• John Koleszar's avatar
    Remove special case vp9_decode_coefs_4x4 · 1e5f25ec
    John Koleszar authored
    This code was only called in the BPRED case, but had no real special
    case associated with it. Made BPRED behave like all other modes. No
    bitstream change.
    
    Change-Id: I87ba11fe723928b6314d094979011228d5ba006f
    1e5f25ec
vp9_decodframe.c 64.10 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_le16(const uint8_t *p) {
  return (p[1] << 8) | p[0];
static int read_le32(const uint8_t *p) {
  return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
// len == 0 is not allowed
static int read_is_valid(const unsigned char *start, size_t len,
                         const unsigned char *end) {
  return start + len > start && start + len <= end;
static int merge_index(int v, int n, int modulus) {
  int max1 = (n - 1 - modulus / 2) / modulus + 1;
  if (v < max1) v = v * modulus + modulus / 2;
  else {
    int w;
    v -= max1;
    w = v;
    v += (v + modulus - modulus / 2) / modulus;
    while (v % modulus == modulus / 2 ||
           w != v - (v + modulus - modulus / 2) / modulus) v++;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
} return v; } static int inv_remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; v = merge_index(v, n - 1, modulus); if ((m << 1) <= n) { return vp9_inv_recenter_nonneg(v + 1, m); } else { return n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m); } } static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) { int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255); return (vp9_prob)inv_remap_prob(delp, oldp); } void vp9_init_de_quantizer(VP9D_COMP *pbi) { int i; int q; VP9_COMMON *const pc = &pbi->common; for (q = 0; q < QINDEX_RANGE; q++) { pc->Y1dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y1dc_delta_q); pc->UVdequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uvdc_delta_q); /* all the ac values =; */ for (i = 1; i < 16; i++) { const int rc = vp9_default_zig_zag1d_4x4[i]; pc->Y1dequant[q][rc] = (int16_t)vp9_ac_yquant(q); pc->UVdequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uvac_delta_q); } } } static int get_qindex(MACROBLOCKD *mb, int segment_id, int base_qindex) { // Set the Q baseline allowing for any segment level adjustment if (vp9_segfeature_active(mb, segment_id, SEG_LVL_ALT_Q)) { if (mb->mb_segment_abs_delta == SEGMENT_ABSDATA) return vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q); // Abs Value else return clamp(base_qindex + vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q), 0, MAXQ); // Delta Value } else { return base_qindex; } } static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *mb) { int i; VP9_COMMON *const pc = &pbi->common; const int segment_id = mb->mode_info_context->mbmi.segment_id; const int qindex = get_qindex(mb, segment_id, pc->base_qindex); mb->q_index = qindex; for (i = 0; i < 16; i++) mb->block[i].dequant = pc->Y1dequant[qindex]; for (i = 16; i < 24; i++) mb->block[i].dequant = pc->UVdequant[qindex]; if (mb->lossless) { assert(qindex == 0); mb->inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
mb->inv_txm4x4 = vp9_short_iwalsh4x4; mb->itxm_add = vp9_dequant_idct_add_lossless_c; mb->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c; mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c; } else { mb->inv_txm4x4_1 = vp9_short_idct4x4_1; mb->inv_txm4x4 = vp9_short_idct4x4; mb->itxm_add = vp9_dequant_idct_add; mb->itxm_add_y_block = vp9_dequant_idct_add_y_block; mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block; } } #if CONFIG_CODE_NONZEROCOUNT static void propagate_nzcs(VP9_COMMON *cm, MACROBLOCKD *xd) { MODE_INFO *m = xd->mode_info_context; BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type; const int mis = cm->mode_info_stride; int n; if (sb_type == BLOCK_SIZE_SB64X64) { for (n = 0; n < 16; ++n) { int i = n >> 2; int j = n & 3; if (i == 0 && j == 0) continue; vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs, 384 * sizeof(m->mbmi.nzcs[0])); } } else if (sb_type == BLOCK_SIZE_SB32X32) { for (n = 0; n < 4; ++n) { int i = n >> 1; int j = n & 1; if (i == 0 && j == 0) continue; vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs, 384 * sizeof(m->mbmi.nzcs[0])); } } } #endif /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col) { MODE_INFO *m = xd->mode_info_context; BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type; if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (sb_type == BLOCK_SIZE_SB64X64) { vp9_build_intra_predictors_sb64uv_s(xd); vp9_build_intra_predictors_sb64y_s(xd); } else if (sb_type == BLOCK_SIZE_SB32X32) { vp9_build_intra_predictors_sbuv_s(xd); vp9_build_intra_predictors_sby_s(xd); } else { vp9_build_intra_predictors_mbuv_s(xd); vp9_build_intra_predictors_mby_s(xd); } } else { if (sb_type == BLOCK_SIZE_SB64X64) { vp9_build_inter64x64_predictors_sb(xd, mb_row, mb_col); } else if (sb_type == BLOCK_SIZE_SB32X32) { vp9_build_inter32x32_predictors_sb(xd, mb_row, mb_col); } else { vp9_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride,
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
