.c 96.31 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "math.h"
#include "limits.h"
#include "block.h"
#include "onyx_int.h"
#include "variance.h"
#include "encodeintra.h"
#include "vp8/common/setupintrarecon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_scale/vpxscale.h"
#include "encodemb.h"
#include "vp8/common/extend.h"
#include "vp8/common/systemdependent.h"
#include "vpx_scale/yv12extend.h"
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include <stdio.h>
#include "rdopt.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "encodemv.h"
//#define OUTPUT_FPF 1
#define NEW_BOOST
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
#if CONFIG_HIGH_PRECISION_MV
#define XMVCOST (x->e_mbd.allow_high_precision_mv?x->mvcost_hp:x->mvcost)
#else
#define XMVCOST (x->mvcost)
#endif
extern void vp8_build_block_offsets(MACROBLOCK *x);
extern void vp8_setup_block_ptrs(MACROBLOCK *x);
extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi);
extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv);
extern void vp8_alloc_compressor_data(VP8_COMP *cpi);
#define IIFACTOR   9.375
#define IIKFACTOR1 8.75
#define IIKFACTOR2 9.375
#define RMAX       87.5
#define GF_RMAX    300.0
#define ERR_DIVISOR   150.0
#define KF_MB_INTRA_MIN 300
#define GF_MB_INTRA_MIN 200
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3};
static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3};
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); static int select_cq_level( int qindex ) { int ret_val = QINDEX_RANGE - 1; int i; double target_q = ( vp8_convert_qindex_to_q( qindex ) * 0.5847 ) + 1.0; for ( i = 0; i < QINDEX_RANGE; i++ ) { if ( target_q <= vp8_convert_qindex_to_q( i ) ) { ret_val = i; break; } } return ret_val; } // Resets the first pass file to the given position using a relative seek from the current position static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) { cpi->twopass.stats_in = Position; } static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *next_frame = *cpi->twopass.stats_in; return 1; } // Read frame stats at an offset from the current position static int read_frame_stats( VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats, int offset ) { FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; // Check legality of offset if ( offset >= 0 ) { if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) return EOF; } else if ( offset < 0 ) { if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) return EOF; } *frame_stats = fps_ptr[offset]; return 1; } static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *fps = *cpi->twopass.stats_in; cpi->twopass.stats_in = (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); return 1;
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
} static void output_stats(const VP8_COMP *cpi, struct vpx_codec_pkt_list *pktlist, FIRSTPASS_STATS *stats) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); vpx_codec_pkt_list_add(pktlist, &pkt); // TEMP debug code #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", stats->frame, stats->intra_error, stats->coded_error, stats->sr_coded_error, stats->ssim_weighted_pred_err, stats->pcnt_inter, stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, stats->count, stats->duration); fclose(fpfile); } #endif } static void zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->intra_error = 0.0; section->coded_error = 0.0; section->sr_coded_error = 0.0; section->ssim_weighted_pred_err = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->new_mv_count = 0.0; section->count = 0.0; section->duration = 1.0; } static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame)
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
{ section->frame += frame->frame; section->intra_error += frame->intra_error; section->coded_error += frame->coded_error; section->sr_coded_error += frame->sr_coded_error; section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->new_mv_count += frame->new_mv_count; section->count += frame->count; section->duration += frame->duration; } static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->intra_error -= frame->intra_error; section->coded_error -= frame->coded_error; section->sr_coded_error -= frame->sr_coded_error; section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref; section->pcnt_neutral -= frame->pcnt_neutral; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->new_mv_count -= frame->new_mv_count; section->count -= frame->count; section->duration -= frame->duration; } static void avg_stats(FIRSTPASS_STATS *section) { if (section->count < 1.0) return; section->intra_error /= section->count; section->coded_error /= section->count; section->sr_coded_error /= section->count; section->ssim_weighted_pred_err /= section->count; section->pcnt_inter /= section->count; section->pcnt_second_ref /= section->count; section->pcnt_neutral /= section->count; section->pcnt_motion /= section->count; section->MVr /= section->count; section->mvr_abs /= section->count; section->MVc /= section->count; section->mvc_abs /= section->count; section->MVrv /= section->count; section->MVcv /= section->count; section->mv_in_out_count /= section->count; section->duration /= section->count; } // Calculate a modified Error used in distributing bits between easier and harder frames static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame)
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
{ double av_err = ( cpi->twopass.total_stats->ssim_weighted_pred_err / cpi->twopass.total_stats->count ); double this_err = this_frame->ssim_weighted_pred_err; double modified_err; if (this_err > av_err) modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); else modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); return modified_err; } static const double weight_table[256] = { 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 }; static double simple_weight(YV12_BUFFER_CONFIG *source) { int i, j; unsigned char *src = source->y_buffer; double sum_weights = 0.0; // Loop throught the Y plane raw examining levels and creating a weight for the image i = source->y_height; do { j = source->y_width; do { sum_weights += weight_table[ *src]; src++; }while(--j); src -= source->y_width; src += source->y_stride; }while(--i);
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
sum_weights /= (source->y_height * source->y_width); return sum_weights; } // This function returns the current per frame maximum bitrate target static int frame_max_bits(VP8_COMP *cpi) { // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left int max_bits; // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); // Trap case where we are out of bits if (max_bits < 0) max_bits = 0; return max_bits; } void vp8_init_first_pass(VP8_COMP *cpi) { zero_stats(cpi->twopass.total_stats); } void vp8_end_first_pass(VP8_COMP *cpi) { output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats); } static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset ) { MACROBLOCKD * const xd = & x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; unsigned char *src_ptr = (*(b->base_src) + b->src); int src_stride = b->src_stride; unsigned char *ref_ptr; int ref_stride=d->pre_stride; // Set up pointers for this macro block recon buffer xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; ref_ptr = (unsigned char *)(*(d->base_pre) + d->pre ); VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16) ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err)); } static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, int_mv *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset ) { MACROBLOCKD *const xd = & x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; int num00; int_mv tmp_mv; int_mv ref_mv_full; int tmp_err; int step_param = 3; //3; // Dont search over full range for first pass int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3; int n; vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; int new_mv_mode_penalty = 256;
