• Deb Mukherjee's avatar
    Adaptive entropy coding of coefficients, modes, mv. · 1fe85a35
    Deb Mukherjee authored
    This patch incorporates adaptive entropy coding of coefficient tokens,
    and mode/mv information based on distributions encountered in a frame.
    Specifically, there is an initial forward update to the probabilities
    in the bitstream as before for coding the symbols in the frame, however
    at the end of decoding each frame, the forward update to the
    probabilities is reverted and instead the probabilities are updated
    towards the actual distributions encountered within the frame.
    The amount of update is weighted by the number of hits within each
    context.
    
    Results on derf/hd/std-hd are all up by 1.6%.
    
    On derf, the most of the gains come from coefficients, however for the
    hd and std-hd sets, the most of the gains come from the mode/mv
    information updates.
    
    Change-Id: I708c0e11fdacafee04940fe7ae159ba6844005fd
    1fe85a35
encodeframe.c 59.69 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "encodemv.h"
#include "vp8/common/common.h"
#include "onyx_int.h"
#include "vp8/common/extend.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/setupintrarecon.h"
#include "encodeintra.h"
#include "vp8/common/reconinter.h"
#include "rdopt.h"
#include "vp8/common/findnearmv.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/seg_common.h"
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include "vp8/common/subpixel.h"
#include "vpx_ports/vpx_timer.h"
#include "vp8/common/pred_common.h"
//#define DBG_PRNT_SEGMAP 1
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD(x)     &cpi->common.rtcd.x
#define IF_RTCD(x)  (x)
#else
#define RTCD(x)     NULL
#define IF_RTCD(x)  NULL
#endif
#ifdef ENC_DEBUG
int enc_debug=0;
int mb_row_debug, mb_col_debug;
#endif
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
                                      MACROBLOCK *x,
                                      MB_ROW_COMP *mbr_ei,
                                      int mb_row,
                                      int count);
extern int vp8cx_pick_mode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x,
                                            int recon_yoffset,
                                            int recon_uvoffset);
void vp8_build_block_offsets(MACROBLOCK *x);
void vp8_setup_block_ptrs(MACROBLOCK *x);
void vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t,
                                   int recon_yoffset, int recon_uvoffset,
                                   int output_enabled);
void vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x,
                                    TOKENEXTRA **t, int output_enabled);
static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x );
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
#ifdef MODE_STATS unsigned int inter_y_modes[MB_MODE_COUNT]; unsigned int inter_uv_modes[VP8_UV_MODES]; unsigned int inter_b_modes[B_MODE_COUNT]; unsigned int y_modes[VP8_YMODES]; unsigned int i8x8_modes[VP8_I8X8_MODES]; unsigned int uv_modes[VP8_UV_MODES]; unsigned int uv_modes_y[VP8_YMODES][VP8_UV_MODES]; unsigned int b_modes[B_MODE_COUNT]; #endif /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp8_activity_masking(). */ #define VP8_ACTIVITY_AVG_MIN (64) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const unsigned char VP8_VAR_OFFS[16]= { 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 }; // Original activity measure from Tim T's code. static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x ) { unsigned int act; unsigned int sse; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ act = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0, &sse); act = act<<4; /* If the region is flat, lower the activity some more. */ if (act < 8<<12) act = act < 5<<12 ? act : 5<<12; return act; } // Stub for alternative experimental activity measures. static unsigned int alt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred ) { return vp8_encode_intra(cpi,x, use_dc_pred); } // Measure the activity of the current macroblock // What we measure here is TBD so abstracted to this function #define ALT_ACT_MEASURE 1 static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x, int mb_row, int mb_col) { unsigned int mb_activity;