mb_row, mb_col); } } #if CONFIG_CODE_NONZEROCOUNT vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0])); propagate_nzcs(&pbi->common, xd); #endif } static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { const TX_TYPE tx_type = get_tx_type_16x16(xd, 0); #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 16x16\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } else { vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { // First do Y // if the first one is DCT_DCT assume all the rest are as well TX_TYPE tx_type = get_tx_type_8x8(xd, 0); #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 8x8\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; uint8_t *pre = xd->block[ib].predictor; uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); } tx_type = get_tx_type_8x8(xd, ib); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride, xd->eobs[idx]); } else { vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride, xd->eobs[idx]); } } } else { vp9_dequant_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd); } // Now do UV if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]); } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else { vp9_dequant_idct_add_uv_block_8x8 (xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif } static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { TX_TYPE tx_type; int i; MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
#if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (mode == I8X8_PRED) { for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; const int iblock[4] = {0, 1, 4, 5}; int j; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); for (j = 0; j < 4; j++) { b = &xd->block[ib + iblock[j]]; tx_type = get_tx_type_4x4(xd, ib + iblock[j]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[ib + iblock[j]]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[ib + iblock[j]]); } } b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]); } } else if (mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; int b_mode = xd->mode_info_context->bmi[i].as_mode.first; #if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context = vp9_find_bpred_context(xd, b); #endif vp9_intra4x4_predict(xd, b, b_mode, b->predictor); tx_type = get_tx_type_4x4(xd, i); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } } vp9_build_intra_predictors_mbuv(xd); xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd);
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
} else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) { xd->itxm_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd); xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else { #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 4x4\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; tx_type = get_tx_type_4x4(xd, i); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } } xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } } static INLINE void decode_sb_8x8(MACROBLOCKD *mb, int y_size) { const int y_count = y_size * y_size; const int uv_size = y_size / 2; const int uv_count = uv_size * uv_size; const int u_qcoeff_offset = 64 * y_count; const int v_qcoeff_offset = u_qcoeff_offset + 64 * uv_count; const int u_eob_offset = 4 * y_count; const int v_eob_offset = u_eob_offset + 4 * uv_count; int n; // luma for (n = 0; n < y_count; n++) { const int x_idx = n % y_size; const int y_idx = n / y_size;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
const int y_offset = (y_idx * 8) * mb->dst.y_stride + (x_idx * 8); const TX_TYPE tx_type = get_tx_type_8x8(mb, (y_idx * 2 * y_size + x_idx) * 2); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_8x8_c(mb->qcoeff + n * 64, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n * 4]); } else { vp9_ht_dequant_idct_add_8x8_c(tx_type, mb->qcoeff + n * 64, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n * 4]); } } // chroma for (n = 0; n < uv_count; n++) { const int x_idx = n % uv_size; const int y_idx = n / uv_size; const int uv_offset = (y_idx * 8) * mb->dst.uv_stride + (x_idx * 8); vp9_dequant_idct_add_8x8_c(mb->qcoeff + u_qcoeff_offset + n * 64, mb->block[16].dequant, mb->dst.u_buffer + uv_offset, mb->dst.u_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[u_eob_offset + n * 4]); vp9_dequant_idct_add_8x8_c(mb->qcoeff + v_qcoeff_offset + n * 64, mb->block[20].dequant, mb->dst.v_buffer + uv_offset, mb->dst.v_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[v_eob_offset + n * 4]); } } static void decode_sb_4x4(MACROBLOCKD *mb, int y_size) { const int y_count = y_size * y_size; const int uv_size = y_size / 2; const int uv_count = uv_size * uv_size; const int u_qcoeff_offset = y_count * 16; const int v_qcoeff_offset = u_qcoeff_offset + uv_count * 16; const int u_eob_offset = y_count; const int v_eob_offset = u_eob_offset + uv_count; int n; for (n = 0; n < y_count; n++) { const int x_idx = n % y_size; const int y_idx = n / y_size; const int y_offset = (y_idx * 4) * mb->dst.y_stride + (x_idx * 4); const TX_TYPE tx_type = get_tx_type_4x4(mb, y_idx * (y_size*2) + x_idx); if (tx_type == DCT_DCT) { mb->itxm_add(mb->qcoeff + n * 16, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n]); } else { vp9_ht_dequant_idct_add_c(tx_type, mb->qcoeff + n * 16, mb->block[0].dequant, mb->dst.y_buffer + y_offset,