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
// override the default variance function to use MSE v_fn_ptr.vf = VARIANCE_INVOKE(IF_RTCD(&cpi->rtcd.variance), mse16x16); // Set up pointers for this macro block recon buffer xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; // Initial step/diamond search centred on best mv tmp_mv.as_int = 0; ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, x->sadperbit16, &num00, &v_fn_ptr, XMVCOST, ref_mv); if ( tmp_err < INT_MAX-new_mv_mode_penalty ) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } // Further step/diamond searches as necessary n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param + n, x->sadperbit16, &num00, &v_fn_ptr, XMVCOST, ref_mv); if ( tmp_err < INT_MAX-new_mv_mode_penalty ) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } } } } void vp8_first_pass(VP8_COMP *cpi) { int mb_row, mb_col; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; int recon_yoffset, recon_uvoffset; YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; int recon_y_stride = lst_yv12->y_stride; int recon_uv_stride = lst_yv12->uv_stride; int64_t intra_error = 0; int64_t coded_error = 0; int64_t sr_coded_error = 0;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
int sum_mvr = 0, sum_mvc = 0; int sum_mvr_abs = 0, sum_mvc_abs = 0; int sum_mvrs = 0, sum_mvcs = 0; int mvcount = 0; int intercount = 0; int second_ref_count = 0; int intrapenalty = 256; int neutral_count = 0; int new_mv_count = 0; int sum_in_vectors = 0; uint32_t lastmv_as_int = 0; int_mv zero_ref_mv; zero_ref_mv.as_int = 0; vp8_clear_system_state(); //__asm emms; x->src = * cpi->Source; xd->pre = *lst_yv12; xd->dst = *new_yv12; x->partition_info = x->pi; xd->mode_info_context = cm->mi; vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); // set up frame new frame for intra coded blocks vp8_setup_intra_recon(new_yv12); vp8cx_frame_init_quantizer(cpi); // Initialise the MV cost table to the defaults //if( cm->current_video_frame == 0) //if ( 0 ) { int flag[2] = {1, 1}; vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q); vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); #if CONFIG_HIGH_PRECISION_MV vpx_memcpy(cm->fc.mvc_hp, vp8_default_mv_context_hp, sizeof(vp8_default_mv_context_hp)); vp8_build_component_cost_table_hp(cpi->mb.mvcost_hp, (const MV_CONTEXT_HP *) cm->fc.mvc_hp, flag); #endif } // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { int_mv best_ref_mv; best_ref_mv.as_int = 0; // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
int this_error; int gf_motion_error = INT_MAX; int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); //Copy current mb to a buffer RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); // do intra 16x16 prediction this_error = vp8_encode_intra(cpi, x, use_dc_pred); // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames. // This penalty adds a cost matching that of a 0,0 mv to the intra case. this_error += intrapenalty; // Cumulative intra error total intra_error += (int64_t)this_error; // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); // Other than for the first frame do a motion search if (cm->current_video_frame > 0) { int tmp_err; int motion_error = INT_MAX; int_mv mv, tmp_mv; // Simple 0,0 motion with no mv overhead zz_motion_search( cpi, x, lst_yv12, &motion_error, recon_yoffset ); mv.as_int = tmp_mv.as_int = 0; // Test last reference frame using the previous best mv as the // starting point (best reference) for the search first_pass_motion_search(cpi, x, &best_ref_mv, &mv.as_mv, lst_yv12, &motion_error, recon_yoffset); // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well if (best_ref_mv.as_int) { tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, lst_yv12, &tmp_err, recon_yoffset); if ( tmp_err < motion_error ) { motion_error = tmp_err; mv.as_int = tmp_mv.as_int; } } // Experimental search in an older reference frame if (cm->current_video_frame > 1) { first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, gld_yv12, &gf_motion_error, recon_yoffset); if ( (gf_motion_error < motion_error) && (gf_motion_error < this_error)) { second_ref_count++;
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
} // Reset to last frame as reference buffer xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; sr_coded_error += gf_motion_error; } else sr_coded_error += motion_error; /* Intra assumed best */ best_ref_mv.as_int = 0; if (motion_error <= this_error) { // Keep a count of cases where the inter and intra were // very close and very low. This helps with scene cut // detection for example in cropped clips with black bars // at the sides or top and bottom. if( (((this_error-intrapenalty) * 9) <= (motion_error*10)) && (this_error < (2*intrapenalty)) ) { neutral_count++; } mv.as_mv.row <<= 3; mv.as_mv.col <<= 3; this_error = motion_error; vp8_set_mbmode_and_mvs(x, NEWMV, &mv); vp8_encode_inter16x16y(IF_RTCD(&cpi->rtcd), x); sum_mvr += mv.as_mv.row; sum_mvr_abs += abs(mv.as_mv.row); sum_mvc += mv.as_mv.col; sum_mvc_abs += abs(mv.as_mv.col); sum_mvrs += mv.as_mv.row * mv.as_mv.row; sum_mvcs += mv.as_mv.col * mv.as_mv.col; intercount++; best_ref_mv.as_int = mv.as_int; // Was the vector non-zero if (mv.as_int) { mvcount++; // Was it different from the last non zero vector if ( mv.as_int != lastmv_as_int ) new_mv_count++; lastmv_as_int = mv.as_int; // Does the Row vector point inwards or outwards if (mb_row < cm->mb_rows / 2) { if (mv.as_mv.row > 0) sum_in_vectors--; else if (mv.as_mv.row < 0) sum_in_vectors++; } else if (mb_row > cm->mb_rows / 2) { if (mv.as_mv.row > 0) sum_in_vectors++; else if (mv.as_mv.row < 0) sum_in_vectors--; } // Does the Row vector point inwards or outwards
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
if (mb_col < cm->mb_cols / 2) { if (mv.as_mv.col > 0) sum_in_vectors--; else if (mv.as_mv.col < 0) sum_in_vectors++; } else if (mb_col > cm->mb_cols / 2) { if (mv.as_mv.col > 0) sum_in_vectors++; else if (mv.as_mv.col < 0) sum_in_vectors--; } } } } else sr_coded_error += (int64_t)this_error; coded_error += (int64_t)this_error; // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; } // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; //extend the recon for intra prediction vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); vp8_clear_system_state(); //__asm emms; } vp8_clear_system_state(); //__asm emms; { double weight = 0.0; FIRSTPASS_STATS fps; fps.frame = cm->current_video_frame ; fps.intra_error = intra_error >> 8; fps.coded_error = coded_error >> 8; fps.sr_coded_error = sr_coded_error >> 8; weight = simple_weight(cpi->Source); if (weight < 0.1) weight = 0.1; fps.ssim_weighted_pred_err = fps.coded_error * weight; fps.pcnt_inter = 0.0; fps.pcnt_motion = 0.0; fps.MVr = 0.0; fps.mvr_abs = 0.0; fps.MVc = 0.0; fps.mvc_abs = 0.0; fps.MVrv = 0.0; fps.MVcv = 0.0; fps.mv_in_out_count = 0.0; fps.count = 1.0;