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
if ( ALT_ACT_MEASURE ) { int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); // Or use and alternative. mb_activity = alt_activity_measure( cpi, x, use_dc_pred ); } else { // Original activity measure from Tim T's code. mb_activity = tt_activity_measure( cpi, x ); } if ( mb_activity < VP8_ACTIVITY_AVG_MIN ) mb_activity = VP8_ACTIVITY_AVG_MIN; return mb_activity; } // Calculate an "average" mb activity value for the frame #define ACT_MEDIAN 0 static void calc_av_activity( VP8_COMP *cpi, int64_t activity_sum ) { #if ACT_MEDIAN // Find median: Simple n^2 algorithm for experimentation { unsigned int median; unsigned int i,j; unsigned int * sortlist; unsigned int tmp; // Create a list to sort to CHECK_MEM_ERROR(sortlist, vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); // Copy map to sort list vpx_memcpy( sortlist, cpi->mb_activity_map, sizeof(unsigned int) * cpi->common.MBs ); // Ripple each value down to its correct position for ( i = 1; i < cpi->common.MBs; i ++ ) { for ( j = i; j > 0; j -- ) { if ( sortlist[j] < sortlist[j-1] ) { // Swap values tmp = sortlist[j-1]; sortlist[j-1] = sortlist[j]; sortlist[j] = tmp; } else break; } } // Even number MBs so estimate median as mean of two either side. median = ( 1 + sortlist[cpi->common.MBs >> 1] + sortlist[(cpi->common.MBs >> 1) + 1] ) >> 1; cpi->activity_avg = median; vpx_free(sortlist); } #else // Simple mean for now cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs);
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
#endif if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; // Experimental code: return fixed value normalized for several clips if ( ALT_ACT_MEASURE ) cpi->activity_avg = 100000; } #define USE_ACT_INDEX 0 #define OUTPUT_NORM_ACT_STATS 0 #if USE_ACT_INDEX // Calculate and activity index for each mb static void calc_activity_index( VP8_COMP *cpi, MACROBLOCK *x ) { VP8_COMMON *const cm = & cpi->common; int mb_row, mb_col; int64_t act; int64_t a; int64_t b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n%12d\n", cpi->activity_avg ); #endif // Reset pointers to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; // Calculate normalized mb activity number. for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Read activity from the map act = *(x->mb_activity_ptr); // Calculate a normalized activity number a = act + 4*cpi->activity_avg; b = 4*act + cpi->activity_avg; if ( b >= a ) *(x->activity_ptr) = (int)((b + (a>>1))/a) - 1; else *(x->activity_ptr) = 1 - (int)((a + (b>>1))/b); #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_activity_ptr)); #endif // Increment activity map pointers x->mb_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } #endif
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
// Loop through all MBs. Note activity of each, average activity and // calculate a normalized activity for each static void build_activity_map( VP8_COMP *cpi ) { MACROBLOCK *const x = & cpi->mb; MACROBLOCKD *xd = &x->e_mbd; VP8_COMMON *const cm = & cpi->common; #if ALT_ACT_MEASURE YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; int recon_yoffset; int recon_y_stride = new_yv12->y_stride; #endif int mb_row, mb_col; unsigned int mb_activity; int64_t activity_sum = 0; // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { #if ALT_ACT_MEASURE // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); #endif // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { #if ALT_ACT_MEASURE xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->left_available = (mb_col != 0); recon_yoffset += 16; #endif //Copy current mb to a buffer RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); // measure activity mb_activity = mb_activity_measure( cpi, x, mb_row, mb_col ); // Keep frame sum activity_sum += mb_activity; // Store MB level activity details. *x->mb_activity_ptr = mb_activity; // Increment activity map pointer x->mb_activity_ptr++; // adjust to the next column of source macroblocks x->src.y_buffer += 16; } // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; #if ALT_ACT_MEASURE //extend the recon for intra prediction vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); #endif } // Calculate an "average" MB activity calc_av_activity(cpi, activity_sum);