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n]); } } for (n = 0; n < uv_count; n++) { const int x_idx = n % uv_size; const int y_idx = n / uv_size; const int uv_offset = (y_idx * 4) * mb->dst.uv_stride + (x_idx * 4); mb->itxm_add(mb->qcoeff + u_qcoeff_offset + n * 16, mb->block[16].dequant, mb->dst.u_buffer + uv_offset, mb->dst.u_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[u_eob_offset + n]); mb->itxm_add(mb->qcoeff + v_qcoeff_offset + n * 16, mb->block[20].dequant, mb->dst.v_buffer + uv_offset, mb->dst.v_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[v_eob_offset + n]); } } static void decode_sb64(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int n, eobtotal; VP9_COMMON *const pc = &pbi->common; MODE_INFO *mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(mi->mbmi.sb_type == BLOCK_SIZE_SB64X64); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (mi->mbmi.mb_skip_coeff) { vp9_reset_sb64_tokens_context(xd); // Special case: Force the loopfilter to skip when eobtotal and // mb_skip_coeff are zero. skip_recon_mb(pbi, xd, mb_row, mb_col); return; } // do prediction if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sb64y_s(xd); vp9_build_intra_predictors_sb64uv_s(xd); } else { vp9_build_inter64x64_predictors_sb(xd, mb_row, mb_col); } // dequantization and idct eobtotal = vp9_decode_sb64_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows) mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff; } } else { switch (xd->mode_info_context->mbmi.txfm_size) { case TX_32X32: for (n = 0; n < 4; n++) {
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
const int x_idx = n & 1, y_idx = n >> 1; const int y_offset = x_idx * 32 + y_idx * xd->dst.y_stride * 32; vp9_dequant_idct_add_32x32(xd->qcoeff + n * 1024, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 64]); } vp9_dequant_idct_add_32x32(xd->qcoeff + 4096, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.u_buffer, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256]); vp9_dequant_idct_add_32x32(xd->qcoeff + 4096 + 1024, xd->block[20].dequant, xd->dst.v_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320]); break; case TX_16X16: for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; const int y_offset = y_idx * 16 * xd->dst.y_stride + x_idx * 16; const TX_TYPE tx_type = get_tx_type_16x16(xd, (y_idx * 16 + x_idx) * 4); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_16x16(xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } else { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } } for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int uv_offset = y_idx * 16 * xd->dst.uv_stride + x_idx * 16; vp9_dequant_idct_add_16x16(xd->qcoeff + 4096 + n * 256, xd->block[16].dequant, xd->dst.u_buffer + uv_offset, xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256 + n * 16]); vp9_dequant_idct_add_16x16(xd->qcoeff + 4096 + 1024 + n * 256, xd->block[20].dequant, xd->dst.v_buffer + uv_offset, xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320 + n * 16]); } break; case TX_8X8: decode_sb_8x8(xd, 8); break; case TX_4X4: decode_sb_4x4(xd, 16); break; default: assert(0); } } #if CONFIG_CODE_NONZEROCOUNT propagate_nzcs(&pbi->common, xd); #endif } static void decode_sb32(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int n, eobtotal; VP9_COMMON *const pc = &pbi->common; MODE_INFO *mi = xd->mode_info_context; const int mis = pc->mode_info_stride;
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
assert(mi->mbmi.sb_type == BLOCK_SIZE_SB32X32); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (mi->mbmi.mb_skip_coeff) { vp9_reset_sb_tokens_context(xd); // Special case: Force the loopfilter to skip when eobtotal and // mb_skip_coeff are zero. skip_recon_mb(pbi, xd, mb_row, mb_col); return; } // do prediction if (mi->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sby_s(xd); vp9_build_intra_predictors_sbuv_s(xd); } else { vp9_build_inter32x32_predictors_sb(xd, mb_row, mb_col); } // dequantization and idct eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter mi->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) mi[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { mi[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) mi[mis + 1].mbmi.mb_skip_coeff = 1; } } else { switch (xd->mode_info_context->mbmi.txfm_size) { case TX_32X32: vp9_dequant_idct_add_32x32(xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer, xd->dst.y_buffer, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); break; case TX_16X16: for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int y_offset = y_idx * 16 * xd->dst.y_stride + x_idx * 16; const TX_TYPE tx_type = get_tx_type_16x16(xd, (y_idx * 8 + x_idx) * 4); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_16x16( xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]); } else { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff + n * 256, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 16]);
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
} } vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); break; case TX_8X8: decode_sb_8x8(xd, 4); break; case TX_4X4: decode_sb_4x4(xd, 8); break; default: assert(0); } } #if CONFIG_CODE_NONZEROCOUNT propagate_nzcs(&pbi->common, xd); #endif } static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int eobtotal = 0; const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; const int tx_size = xd->mode_info_context->mbmi.txfm_size; assert(!xd->mode_info_context->mbmi.sb_type); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); } else if (!bool_error(bc)) { eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); } //mode = xd->mode_info_context->mbmi.mode; if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, &pbi->common); if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && mode != I8X8_PRED && !bool_error(bc)) { // Special case: Force the loopfilter to skip when eobtotal and // mb_skip_coeff are zero. xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd, mb_row, mb_col); return; } #if 0 // def DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size); #endif // moved to be performed before detokenization // if (xd->segmentation_enabled) // mb_init_dequantizer(pbi, xd); // do prediction if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (mode != I8X8_PRED) { vp9_build_intra_predictors_mbuv(xd);