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; if (mvcount > 0) { fps.MVr = (double)sum_mvr / (double)mvcount; fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; fps.MVc = (double)sum_mvc / (double)mvcount; fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); fps.new_mv_count = new_mv_count; fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; } // TODO: handle the case when duration is set to 0, or something less // than the full time between subsequent cpi->source_time_stamp s . fps.duration = cpi->source->ts_end - cpi->source->ts_start; // don't want to do output stats with a stack variable! memcpy(cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats); accumulate_stats(cpi->twopass.total_stats, &fps); } // Copy the previous Last Frame back into gf and and arf buffers if // the prediction is good enough. if ((cm->current_video_frame > 0) && (cpi->twopass.this_frame_stats->pcnt_inter > 0.20)) { vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); } // swap frame pointers so last frame refers to the frame we just compressed vp8_swap_yv12_buffer(lst_yv12, new_yv12); vp8_yv12_extend_frame_borders(lst_yv12); // Special case for the first frame. Copy into the GF buffer as a second reference. if (cm->current_video_frame == 0) { vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); } // use this to see what the first pass reconstruction looks like if (0) { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); if (cm->current_video_frame == 0) recon_file = fopen(filename, "wb"); else recon_file = fopen(filename, "ab"); if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file)); fclose(recon_file); } cm->current_video_frame++; }
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
// Estimate a cost per mb attributable to overheads such as the coding of // modes and motion vectors. // Currently simplistic in its assumptions for testing. // double bitcost( double prob ) { return -(log( prob ) / log( 2.0 )); } static long long estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS * fpstats) { int mv_cost; int mode_cost; double av_pct_inter = fpstats->pcnt_inter / fpstats->count; double av_pct_motion = fpstats->pcnt_motion / fpstats->count; double av_intra = (1.0 - av_pct_inter); double zz_cost; double motion_cost; double intra_cost; zz_cost = bitcost(av_pct_inter - av_pct_motion); motion_cost = bitcost(av_pct_motion); intra_cost = bitcost(av_intra); // Estimate of extra bits per mv overhead for mbs // << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; // Crude estimate of overhead cost from modes // << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb mode_cost = (int)( ( ((av_pct_inter - av_pct_motion) * zz_cost) + (av_pct_motion * motion_cost) + (av_intra * intra_cost) ) * cpi->common.MBs ) << 9; //return mv_cost + mode_cost; // TODO PGW Fix overhead costs for extended Q range return 0; } static double calc_correction_factor( VP8_COMP *cpi, FIRSTPASS_STATS * fpstats, double err_per_mb, double err_divisor, double pt_low, double pt_high, int Q ) { double power_term; double error_term = err_per_mb / err_divisor; double correction_factor; double sr_err_diff; double sr_correction; // Adjustment based on actual quantizer to power term. power_term = (vp8_convert_qindex_to_q(Q) * 0.01) + pt_low; power_term = (power_term > pt_high) ? pt_high : power_term; // Adjustments to error term // TBD // Calculate a correction factor based on error per mb correction_factor = pow(error_term, power_term); #if 0
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
// Look at the drop in prediction quality between the last frame // and the GF buffer (which contained an older frame). sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) / (fpstats->count * cpi->common.MBs * 32); sr_correction = pow( sr_err_diff, 0.5 ); if ( sr_correction < 0.5 ) sr_correction = 0.5; else if ( sr_correction > 1.25 ) sr_correction = 1.25; correction_factor = correction_factor * sr_correction; #endif // Clip final factor range correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; return correction_factor; } // Given a current maxQ value sets a range for future values. // PGW TODO.. // This code removes direct dependency on QIndex to determin the range // (now uses the actual quantizer) but has not been tuned. static void adjust_maxq_qrange(VP8_COMP *cpi) { int i; double q; // Set the max corresponding to cpi->avg_q * 2.0 q = cpi->avg_q * 2.0; cpi->twopass.maxq_max_limit = cpi->worst_quality; for ( i = cpi->best_quality; i <= cpi->worst_quality; i++ ) { cpi->twopass.maxq_max_limit = i; if ( vp8_convert_qindex_to_q(i) >= q ) break; } // Set the min corresponding to cpi->avg_q * 0.5 q = cpi->avg_q * 0.5; cpi->twopass.maxq_min_limit = cpi->best_quality; for ( i = cpi->worst_quality; i >= cpi->best_quality; i-- ) { cpi->twopass.maxq_min_limit = i; if ( vp8_convert_qindex_to_q(i) <= q ) break; } } static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS * fpstats, int section_target_bandwitdh, int overhead_bits ) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double corr_high; double speed_correction = 1.0; double inter_pct = (fpstats->pcnt_inter / fpstats->count); double intra_pct = 1.0 - inter_pct; int overhead_bits_per_mb;
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
if (section_target_bandwitdh <= 0) return cpi->twopass.maxq_max_limit; // Highest value allowed target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Calculate a corrective factor based on a rolling ratio of bits spent // vs target bits if ((cpi->rolling_target_bits > 0) && (cpi->active_worst_quality < cpi->worst_quality)) { double rolling_ratio; rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; if (rolling_ratio < 0.95) cpi->twopass.est_max_qcorrection_factor -= 0.005; else if (rolling_ratio > 1.05) cpi->twopass.est_max_qcorrection_factor += 0.005; cpi->twopass.est_max_qcorrection_factor = (cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->twopass.est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->twopass.est_max_qcorrection_factor; } // Corrections for higher compression speed settings // (reduced compression expected) if (cpi->compressor_speed == 1) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // Estimate of overhead bits per mb // Correction to overhead bits for min allowed Q. // PGW TODO.. This code is broken for the extended Q range // for now overhead set to 0. overhead_bits_per_mb = overhead_bits / num_mbs; overhead_bits_per_mb *= pow( 0.98, (double)cpi->twopass.maxq_min_limit ); // Try and pick a max Q that will be high enough to encode the // content at the given rate. for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(cpi, fpstats, err_per_mb, ERR_DIVISOR, 0.36, 0.90, Q) * speed_correction * cpi->twopass.est_max_qcorrection_factor * cpi->twopass.section_max_qfactor; bits_per_mb_at_this_q = vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb; bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * (double)bits_per_mb_at_this_q); // Mode and motion overhead // As Q rises in real encode loop rd code will force overhead down // We make a crude adjustment for this here as *.98 per Q step.