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
if (mode != B_PRED) vp9_build_intra_predictors_mby(xd); } } else { #if 0 // def DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d interp %d\n", xd->mode_info_context->mbmi.mode, tx_size, xd->mode_info_context->mbmi.interp_filter); #endif vp9_build_inter_predictors_mb(xd, mb_row, mb_col); } if (tx_size == TX_16X16) { decode_16x16(pbi, xd, bc); } else if (tx_size == TX_8X8) { decode_8x8(pbi, xd, bc); } else { decode_4x4(pbi, xd, bc); } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("\n"); printf("predictor y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->predictor[i * 16 + j]); printf("\n"); } printf("\n"); printf("final y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]); printf("\n"); } printf("\n"); printf("final u\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } printf("\n"); printf("final v\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } fflush(stdout); } #endif } static int get_delta_q(vp9_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp9_read_bit(bc)) { ret_val = vp9_read_literal(bc, 4); if (vp9_read_bit(bc)) ret_val = -ret_val; } // Trigger a quantizer update if the delta-q value has changed if (ret_val != prev) *q_update = 1;
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
return ret_val; } #ifdef PACKET_TESTING #include <stdio.h> FILE *vpxlog = 0; #endif static void set_offsets(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; const int idx = mis * mb_row + mb_col; const int dst_fb_idx = cm->new_fb_idx; const int recon_y_stride = cm->yv12_fb[dst_fb_idx].y_stride; const int recon_uv_stride = cm->yv12_fb[dst_fb_idx].uv_stride; const int recon_yoffset = mb_row * 16 * recon_y_stride + 16 * mb_col; const int recon_uvoffset = mb_row * 8 * recon_uv_stride + 8 * mb_col; xd->mode_info_context = cm->mi + idx; xd->mode_info_context->mbmi.sb_type = block_size >> 5; xd->prev_mode_info_context = cm->prev_mi + idx; xd->above_context = cm->above_context + mb_col; xd->left_context = cm->left_context + (mb_row & 3); // Distance of Mb to the various image edges. // These are specified to 8th pel as they are always compared to // values that are in 1/8th pel units block_size >>= 4; // in mb units set_mb_row(cm, xd, mb_row, block_size); set_mb_col(cm, xd, mb_col, block_size); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; } static void set_refs(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; if (mbmi->ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1]; const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx]; xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; setup_pred_block(&xd->pre, cfg, mb_row, mb_col, &xd->scale_factor[0], &xd->scale_factor_uv[0]); xd->corrupted |= cfg->corrupted; if (mbmi->second_ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1]; const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx]; setup_pred_block(&xd->second_pre, second_cfg, mb_row, mb_col, &xd->scale_factor[1], &xd->scale_factor_uv[1]); xd->corrupted |= second_cfg->corrupted; } } } /* Decode a row of Superblocks (2x2 region of MBs) */ static void decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc, int mb_row, MACROBLOCKD *xd, BOOL_DECODER* const bc) {
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
int mb_col; // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); for (mb_col = pc->cur_tile_mb_col_start; mb_col < pc->cur_tile_mb_col_end; mb_col += 4) { if (vp9_read(bc, pc->prob_sb64_coded)) { #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 11 && pc->show_frame && mb_row == 8 && mb_col == 0); if (dec_debug) printf("Debug Decode SB64\n"); #endif set_offsets(pbi, 64, mb_row, mb_col); vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc); set_refs(pbi, 64, mb_row, mb_col); decode_sb64(pbi, xd, mb_row, mb_col, bc); xd->corrupted |= bool_error(bc); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; if (mb_row + y_idx_sb >= pc->mb_rows || mb_col + x_idx_sb >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } xd->sb_index = j; if (vp9_read(bc, pc->prob_sb32_coded)) { #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 11 && pc->show_frame && mb_row + y_idx_sb == 8 && mb_col + x_idx_sb == 0); if (dec_debug) printf("Debug Decode SB32\n"); #endif set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); decode_sb32(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); xd->corrupted |= bool_error(bc); } else { int i; // Process the 4 MBs within the SB in the order: // top-left, top-right, bottom-left, bottom-right for (i = 0; i < 4; i++) { const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); if (mb_row + y_idx >= pc->mb_rows || mb_col + x_idx >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 11 && pc->show_frame && mb_row + y_idx == 8 && mb_col + x_idx == 0); if (dec_debug) printf("Debug Decode MB\n"); #endif set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx); xd->mb_index = i; vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx);
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