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
// PGW TODO.. This code is broken for the extended Q range // for now overhead set to 0. //overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Restriction on active max q for constrained quality mode. if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < cpi->cq_target_quality) ) { Q = cpi->cq_target_quality; } // Adjust maxq_min_limit and maxq_max_limit limits based on // averaga q observed in clip for non kf/gf/arf frames // Give average a chance to settle though. // PGW TODO.. This code is broken for the extended Q range if ( (cpi->ni_frames > ((unsigned int)cpi->twopass.total_stats->count >> 8)) && (cpi->ni_frames > 150) ) { adjust_maxq_qrange( cpi ); } return Q; } // For cq mode estimate a cq level that matches the observed // complexity and data rate. static int estimate_cq( VP8_COMP *cpi, FIRSTPASS_STATS * fpstats, int section_target_bandwitdh, int overhead_bits ) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double corr_high; double speed_correction = 1.0; double clip_iiratio; double clip_iifactor; double inter_pct = (fpstats->pcnt_inter / fpstats->count); double intra_pct = 1.0 - inter_pct; int overhead_bits_per_mb; if (0) { FILE *f = fopen("epmp.stt", "a"); fprintf(f, "%10.2f\n", err_per_mb ); fclose(f); } target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Estimate of overhead bits per mb overhead_bits_per_mb = overhead_bits / num_mbs; // Corrections for higher compression speed settings // (reduced compression expected) if (cpi->compressor_speed == 1) { if (cpi->oxcf.cpu_used <= 5)
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // II ratio correction factor for clip as a whole clip_iiratio = cpi->twopass.total_stats->intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error); clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); if (clip_iifactor < 0.80) clip_iifactor = 0.80; // Try and pick a Q that can encode the content at the given rate. for (Q = 0; Q < MAXQ; Q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(cpi, fpstats, err_per_mb, 100.0, 0.36, 0.90, Q); bits_per_mb_at_this_q = vp8_bits_per_mb(INTER_FRAME, Q) + overhead_bits_per_mb; bits_per_mb_at_this_q = (int)( .5 + err_correction_factor * speed_correction * clip_iifactor * (double)bits_per_mb_at_this_q); // Mode and motion overhead // As Q rises in real encode loop rd code will force overhead down // We make a crude adjustment for this here as *.98 per Q step. // PGW TODO.. This code is broken for the extended Q range // for now overhead set to 0. overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Clip value to range "best allowed to (worst allowed - 1)" Q = select_cq_level( Q ); if ( Q >= cpi->worst_quality ) Q = cpi->worst_quality - 1; if ( Q < cpi->best_quality ) Q = cpi->best_quality; return Q; } extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate); void vp8_init_second_pass(VP8_COMP *cpi) { FIRSTPASS_STATS this_frame; FIRSTPASS_STATS *start_pos; double lower_bounds_min_rate = FRAME_OVERHEAD_BITS*cpi->oxcf.frame_rate; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); if (two_pass_min_rate < lower_bounds_min_rate) two_pass_min_rate = lower_bounds_min_rate; zero_stats(cpi->twopass.total_stats); zero_stats(cpi->twopass.total_left_stats); if (!cpi->twopass.stats_in_end)
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
return; *cpi->twopass.total_stats = *cpi->twopass.stats_in_end; *cpi->twopass.total_left_stats = *cpi->twopass.total_stats; // each frame can have a different duration, as the frame rate in the source // isn't guaranteed to be constant. The frame rate prior to the first frame // encoded in the second pass is a guess. However the sum duration is not. // Its calculated based on the actual durations of all frames from the first // pass. vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats->count / cpi->twopass.total_stats->duration); cpi->output_frame_rate = cpi->oxcf.frame_rate; cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0) ; cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * two_pass_min_rate / 10000000.0); // Calculate a minimum intra value to be used in determining the IIratio // scores used in the second pass. We have this minimum to make sure // that clips that are static but "low complexity" in the intra domain // are still boosted appropriately for KF/GF/ARF cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence { double sum_iiratio = 0.0; double IIRatio; start_pos = cpi->twopass.stats_in; // Note starting "file" position while (input_stats(cpi, &this_frame) != EOF) { IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; sum_iiratio += IIRatio; } cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count); // Reset file position reset_fpf_position(cpi, start_pos); } // Scan the first pass file and calculate a modified total error based upon the bias/power function // used to allocate bits { start_pos = cpi->twopass.stats_in; // Note starting "file" position cpi->twopass.modified_error_total = 0.0; cpi->twopass.modified_error_used = 0.0; while (input_stats(cpi, &this_frame) != EOF) { cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); } cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; reset_fpf_position(cpi, start_pos); // Reset file position } } void vp8_end_second_pass(VP8_COMP *cpi) { } // This function gives and estimate of how badly we believe // the prediction quality is decaying from frame to frame. static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) {
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
double prediction_decay_rate; double motion_decay; double motion_pct = next_frame->pcnt_motion; // Initial basis is the % mbs inter coded prediction_decay_rate = next_frame->pcnt_inter; // High % motion -> somewhat higher decay rate motion_decay = (1.0 - (motion_pct / 20.0)); if (motion_decay < prediction_decay_rate) prediction_decay_rate = motion_decay; // Adjustment to decay rate based on speed of motion { double this_mv_rabs; double this_mv_cabs; double distance_factor; this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / 250.0; distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); if (distance_factor < prediction_decay_rate) prediction_decay_rate = distance_factor; } return prediction_decay_rate; } // Function to test for a condition where a complex transition is followed // by a static section. For example in slide shows where there is a fade // between slides. This is to help with more optimal kf and gf positioning. static int detect_transition_to_still( VP8_COMP *cpi, int frame_interval, int still_interval, double loop_decay_rate, double decay_accumulator ) { BOOL trans_to_still = FALSE; // Break clause to detect very still sections after motion // For example a static image after a fade or other transition // instead of a clean scene cut. if ( (frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && (decay_accumulator < 0.9) ) { int j; FIRSTPASS_STATS * position = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_next_frame; double decay_rate; // Look ahead a few frames to see if static condition // persists... for ( j = 0; j < still_interval; j++ ) { if (EOF == input_stats(cpi, &tmp_next_frame)) break; decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); if ( decay_rate < 0.999 ) break; } // Reset file position reset_fpf_position(cpi, position);
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