decode_mb(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); /* check if the boolean decoder has suffered an error */ xd->corrupted |= bool_error(bc); } } } } } } static void setup_token_decoder(VP9D_COMP *pbi, const unsigned char *cx_data, BOOL_DECODER* const bool_decoder) { VP9_COMMON *pc = &pbi->common; const uint8_t *user_data_end = pbi->source + pbi->source_sz; const uint8_t *partition = cx_data; ptrdiff_t bytes_left = user_data_end - partition; ptrdiff_t partition_size = bytes_left; // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(partition, partition_size, user_data_end)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); } if (vp9_start_decode(bool_decoder, partition, (unsigned int)partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP9D_COMP *pbi) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { vp9_setup_past_independence(pc, xd); // All buffers are implicitly updated on key frames. pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; } else if (pc->error_resilient_mode) { vp9_setup_past_independence(pc, xd); } xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; xd->fullpixel_mask = pc->full_pixel ? 0xfffffff8 : 0xffffffff; } #if CONFIG_CODE_NONZEROCOUNT static void read_nzc_probs_common(VP9_COMMON *cm, BOOL_DECODER* const bc, TX_SIZE tx_size) { int c, r, b, t; int tokens, nodes; vp9_prob *nzc_probs; vp9_prob upd; if (!get_nzc_used(tx_size)) return; if (!vp9_read_bit(bc)) return; if (tx_size == TX_32X32) {
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
tokens = NZC32X32_TOKENS; nzc_probs = cm->fc.nzc_probs_32x32[0][0][0]; upd = NZC_UPDATE_PROB_32X32; } else if (tx_size == TX_16X16) { tokens = NZC16X16_TOKENS; nzc_probs = cm->fc.nzc_probs_16x16[0][0][0]; upd = NZC_UPDATE_PROB_16X16; } else if (tx_size == TX_8X8) { tokens = NZC8X8_TOKENS; nzc_probs = cm->fc.nzc_probs_8x8[0][0][0]; upd = NZC_UPDATE_PROB_8X8; } else { tokens = NZC4X4_TOKENS; nzc_probs = cm->fc.nzc_probs_4x4[0][0][0]; upd = NZC_UPDATE_PROB_4X4; } nodes = tokens - 1; for (c = 0; c < MAX_NZC_CONTEXTS; ++c) { for (r = 0; r < REF_TYPES; ++r) { for (b = 0; b < BLOCK_TYPES; ++b) { int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b; int offset_nodes = offset * nodes; for (t = 0; t < nodes; ++t) { vp9_prob *p = &nzc_probs[offset_nodes + t]; if (vp9_read(bc, upd)) { *p = read_prob_diff_update(bc, *p); } } } } } } static void read_nzc_pcat_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) { int c, t, b; vp9_prob upd = NZC_UPDATE_PROB_PCAT; if (!(get_nzc_used(TX_4X4) || get_nzc_used(TX_8X8) || get_nzc_used(TX_16X16) || get_nzc_used(TX_32X32))) return; if (!vp9_read_bit(bc)) { return; } for (c = 0; c < MAX_NZC_CONTEXTS; ++c) { for (t = 0; t < NZC_TOKENS_EXTRA; ++t) { int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA]; for (b = 0; b < bits; ++b) { vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b]; if (vp9_read(bc, upd)) { *p = read_prob_diff_update(bc, *p); } } } } } static void read_nzc_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) { read_nzc_probs_common(cm, bc, TX_4X4); if (cm->txfm_mode != ONLY_4X4) read_nzc_probs_common(cm, bc, TX_8X8); if (cm->txfm_mode > ALLOW_8X8) read_nzc_probs_common(cm, bc, TX_16X16); if (cm->txfm_mode > ALLOW_16X16) read_nzc_probs_common(cm, bc, TX_32X32); #ifdef NZC_PCAT_UPDATE read_nzc_pcat_probs(cm, bc); #endif } #endif // CONFIG_CODE_NONZEROCOUNT
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
static void read_coef_probs_common(BOOL_DECODER* const bc, vp9_coeff_probs *coef_probs, TX_SIZE tx_size) { #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES; #else const int entropy_nodes_update = ENTROPY_NODES; #endif int i, j, k, l, m; if (vp9_read_bit(bc)) { for (i = 0; i < BLOCK_TYPES; i++) { for (j = 0; j < REF_TYPES; j++) { for (k = 0; k < COEF_BANDS; k++) { for (l = 0; l < PREV_COEF_CONTEXTS; l++) { #if CONFIG_CODE_NONZEROCOUNT const int mstart = get_nzc_used(tx_size); #else const int mstart = 0; #endif if (l >= 3 && k == 0) continue; for (m = mstart; m < entropy_nodes_update; m++) { vp9_prob *const p = coef_probs[i][j][k][l] + m; if (vp9_read(bc, vp9_coef_update_prob[m])) { *p = read_prob_diff_update(bc, *p); #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE if (m == UNCONSTRAINED_NODES - 1) vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j); #endif } } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) { VP9_COMMON *const pc = &pbi->common; read_coef_probs_common(bc, pc->fc.coef_probs_4x4, TX_4X4); if (pbi->common.txfm_mode != ONLY_4X4) read_coef_probs_common(bc, pc->fc.coef_probs_8x8, TX_8X8); if (pbi->common.txfm_mode > ALLOW_8X8) read_coef_probs_common(bc, pc->fc.coef_probs_16x16, TX_16X16); if (pbi->common.txfm_mode > ALLOW_16X16) read_coef_probs_common(bc, pc->fc.coef_probs_32x32, TX_32X32); } static void update_frame_size(VP9D_COMP *pbi) { VP9_COMMON *cm = &pbi->common; const int width = multiple16(cm->width); const int height = multiple16(cm->height); cm->mb_rows = height >> 4; cm->mb_cols = width >> 4; cm->MBs = cm->mb_rows * cm->mb_cols; cm->mode_info_stride = cm->mb_cols + 1; memset(cm->mip, 0, (cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO)); vp9_update_mode_info_border(cm, cm->mip);
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
cm->mi = cm->mip + cm->mode_info_stride + 1; cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1; vp9_update_mode_info_in_image(cm, cm->mi); } static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) { int i, j; xd->segmentation_enabled = vp9_read_bit(r); if (xd->segmentation_enabled) { // Read whether or not the segmentation map is being explicitly updated // this frame. xd->update_mb_segmentation_map = vp9_read_bit(r); // If so what method will be used. if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled. Read the probs used to // decode the segment id for each macro block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255; // Read the prediction probs needed to decode the segment id pc->temporal_update = vp9_read_bit(r); for (i = 0; i < PREDICTION_PROBS; i++) { pc->segment_pred_probs[i] = pc->temporal_update ? (vp9_read_bit(r) ? vp9_read_prob(r) : 255) : 255; } if (pc->temporal_update) { const vp9_prob *p = xd->mb_segment_tree_probs; vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs; const int c0 = p[0] * p[1]; const int c1 = p[0] * (256 - p[1]); const int c2 = (256 - p[0]) * p[2]; const int c3 = (256 - p[0]) * (256 - p[2]); p_mod[0] = get_binary_prob(c1, c2 + c3); p_mod[1] = get_binary_prob(c0, c2 + c3); p_mod[2] = get_binary_prob(c0 + c1, c3); p_mod[3] = get_binary_prob(c0 + c1, c2); } } xd->update_mb_segmentation_data = vp9_read_bit(r); if (xd->update_mb_segmentation_data) { xd->mb_segment_abs_delta = vp9_read_bit(r); vp9_clearall_segfeatures(xd); // For each segmentation... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each of the segments features... for (j = 0; j < SEG_LVL_MAX; j++) { int data; // Is the feature enabled if (vp9_read_bit(r)) { // Update the feature data and mask vp9_enable_segfeature(xd, i, j); data = vp9_decode_unsigned_max(r, vp9_seg_feature_data_max(j)); // Is the segment data signed. if (vp9_is_segfeature_signed(j) && vp9_read_bit(r)) { data = -data; } } else { data = 0; }
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
vp9_set_segdata(xd, i, j, data); } } } } } static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) { int i; pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(r); pc->filter_level = vp9_read_literal(r, 6); pc->sharpness_level = vp9_read_literal(r, 3); #if CONFIG_LOOP_DERING if (vp9_read_bit(r)) pc->dering_enabled = 1 + vp9_read_literal(r, 4); else pc->dering_enabled = 0; #endif // Read in loop filter deltas applied at the MB level based on mode or ref // frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = vp9_read_bit(r); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated xd->mode_ref_lf_delta_update = vp9_read_bit(r); if (xd->mode_ref_lf_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_read_bit(r)) { // sign = vp9_read_bit(r); xd->ref_lf_deltas[i] = vp9_read_literal(r, 6); if (vp9_read_bit(r)) xd->ref_lf_deltas[i] = -xd->ref_lf_deltas[i]; // Apply sign } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_read_bit(r)) { // sign = vp9_read_bit(r); xd->mode_lf_deltas[i] = vp9_read_literal(r, 6); if (vp9_read_bit(r)) xd->mode_lf_deltas[i] = -xd->mode_lf_deltas[i]; // Apply sign } } } } } static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const pc = &pbi->common; const int width = pc->width; const int height = pc->height; // If error concealment is enabled we should only parse the new size // if we have enough data. Otherwise we will end up with the wrong size. if (scaling_active && data + 4 < data_end) { pc->display_width = read_le16(data + 0); pc->display_height = read_le16(data + 2); data += 4; }
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
if (data + 4 < data_end) { pc->width = read_le16(data + 0); pc->height = read_le16(data + 2); data += 4; } if (!scaling_active) { pc->display_width = pc->width; pc->display_height = pc->height; } if (width != pc->width || height != pc->height) { if (pc->width <= 0) { pc->width = width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->height <= 0) { pc->height = height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (!pbi->initial_width || !pbi->initial_height) { if (vp9_alloc_frame_buffers(pc, pc->width, pc->height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); pbi->initial_width = pc->width; pbi->initial_height = pc->height; } if (pc->width > pbi->initial_width) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame width too large"); } if (pc->height > pbi->initial_height) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame height too large"); } update_frame_size(pbi); } return data; } static void update_frame_context(VP9D_COMP *pbi, vp9_reader *r) { FRAME_CONTEXT *const fc = &pbi->common.fc; vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4); vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8); vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16); vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32); vp9_copy(fc->pre_ymode_prob, fc->ymode_prob); vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob); vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob); vp9_copy(fc->pre_bmode_prob, fc->bmode_prob); vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob); vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob); vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob); fc->pre_nmvc = fc->nmvc; vp9_zero(fc->coef_counts_4x4); vp9_zero(fc->coef_counts_8x8); vp9_zero(fc->coef_counts_16x16); vp9_zero(fc->coef_counts_32x32); vp9_zero(fc->eob_branch_counts);
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