// Only if it does do we signal a transition to still if ( j == still_interval ) trans_to_still = TRUE; } return trans_to_still; } // This function detects a flash through the high relative pcnt_second_ref // score in the frame following a flash frame. The offset passed in should // reflect this static BOOL detect_flash( VP8_COMP *cpi, int offset ) { FIRSTPASS_STATS next_frame; BOOL flash_detected = FALSE; // Read the frame data. // The return is FALSE (no flash detected) if not a valid frame if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) { // What we are looking for here is a situation where there is a // brief break in prediction (such as a flash) but subsequent frames // are reasonably well predicted by an earlier (pre flash) frame. // The recovery after a flash is indicated by a high pcnt_second_ref // comapred to pcnt_inter. if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && (next_frame.pcnt_second_ref >= 0.5 ) ) { flash_detected = TRUE; /*if (1) { FILE *f = fopen("flash.stt", "a"); fprintf(f, "%8.0f %6.2f %6.2f\n", next_frame.frame, next_frame.pcnt_inter, next_frame.pcnt_second_ref); fclose(f); }*/ } } return flash_detected; } // Update the motion related elements to the GF arf boost calculation static void accumulate_frame_motion_stats( VP8_COMP *cpi, FIRSTPASS_STATS * this_frame, double * this_frame_mv_in_out, double * mv_in_out_accumulator, double * abs_mv_in_out_accumulator, double * mv_ratio_accumulator ) { //double this_frame_mv_in_out; double this_frame_mvr_ratio; double this_frame_mvc_ratio; double motion_pct; // Accumulate motion stats. motion_pct = this_frame->pcnt_motion; // Accumulate Motion In/Out of frame stats *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); // Accumulate a measure of how uniform (or conversely how random)
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
// the motion field is. (A ratio of absmv / mv) if (motion_pct > 0.05) { this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) ? (this_frame_mvr_ratio * motion_pct) : this_frame->mvr_abs * motion_pct; *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) ? (this_frame_mvc_ratio * motion_pct) : this_frame->mvc_abs * motion_pct; } } // Calculate a baseline boost number for the current frame. static double calc_frame_boost( VP8_COMP *cpi, FIRSTPASS_STATS * this_frame, double this_frame_mv_in_out ) { double frame_boost; // Underlying boost factor is based on inter intra error ratio if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) frame_boost = (IIFACTOR * this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); else frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); // Increase boost for frames where new data coming into frame // (eg zoom out). Slightly reduce boost if there is a net balance // of motion out of the frame (zoom in). // The range for this_frame_mv_in_out is -1.0 to +1.0 if (this_frame_mv_in_out > 0.0) frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); // In extreme case boost is halved else frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); // Clip to maximum if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; return frame_boost; } static int calc_arf_boost( VP8_COMP *cpi, int offset, int f_frames, int b_frames, int *f_boost, int *b_boost ) { FIRSTPASS_STATS this_frame; int i; double boost_score = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double this_frame_mv_in_out = 0.0;
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; BOOL flash_detected = FALSE; // Search forward from the proposed arf/next gf position for ( i = 0; i < f_frames; i++ ) { if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats( cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i+offset)) || detect_flash(cpi, (i+offset+1)); // Cumulative effect of prediction quality decay if ( !flash_detected ) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out )); // Break out conditions. if ( (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) ) ) { break; } } *f_boost = boost_score; // Reset for backward looking loop boost_score = 0.0; mv_ratio_accumulator = 0.0; decay_accumulator = 1.0; this_frame_mv_in_out = 0.0; mv_in_out_accumulator = 0.0; abs_mv_in_out_accumulator = 0.0; // Search backward towards last gf position for ( i = -1; i >= -b_frames; i-- ) { if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats( cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i+offset)) || detect_flash(cpi, (i+offset+1)); // Cumulative effect of prediction quality decay
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
if ( !flash_detected ) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out )); // Break out conditions. if ( (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) ) ) { break; } } *b_boost = boost_score; return (*f_boost + *b_boost); } static void configure_arnr_filter( VP8_COMP *cpi, FIRSTPASS_STATS *this_frame ) { int half_gf_int; int frames_after_arf; int frames_bwd = cpi->oxcf.arnr_max_frames - 1; int frames_fwd = cpi->oxcf.arnr_max_frames - 1; // Define the arnr filter width for this group of frames: // We only filter frames that lie within a distance of half // the GF interval from the ARF frame. We also have to trap // cases where the filter extends beyond the end of clip. // Note: this_frame->frame has been updated in the loop // so it now points at the ARF frame. half_gf_int = cpi->baseline_gf_interval >> 1; frames_after_arf = cpi->twopass.total_stats->count - this_frame->frame - 1; switch (cpi->oxcf.arnr_type) { case 1: // Backward filter frames_fwd = 0; if (frames_bwd > half_gf_int) frames_bwd = half_gf_int; break; case 2: // Forward filter if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; frames_bwd = 0; break; case 3: // Centered filter default: frames_fwd >>= 1; if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; frames_bwd = frames_fwd; // For even length filter there is one more frame backward
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
// than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. if (frames_bwd < half_gf_int) frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; break; } cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; } // Analyse and define a gf/arf group . static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_pos; int i; double r; double boost_score = 0.0; double old_boost_score = 0.0; double gf_group_err = 0.0; double gf_first_frame_err = 0.0; double mod_frame_err = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double loop_decay_rate = 1.00; // Starting decay rate double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double mod_err_per_mb_accumulator = 0.0; int max_bits = frame_max_bits(cpi); // Max for a single frame unsigned int allow_alt_ref = cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; int alt_boost = 0; int f_boost = 0; int b_boost = 0; BOOL flash_detected; cpi->twopass.gf_group_bits = 0; vp8_clear_system_state(); //__asm emms; start_pos = cpi->twopass.stats_in; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean // Load stats for the current frame. mod_frame_err = calculate_modified_err(cpi, this_frame); // Note the error of the frame at the start of the group (this will be // the GF frame error if we code a normal gf gf_first_frame_err = mod_frame_err; // Special treatment if the current frame is a key frame (which is also // a gf). If it is then its error score (and hence bit allocation) need // to be subtracted out from the calculation for the GF group if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; // Scan forward to try and work out how many frames the next gf group // should contain and what level of boost is appropriate for the GF // or ARF that will be coded with the group i = 0; while (((i < cpi->twopass.static_scene_max_gf_interval) || ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
(i < cpi->twopass.frames_to_key)) { i++; // Increment the loop counter // Accumulate error score of frames in this gf group mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; mod_err_per_mb_accumulator += mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); if (EOF == input_stats(cpi, &next_frame)) break; // Test for the case where there is a brief flash but the prediction // quality back to an earlier frame is then restored. flash_detected = detect_flash(cpi, 0); // Update the motion related elements to the boost calculation accumulate_frame_motion_stats( cpi, &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); // Cumulative effect of prediction quality decay if ( !flash_detected ) { loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += decay_accumulator * calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); // Break clause to detect very still sections after motion // For example a staic image after a fade or other transition. if ( detect_transition_to_still( cpi, i, 5, loop_decay_rate, decay_accumulator ) ) { allow_alt_ref = FALSE; boost_score = old_boost_score; break; } // Break out conditions. if ( // Break at cpi->max_gf_interval unless almost totally static (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || ( // Dont break out with a very short interval (i > MIN_GF_INTERVAL) && // Dont break out very close to a key frame ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) || ((boost_score - old_boost_score) < 12.5)) ) ) { boost_score = old_boost_score; break; } vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame));
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
old_boost_score = boost_score; } // Dont allow conventional gf too near the next kf if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { while (i < cpi->twopass.frames_to_key) { i++; if (EOF == input_stats(cpi, this_frame)) break; if (i < cpi->twopass.frames_to_key) { mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; } } } cpi->gfu_boost = boost_score; // Alterrnative boost calculation for alt ref alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); // Set the interval till the next gf or arf. cpi->baseline_gf_interval = i; // Should we use the alternate refernce frame if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames ) && (i >= MIN_GF_INTERVAL) && // dont use ARF very near next kf (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (b_boost > 100) && (f_boost > 100) ) { cpi->gfu_boost = alt_boost; cpi->source_alt_ref_pending = TRUE; configure_arnr_filter( cpi, this_frame ); } else { cpi->source_alt_ref_pending = FALSE; } // Now decide how many bits should be allocated to the GF group as a // proportion of those remaining in the kf group. // The final key frame group in the clip is treated as a special case // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. // This is also important for short clips where there may only be one // key frame. if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame)) { cpi->twopass.kf_group_bits = (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; } // Calculate the bits to be allocated to the group as a whole if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) {
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
cpi->twopass.gf_group_bits = (int)((double)cpi->twopass.kf_group_bits * (gf_group_err / (double)cpi->twopass.kf_group_error_left)); } else cpi->twopass.gf_group_bits = 0; cpi->twopass.gf_group_bits = (cpi->twopass.gf_group_bits < 0) ? 0 : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; // Clip cpi->twopass.gf_group_bits based on user supplied data rate // variability limit (cpi->oxcf.two_pass_vbrmax_section) if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval) cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval; // Reset the file position reset_fpf_position(cpi, start_pos); // Update the record of error used so far (only done once per gf group) cpi->twopass.modified_error_used += gf_group_err; // Assign bits to the arf or gf. for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { int boost; int allocation_chunks; int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int gf_bits; // For ARF frames if (cpi->source_alt_ref_pending && i == 0) { boost = (alt_boost * vp8_gfboost_qadjust(Q)) / 100; boost += (cpi->baseline_gf_interval * 50); // Set max and minimum boost and hence minimum allocation if (boost > ((cpi->baseline_gf_interval + 1) * 200)) boost = ((cpi->baseline_gf_interval + 1) * 200); else if (boost < 125) boost = 125; allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + boost; } // Else for standard golden frames else { // boost based on inter / intra ratio of subsequent frames boost = (cpi->gfu_boost * vp8_gfboost_qadjust(Q)) / 100; // Set max and minimum boost and hence minimum allocation if (boost > (cpi->baseline_gf_interval * 150)) boost = (cpi->baseline_gf_interval * 150); else if (boost < 125) boost = 125; allocation_chunks = (cpi->baseline_gf_interval * 100) + (boost - 100); } // Prevent overflow if ( boost > 1028 ) { int divisor = boost >> 10; boost/= divisor; allocation_chunks /= divisor; }
1891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
// Calculate the number of bits to be spent on the gf or arf based on // the boost number gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits / (double)allocation_chunks)); // If the frame that is to be boosted is simpler than the average for // the gf/arf group then use an alternative calculation // based on the error score of the frame itself if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { double alt_gf_grp_bits; int alt_gf_bits; alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits * (mod_frame_err * (double)cpi->baseline_gf_interval) / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits / (double)allocation_chunks)); if (gf_bits > alt_gf_bits) { gf_bits = alt_gf_bits; } } // Else if it is harder than other frames in the group make sure it at // least receives an allocation in keeping with its relative error // score, otherwise it may be worse off than an "un-boosted" frame else { int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); if (alt_gf_bits > gf_bits) { gf_bits = alt_gf_bits; } } // Dont allow a negative value for gf_bits if (gf_bits < 0) gf_bits = 0; gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame if (i == 0) { cpi->twopass.gf_bits = gf_bits; } if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) { cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame } } { // Adjust KF group bits and error remainin cpi->twopass.kf_group_error_left -= gf_group_err; cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; // Note the error score left in the remaining frames of the group. // For normal GFs we want to remove the error score for the first frame // of the group (except in Key frame case where this has already
1961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
// happened) if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err; else cpi->twopass.gf_group_error_left = gf_group_err; cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; // This condition could fail if there are two kfs very close together // despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the // calculation of cpi->twopass.alt_extra_bits. if ( cpi->baseline_gf_interval >= 3 ) { int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; if ( boost >= 150 ) { int pct_extra; pct_extra = (boost - 100) / 50; pct_extra = (pct_extra > 20) ? 20 : pct_extra; cpi->twopass.alt_extra_bits = (cpi->twopass.gf_group_bits * pct_extra) / 100; cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval-1)>>1); } else cpi->twopass.alt_extra_bits = 0; } else cpi->twopass.alt_extra_bits = 0; } // Adjustment to estimate_max_q based on a measure of complexity of the section if (cpi->common.frame_type != KEY_FRAME) { FIRSTPASS_STATS sectionstats; double Ratio; zero_stats(&sectionstats); reset_fpf_position(cpi, start_pos); for (i = 0 ; i < cpi->baseline_gf_interval ; i++) { input_stats(cpi, &next_frame); accumulate_stats(&sectionstats, &next_frame); } avg_stats(&sectionstats); cpi->twopass.section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); if (cpi->twopass.section_max_qfactor < 0.80) cpi->twopass.section_max_qfactor = 0.80; reset_fpf_position(cpi, start_pos); } }
2031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100
// Allocate bits to a normal frame that is neither a gf an arf or a key frame. static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { int target_frame_size; // gf_group_error_left double modified_err; double err_fraction; // What portion of the remaining GF group error is used by this frame int max_bits = frame_max_bits(cpi); // Max for a single frame // Calculate modified prediction error used in bit allocation modified_err = calculate_modified_err(cpi, this_frame); if (cpi->twopass.gf_group_error_left > 0) err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame else err_fraction = 0.0; target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it? // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end. if (target_frame_size < 0) target_frame_size = 0; else { if (target_frame_size > max_bits) target_frame_size = max_bits; if (target_frame_size > cpi->twopass.gf_group_bits) target_frame_size = cpi->twopass.gf_group_bits; } cpi->twopass.gf_group_error_left -= modified_err; // Adjust error remaining cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame. // Every other frame gets a few extra bits if ( (cpi->common.frames_since_golden & 0x01) && (cpi->frames_till_gf_update_due > 0) ) { target_frame_size += cpi->twopass.alt_extra_bits; } cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame } // Make a damped adjustment to the active max q. int adjust_active_maxq( int old_maxqi, int new_maxqi ) { int i; int ret_val = new_maxqi; double old_q; double new_q; double target_q; old_q = vp8_convert_qindex_to_q( old_maxqi ); new_q = vp8_convert_qindex_to_q( new_maxqi ); target_q = ((old_q * 7.0) + new_q) / 8.0; if ( target_q > old_q ) { for ( i = old_maxqi; i <= new_maxqi; i++ ) { if ( vp8_convert_qindex_to_q( i ) >= target_q ) {