vp9_zero(fc->ymode_counts); vp9_zero(fc->sb_ymode_counts); vp9_zero(fc->uv_mode_counts); vp9_zero(fc->bmode_counts); vp9_zero(fc->i8x8_mode_counts); vp9_zero(fc->sub_mv_ref_counts); vp9_zero(fc->mbsplit_counts); vp9_zero(fc->NMVcount); vp9_zero(fc->mv_ref_ct); #if CONFIG_COMP_INTERINTRA_PRED fc->pre_interintra_prob = fc->interintra_prob; vp9_zero(fc->interintra_counts); #endif #if CONFIG_CODE_NONZEROCOUNT vp9_copy(fc->pre_nzc_probs_4x4, fc->nzc_probs_4x4); vp9_copy(fc->pre_nzc_probs_8x8, fc->nzc_probs_8x8); vp9_copy(fc->pre_nzc_probs_16x16, fc->nzc_probs_16x16); vp9_copy(fc->pre_nzc_probs_32x32, fc->nzc_probs_32x32); vp9_copy(fc->pre_nzc_pcat_probs, fc->nzc_pcat_probs); vp9_zero(fc->nzc_counts_4x4); vp9_zero(fc->nzc_counts_8x8); vp9_zero(fc->nzc_counts_16x16); vp9_zero(fc->nzc_counts_32x32); vp9_zero(fc->nzc_pcat_counts); #endif read_coef_probs(pbi, r); #if CONFIG_CODE_NONZEROCOUNT read_nzc_probs(&pbi->common, r); #endif } static void decode_tiles(VP9D_COMP *pbi, const uint8_t *data, int first_partition_size, BOOL_DECODER *header_bc, BOOL_DECODER *residual_bc) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data_ptr = data + first_partition_size; int tile_row, tile_col, delta_log2_tiles; int mb_row; vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles); while (delta_log2_tiles--) { if (vp9_read_bit(header_bc)) { pc->log2_tile_columns++; } else { break; } } pc->log2_tile_rows = vp9_read_bit(header_bc); if (pc->log2_tile_rows) pc->log2_tile_rows += vp9_read_bit(header_bc); pc->tile_columns = 1 << pc->log2_tile_columns; pc->tile_rows = 1 << pc->log2_tile_rows; vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); if (pbi->oxcf.inv_tile_order) { const int n_cols = pc->tile_columns; const uint8_t *data_ptr2[4][1 << 6]; BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak); // pre-initialize the offsets, we're going to read in inverse order data_ptr2[0][0] = data_ptr; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
if (tile_row) { const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]); data_ptr2[tile_row - 1][n_cols - 1] += 4; data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size; } for (tile_col = 1; tile_col < n_cols; tile_col++) { const int size = read_le32(data_ptr2[tile_row][tile_col - 1]); data_ptr2[tile_row][tile_col - 1] += 4; data_ptr2[tile_row][tile_col] = data_ptr2[tile_row][tile_col - 1] + size; } } for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) { vp9_get_tile_col_offsets(pc, tile_col); setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc); // Decode a row of superblocks for (mb_row = pc->cur_tile_mb_row_start; mb_row < pc->cur_tile_mb_row_end; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, residual_bc); } if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1) bc_bak = *residual_bc; } } *residual_bc = bc_bak; } else { int has_more; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) { vp9_get_tile_col_offsets(pc, tile_col); has_more = tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1; // Setup decoder setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc); // Decode a row of superblocks for (mb_row = pc->cur_tile_mb_row_start; mb_row < pc->cur_tile_mb_row_end; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, residual_bc); } if (has_more) { const int size = read_le32(data_ptr); data_ptr += 4 + size; } } } } } int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) { BOOL_DECODER header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data = pbi->source; const uint8_t *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes = 0; int i, corrupt_tokens = 0; // printf("Decoding frame %d\n", pc->current_video_frame);
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
xd->corrupted = 0; // start with no corruption of current frame pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { int scaling_active; pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; scaling_active = (data[0] >> 5) & 1; first_partition_length_in_bytes = read_le16(data + 1); if (!read_is_valid(data, first_partition_length_in_bytes, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp9_setup_version(pc); if (pc->frame_type == KEY_FRAME) { // When error concealment is enabled we should only check the sync // code if we have enough bits available if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } data += 3; } data = setup_frame_size(pbi, scaling_active, data, data_end); } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->width == 0 || pc->height == 0) { return -1; } init_frame(pbi); // Reset the frame pointers to the current frame size vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx], pc->width, pc->height, VP9BORDERINPIXELS); if (vp9_start_decode(&header_bc, data, (unsigned int)first_partition_length_in_bytes)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc); pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc); pc->error_resilient_mode = vp9_read_bit(&header_bc); setup_segmentation(pc, xd, &header_bc); // Read common prediction model status flag probability updates for the // reference frame if (pc->frame_type == KEY_FRAME) { // Set the prediction probabilities to defaults pc->ref_pred_probs[0] = 120; pc->ref_pred_probs[1] = 80; pc->ref_pred_probs[2] = 40; } else { for (i = 0; i < PREDICTION_PROBS; i++) { if (vp9_read_bit(&header_bc))
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