2101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170
ret_val = i; break; } } } else { for ( i = old_maxqi; i >= new_maxqi; i-- ) { if ( vp8_convert_qindex_to_q( i ) <= target_q ) { ret_val = i; break; } } } return ret_val; } void vp8_second_pass(VP8_COMP *cpi) { int tmp_q; int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame); FIRSTPASS_STATS this_frame; FIRSTPASS_STATS this_frame_copy; double this_frame_error; double this_frame_intra_error; double this_frame_coded_error; FIRSTPASS_STATS *start_pos; int overhead_bits; if (!cpi->twopass.stats_in) { return ; } vp8_clear_system_state(); if (EOF == input_stats(cpi, &this_frame)) return; this_frame_error = this_frame.ssim_weighted_pred_err; this_frame_intra_error = this_frame.intra_error; this_frame_coded_error = this_frame.coded_error; start_pos = cpi->twopass.stats_in; // keyframe and section processing ! if (cpi->twopass.frames_to_key == 0) { // Define next KF group and assign bits to it vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); find_next_key_frame(cpi, &this_frame_copy); } // Is this a GF / ARF (Note that a KF is always also a GF) if (cpi->frames_till_gf_update_due == 0) { // Define next gf group and assign bits to it vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); define_gf_group(cpi, &this_frame_copy); // If we are going to code an altref frame at the end of the group and the current frame is not a key frame.... // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well
2171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { // Assign a standard frames worth of bits from those allocated to the GF group int bak = cpi->per_frame_bandwidth; vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); cpi->per_frame_bandwidth = bak; } } // Otherwise this is an ordinary frame else { // Assign bits from those allocated to the GF group vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); } // Keep a globally available copy of this and the next frame's iiratio. cpi->twopass.this_iiratio = this_frame_intra_error / DOUBLE_DIVIDE_CHECK(this_frame_coded_error); { FIRSTPASS_STATS next_frame; if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) { cpi->twopass.next_iiratio = next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error); } } // Set nominal per second bandwidth for this frame cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate; if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; // Account for mv, mode and other overheads. overhead_bits = estimate_modemvcost( cpi, cpi->twopass.total_left_stats ); // Special case code for first frame. if (cpi->common.current_video_frame == 0) { cpi->twopass.est_max_qcorrection_factor = 1.0; // Set a cq_level in constrained quality mode. if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) { int est_cq; est_cq = estimate_cq( cpi, cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits ); cpi->cq_target_quality = cpi->oxcf.cq_level; if ( est_cq > cpi->cq_target_quality ) cpi->cq_target_quality = est_cq; } // guess at maxq needed in 2nd pass cpi->twopass.maxq_max_limit = cpi->worst_quality; cpi->twopass.maxq_min_limit = cpi->best_quality; tmp_q = estimate_max_q( cpi, cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits );
2241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310
cpi->active_worst_quality = tmp_q; cpi->ni_av_qi = tmp_q; cpi->avg_q = vp8_convert_qindex_to_q( tmp_q ); // Limit the maxq value returned subsequently. // This increases the risk of overspend or underspend if the initial // estimate for the clip is bad, but helps prevent excessive // variation in Q, especially near the end of a clip // where for example a small overspend may cause Q to crash adjust_maxq_qrange(cpi); } // The last few frames of a clip almost always have to few or too many // bits and for the sake of over exact rate control we dont want to make // radical adjustments to the allowed quantizer range just to use up a // few surplus bits or get beneath the target rate. else if ( (cpi->common.current_video_frame < (((unsigned int)cpi->twopass.total_stats->count * 255)>>8)) && ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < (unsigned int)cpi->twopass.total_stats->count) ) { if (frames_left < 1) frames_left = 1; tmp_q = estimate_max_q( cpi, cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits ); // Make a damped adjustment to active max Q cpi->active_worst_quality = adjust_active_maxq( cpi->active_worst_quality, tmp_q ); } cpi->twopass.frames_to_key --; // Update the total stats remaining sturcture subtract_stats(cpi->twopass.total_left_stats, &this_frame ); } static BOOL test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) { BOOL is_viable_kf = FALSE; // Does the frame satisfy the primary criteria of a key frame // If so, then examine how well it predicts subsequent frames if ((this_frame->pcnt_second_ref < 0.10) && (next_frame->pcnt_second_ref < 0.10) && ((this_frame->pcnt_inter < 0.05) || ( ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) ) ) ) ) { int i; FIRSTPASS_STATS *start_pos; FIRSTPASS_STATS local_next_frame; double boost_score = 0.0; double old_boost_score = 0.0;
2311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380
double decay_accumulator = 1.0; double next_iiratio; vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); // Note the starting file position so we can reset to it start_pos = cpi->twopass.stats_in; // Examine how well the key frame predicts subsequent frames for (i = 0 ; i < 16; i++) { next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; if (next_iiratio > RMAX) next_iiratio = RMAX; // Cumulative effect of decay in prediction quality if (local_next_frame.pcnt_inter > 0.85) decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; else decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); //decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; // Keep a running total boost_score += (decay_accumulator * next_iiratio); // Test various breakout clauses if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < 0.20) && (next_iiratio < 3.0)) || ((boost_score - old_boost_score) < 3.0) || (local_next_frame.intra_error < 200) ) { break; } old_boost_score = boost_score; // Get the next frame details if (EOF == input_stats(cpi, &local_next_frame)) break; } // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on if (boost_score > 30.0 && (i > 3)) is_viable_kf = TRUE; else { // Reset the file position reset_fpf_position(cpi, start_pos); is_viable_kf = FALSE; } } return is_viable_kf; } static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { int i,j; FIRSTPASS_STATS last_frame; FIRSTPASS_STATS first_frame; FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_position; double decay_accumulator = 1.0;
2381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