pc->ref_pred_probs[i] = vp9_read_prob(&header_bc); } } pc->prob_sb64_coded = vp9_read_prob(&header_bc); pc->prob_sb32_coded = vp9_read_prob(&header_bc); xd->lossless = vp9_read_bit(&header_bc); if (xd->lossless) { pc->txfm_mode = ONLY_4X4; } else { // Read the loop filter level and type pc->txfm_mode = vp9_read_literal(&header_bc, 2); if (pc->txfm_mode == ALLOW_32X32) pc->txfm_mode += vp9_read_bit(&header_bc); if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = vp9_read_prob(&header_bc); pc->prob_tx[1] = vp9_read_prob(&header_bc); pc->prob_tx[2] = vp9_read_prob(&header_bc); } } setup_loopfilter(pc, xd, &header_bc); // Dummy read for now vp9_read_literal(&header_bc, 2); // Read the default quantizers. { int q_update = 0; pc->base_qindex = vp9_read_literal(&header_bc, QINDEX_BITS); // AC 1st order Q = default pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update); if (q_update) vp9_init_de_quantizer(pbi); // MB level dequantizer setup mb_init_dequantizer(pbi, &pbi->mb); } // Determine if the golden frame or ARF buffer should be updated and how. // For all non key frames the GF and ARF refresh flags and sign bias // flags must be set explicitly. if (pc->frame_type == KEY_FRAME) { pc->active_ref_idx[0] = pc->new_fb_idx; pc->active_ref_idx[1] = pc->new_fb_idx; pc->active_ref_idx[2] = pc->new_fb_idx; } else { // Should the GF or ARF be updated from the current frame pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES); // Select active reference frames for (i = 0; i < 3; i++) { int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2); pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num]; } pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc); // Is high precision mv allowed xd->allow_high_precision_mv = vp9_read_bit(&header_bc); // Read the type of subpel filter to use pc->mcomp_filter_type = vp9_read_bit(&header_bc) ? SWITCHABLE
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
: vp9_read_literal(&header_bc, 2); #if CONFIG_COMP_INTERINTRA_PRED pc->use_interintra = vp9_read_bit(&header_bc); #endif /* Calculate scaling factors for each of the 3 available references */ for (i = 0; i < 3; ++i) { if (pc->active_ref_idx[i] >= NUM_YV12_BUFFERS) { memset(&pc->active_ref_scale[i], 0, sizeof(pc->active_ref_scale[i])); continue; } vp9_setup_scale_factors_for_frame(&pc->active_ref_scale[i], &pc->yv12_fb[pc->active_ref_idx[i]], pc->width, pc->height); } // To enable choice of different interploation filters vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } if (!pc->error_resilient_mode) { pc->refresh_entropy_probs = vp9_read_bit(&header_bc); pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc); } else { pc->refresh_entropy_probs = 0; pc->frame_parallel_decoding_mode = 1; } pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2); vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx], sizeof(pc->fc)); // Read inter mode probability context updates if (pc->frame_type != KEY_FRAME) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (vp9_read(&header_bc, 252)) { pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc); } } } } #if CONFIG_MODELCOEFPROB && ADJUST_KF_COEF_PROBS if (pc->frame_type == KEY_FRAME) vp9_adjust_default_coef_probs(pc); #endif #if CONFIG_NEW_MVREF // If Key frame reset mv ref id probabilities to defaults if (pc->frame_type != KEY_FRAME) { // Read any mv_ref index probability updates int i, j; for (i = 0; i < MAX_REF_FRAMES; ++i) { // Skip the dummy entry for intra ref frame. if (i == INTRA_FRAME) { continue; } // Read any updates to probabilities for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) { if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) { xd->mb_mv_ref_probs[i][j] = vp9_read_prob(&header_bc); } } } } #endif
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,R:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pbi->refresh_frame_flags, pc->base_qindex); fclose(z); } update_frame_context(pbi, &header_bc); // Initialize xd pointers. Any reference should do for xd->pre, so use 0. vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc->last_frame_seg_map, vpx_calloc((pc->mb_rows * pc->mb_cols), 1)); /* set up frame new frame for intra coded blocks */ vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp9_setup_block_dptrs(xd); vp9_build_block_doffsets(xd); /* clear out the coeff buffer */ vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); /* Read the mb_no_coeff_skip flag */ pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc); vp9_decode_mode_mvs_init(pbi, &header_bc); decode_tiles(pbi, data, first_partition_length_in_bytes, &header_bc, &residual_bc); corrupt_tokens |= xd->corrupted; // keep track of the last coded dimensions pc->last_width = pc->width; pc->last_height = pc->height; // Collect information about decoder corruption. // 1. Check first boolean decoder for errors. // 2. Check the macroblock information pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc) | corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(pc); #if CONFIG_CODE_NONZEROCOUNT vp9_adapt_nzc_probs(pc); #endif } if (pc->frame_type != KEY_FRAME) { if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
1891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921
vp9_adapt_mode_probs(pc); vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv); vp9_adapt_mode_context(&pbi->common); } } if (pc->refresh_entropy_probs) { vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = residual_bc.pos + header_bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif /* Find the end of the coded buffer */ while (residual_bc.count > CHAR_BIT && residual_bc.count < VP9_BD_VALUE_SIZE) { residual_bc.count -= CHAR_BIT; residual_bc.user_buffer--; } *p_data_end = residual_bc.user_buffer; return 0; }