double boost_score = 0; double old_boost_score = 0.0; double loop_decay_rate; double kf_mod_err = 0.0; double kf_group_err = 0.0; double kf_group_intra_err = 0.0; double kf_group_coded_err = 0.0; double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean vp8_clear_system_state(); //__asm emms; start_position = cpi->twopass.stats_in; cpi->common.frame_type = KEY_FRAME; // is this a forced key frame by interval cpi->this_key_frame_forced = cpi->next_key_frame_forced; // Clear the alt ref active flag as this can never be active on a key frame cpi->source_alt_ref_active = FALSE; // Kf is always a gf so clear frames till next gf counter cpi->frames_till_gf_update_due = 0; cpi->twopass.frames_to_key = 1; // Take a copy of the initial frame details vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group cpi->twopass.kf_group_error_left = 0; // Group modified error score. kf_mod_err = calculate_modified_err(cpi, this_frame); // find the next keyframe i = 0; while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; // load a the next frame's stats vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); input_stats(cpi, this_frame); // Provided that we are not at the end of the file... if (cpi->oxcf.auto_key && lookup_next_frame_stats(cpi, &next_frame) != EOF) { // Normal scene cut check if ( test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) { break; } // How fast is prediction quality decaying loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); // We want to know something about the recent past... rather than // as used elsewhere where we are concened with decay in prediction // quality since the last GF or KF. recent_loop_decay[i%8] = loop_decay_rate; decay_accumulator = 1.0;
2451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
for (j = 0; j < 8; j++) { decay_accumulator = decay_accumulator * recent_loop_decay[j]; } // Special check for transition or high motion followed by a // to a static scene. if ( detect_transition_to_still( cpi, i, (cpi->key_frame_frequency-i), loop_decay_rate, decay_accumulator ) ) { break; } // Step on to the next frame cpi->twopass.frames_to_key ++; // If we don't have a real key frame within the next two // forcekeyframeevery intervals then break out of the loop. if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) break; } else cpi->twopass.frames_to_key ++; i++; } // If there is a max kf interval set by the user we must obey it. // We already breakout of the loop above at 2x max. // This code centers the extra kf if the actual natural // interval is between 1x and 2x if (cpi->oxcf.auto_key && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) { FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_frame; cpi->twopass.frames_to_key /= 2; // Copy first frame details vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); // Reset to the start of the group reset_fpf_position(cpi, start_position); kf_group_err = 0; kf_group_intra_err = 0; kf_group_coded_err = 0; // Rescan to get the correct error data for the forced kf group for( i = 0; i < cpi->twopass.frames_to_key; i++ ) { // Accumulate kf group errors kf_group_err += calculate_modified_err(cpi, &tmp_frame); kf_group_intra_err += tmp_frame.intra_error; kf_group_coded_err += tmp_frame.coded_error; // Load a the next frame's stats input_stats(cpi, &tmp_frame); } // Reset to the start of the group reset_fpf_position(cpi, current_pos); cpi->next_key_frame_forced = TRUE; } else cpi->next_key_frame_forced = FALSE;
2521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590
// Special case for the last frame of the file if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; } // Calculate the number of bits that should be assigned to the kf group. if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) { // Max for a single normal frame (not key frame) int max_bits = frame_max_bits(cpi); // Maximum bits for the kf group int64_t max_grp_bits; // Default allocation based on bits left and relative // complexity of the section cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * ( kf_group_err / cpi->twopass.modified_error_left )); // Clip based on maximum per frame rate defined by the user. max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; if (cpi->twopass.kf_group_bits > max_grp_bits) cpi->twopass.kf_group_bits = max_grp_bits; } else cpi->twopass.kf_group_bits = 0; // Reset the first pass file position reset_fpf_position(cpi, start_position); // determine how big to make this keyframe based on how well the subsequent frames use inter blocks decay_accumulator = 1.0; boost_score = 0.0; loop_decay_rate = 1.00; // Starting decay rate for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) { double r; if (EOF == input_stats(cpi, &next_frame)) break; if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); else r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); if (r > RMAX) r = RMAX; // How fast is prediction quality decaying loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; boost_score += (decay_accumulator * r); if ((i > MIN_GF_INTERVAL) &&
2591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660
((boost_score - old_boost_score) < 6.25)) { break; } old_boost_score = boost_score; } if (1) { FIRSTPASS_STATS sectionstats; double Ratio; zero_stats(&sectionstats); reset_fpf_position(cpi, start_position); for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) { input_stats(cpi, &next_frame); accumulate_stats(&sectionstats, &next_frame); } avg_stats(&sectionstats); cpi->twopass.section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); if (cpi->twopass.section_max_qfactor < 0.80) cpi->twopass.section_max_qfactor = 0.80; } // Reset the first pass file position reset_fpf_position(cpi, start_position); // Work out how many bits to allocate for the key frame itself if (1) { int kf_boost = boost_score; int allocation_chunks; int Counter = cpi->twopass.frames_to_key; int alt_kf_bits; YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; if ( kf_boost < 300 ) { kf_boost += (cpi->twopass.frames_to_key * 3); if ( kf_boost > 300 ) kf_boost = 300; } // bigger frame sizes need larger kf boosts, smaller frames smaller boosts... if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) kf_boost += 12 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) kf_boost -= 25 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); if (kf_boost < 250) // Min KF boost kf_boost = 250; // We do three calculations for kf size. // The first is based on the error score for the whole kf group. // The second (optionaly) on the key frames own error if this is // smaller than the average for the group. // The final one insures that the frame receives at least the // allocation it would have received based on its own error score vs // the error score remaining
2661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730
// Special case if the sequence appears almost totaly static // as measured by the decay accumulator. In this case we want to // spend almost all of the bits on the key frame. // cpi->twopass.frames_to_key-1 because key frame itself is taken // care of by kf_boost. if ( decay_accumulator >= 0.99 ) { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; } else { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; } // Prevent overflow if ( kf_boost > 1028 ) { int divisor = kf_boost >> 10; kf_boost /= divisor; allocation_chunks /= divisor; } cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; // Calculate the number of bits to be spent on the key frame cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); // If the key frame is actually easier than the average for the // kf group (which does sometimes happen... eg a blank intro frame) // Then use an alternate calculation based on the kf error score // which should give a smaller key frame. if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { double alt_kf_grp_bits = ((double)cpi->twopass.bits_left * (kf_mod_err * (double)cpi->twopass.frames_to_key) / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); alt_kf_bits = (int)((double)kf_boost * (alt_kf_grp_bits / (double)allocation_chunks)); if (cpi->twopass.kf_bits > alt_kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } // Else if it is much harder than other frames in the group make sure // it at least receives an allocation in keeping with its relative // error score else { alt_kf_bits = (int)((double)cpi->twopass.bits_left * (kf_mod_err / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); if (alt_kf_bits > cpi->twopass.kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Peer frame bit target for this frame cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate }
273127322733273427352736273727382739
// Note the total error score of the kf group minus the key frame itself cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); // Adjust the count of total modified error left. // The count of bits left is adjusted elsewhere based on real coded frame sizes cpi->twopass.modified_error_left -= kf_group_err; }