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
#if USE_ACT_INDEX // Calculate an activity index number of each mb calc_activity_index( cpi, x ); #endif } // Macroblock activity masking void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); x->errorperbit = x->rdmult * 100 /(110 * x->rddiv); x->errorperbit += (x->errorperbit==0); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + (2*cpi->activity_avg); b = (2*act) + cpi->activity_avg; x->rdmult = (unsigned int)(((int64_t)x->rdmult*b + (a>>1))/a); x->errorperbit = x->rdmult * 100 /(110 * x->rddiv); x->errorperbit += (x->errorperbit==0); #endif // Activity based Zbin adjustment adjust_act_zbin(cpi, x); } static void update_state (VP8_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { int i; MACROBLOCKD *xd = &x->e_mbd; MODE_INFO *mi = &ctx->mic; int mb_mode = mi->mbmi.mode; int mb_mode_index = ctx->best_mode_index; #if CONFIG_DEBUG assert (mb_mode < MB_MODE_COUNT); assert (mb_mode_index < MAX_MODES); assert (mi->mbmi.ref_frame < MAX_REF_FRAMES); #endif // Restore the coding context of the MB to that that was in place // when the mode was picked for it vpx_memcpy(xd->mode_info_context, mi, sizeof(MODE_INFO)); if (mb_mode == B_PRED) { for (i = 0; i < 16; i++) { xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode; assert (xd->block[i].bmi.as_mode.first < MB_MODE_COUNT); } } else if (mb_mode == I8X8_PRED) { for (i = 0; i < 16; i++) { xd->block[i].bmi = xd->mode_info_context->bmi[i]; } } else if (mb_mode == SPLITMV) { vpx_memcpy(x->partition_info, &ctx->partition_info, sizeof(PARTITION_INFO));
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
xd->mode_info_context->mbmi.mv.as_int = x->partition_info->bmi[15].mv.as_int; xd->mode_info_context->mbmi.second_mv.as_int = x->partition_info->bmi[15].second_mv.as_int; } if (cpi->common.frame_type == KEY_FRAME) { // Restore the coding modes to that held in the coding context //if (mb_mode == B_PRED) // for (i = 0; i < 16; i++) // { // xd->block[i].bmi.as_mode = // xd->mode_info_context->bmi[i].as_mode; // assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT); // } } else { /* // Reduce the activation RD thresholds for the best choice mode if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) && (cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2))) { int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2); cpi->rd_thresh_mult[mb_mode_index] = (cpi->rd_thresh_mult[mb_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[mb_mode_index] - best_adjustment : MIN_THRESHMULT; cpi->rd_threshes[mb_mode_index] = (cpi->rd_baseline_thresh[mb_mode_index] >> 7) * cpi->rd_thresh_mult[mb_mode_index]; } */ // Note how often each mode chosen as best cpi->mode_chosen_counts[mb_mode_index]++; rd_update_mvcount(cpi, x, &ctx->best_ref_mv); cpi->prediction_error += ctx->distortion; cpi->intra_error += ctx->intra_error; } } static void pick_mb_modes (VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, int mb_col, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *totalrate) { int i; int map_index; int recon_yoffset, recon_uvoffset; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; ENTROPY_CONTEXT_PLANES left_context[2]; ENTROPY_CONTEXT_PLANES above_context[2]; ENTROPY_CONTEXT_PLANES *initial_above_context_ptr = cm->above_context + mb_col; // Offsets to move pointers from MB to MB within a SB in raster order int row_delta[4] = { 0, +1, 0, -1};
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
int col_delta[4] = {+1, -1, +1, +1}; /* Function should not modify L & A contexts; save and restore on exit */ vpx_memcpy (left_context, cpi->left_context, sizeof(left_context)); vpx_memcpy (above_context, initial_above_context_ptr, sizeof(above_context)); /* Encode MBs in raster order within the SB */ for ( i=0; i<4; i++ ) { int dy = row_delta[i]; int dx = col_delta[i]; int offset_unextended = dy * cm->mb_cols + dx; int offset_extended = dy * xd->mode_info_stride + dx; // TODO Many of the index items here can be computed more efficiently! if ((mb_row >= cm->mb_rows) || (mb_col >= cm->mb_cols)) { // MB lies outside frame, move on mb_row += dy; mb_col += dx; // Update pointers x->src.y_buffer += 16 * (dx + dy*x->src.y_stride); x->src.u_buffer += 8 * (dx + dy*x->src.uv_stride); x->src.v_buffer += 8 * (dx + dy*x->src.uv_stride); x->gf_active_ptr += offset_unextended; x->partition_info += offset_extended; xd->mode_info_context += offset_extended; xd->prev_mode_info_context += offset_extended; #if CONFIG_DEBUG assert((xd->prev_mode_info_context - cpi->common.prev_mip) == (xd->mode_info_context - cpi->common.mip)); #endif continue; } // Index of the MB in the SB 0..3 xd->mb_index = i; map_index = (mb_row * cpi->common.mb_cols) + mb_col; x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; // set above context pointer xd->above_context = cm->above_context + mb_col; // Restore the appropriate left context depending on which // row in the SB the MB is situated vpx_memcpy (&cm->left_context, &cpi->left_context[i>>1], sizeof(ENTROPY_CONTEXT_PLANES)); // Set up distance of MB to edge of frame in 1/8th pel units xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; // Set up limit values for MV components to prevent them from // extending beyond the UMV borders assuming 16x16 block size x->mv_row_min = -((mb_row * 16) + VP8BORDERINPIXELS - INTERP_EXTEND); x->mv_col_min = -((mb_col * 16) + VP8BORDERINPIXELS - INTERP_EXTEND); x->mv_row_max = ((cm->mb_rows - mb_row) * 16 + (VP8BORDERINPIXELS - 16 - INTERP_EXTEND)); x->mv_col_max = ((cm->mb_cols - mb_col) * 16 +
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
(VP8BORDERINPIXELS - 16 - INTERP_EXTEND)); xd->up_available = (mb_row != 0); xd->left_available = (mb_col != 0); recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; // Copy current MB to a work buffer RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; if(cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); // Is segmentation enabled if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id if (cpi->segmentation_map[map_index] <= 3) xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index]; else xd->mode_info_context->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x); } else // Set to Segment 0 by default xd->mode_info_context->mbmi.segment_id = 0; x->active_ptr = cpi->active_map + map_index; /* force 4x4 transform for mode selection */ xd->mode_info_context->mbmi.txfm_size = TX_4X4; // TODO IS this right?? cpi->update_context = 0; // TODO Do we need this now?? // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (cm->frame_type == KEY_FRAME) { *totalrate += vp8_rd_pick_intra_mode(cpi, x); // Save the coding context vpx_memcpy (&x->mb_context[i].mic, xd->mode_info_context, sizeof(MODE_INFO)); // Dummy encode, do not do the tokenization vp8cx_encode_intra_macro_block(cpi, x, tp, 0); //Note the encoder may have changed the segment_id } else { int seg_id; if (xd->segmentation_enabled && cpi->seg0_cnt > 0 && !segfeature_active( xd, 0, SEG_LVL_REF_FRAME ) && segfeature_active( xd, 1, SEG_LVL_REF_FRAME ) && check_segref(xd, 1, INTRA_FRAME) + check_segref(xd, 1, LAST_FRAME) + check_segref(xd, 1, GOLDEN_FRAME) +
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
check_segref(xd, 1, ALTREF_FRAME) == 1) { cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt; } else { cpi->seg0_progress = (((mb_col & ~1) * 2 + (mb_row & ~1) * cm->mb_cols + i) << 16) / cm->MBs; } *totalrate += vp8cx_pick_mode_inter_macroblock(cpi, x, recon_yoffset, recon_uvoffset); // Dummy encode, do not do the tokenization vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset, 0); seg_id = xd->mode_info_context->mbmi.segment_id; if (cpi->mb.e_mbd.segmentation_enabled && seg_id == 0) { cpi->seg0_idx++; } if (!xd->segmentation_enabled || !segfeature_active( xd, seg_id, SEG_LVL_REF_FRAME ) || check_segref(xd, seg_id, INTRA_FRAME) + check_segref(xd, seg_id, LAST_FRAME) + check_segref(xd, seg_id, GOLDEN_FRAME) + check_segref(xd, seg_id, ALTREF_FRAME) > 1) { // Get the prediction context and status int pred_flag = get_pred_flag( xd, PRED_REF ); int pred_context = get_pred_context( cm, xd, PRED_REF ); // Count prediction success cpi->ref_pred_count[pred_context][pred_flag]++; } } // Keep a copy of the updated left context vpx_memcpy (&cpi->left_context[i>>1], &cm->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); // Next MB mb_row += dy; mb_col += dx; x->src.y_buffer += 16 * (dx + dy*x->src.y_stride); x->src.u_buffer += 8 * (dx + dy*x->src.uv_stride); x->src.v_buffer += 8 * (dx + dy*x->src.uv_stride); x->gf_active_ptr += offset_unextended; x->partition_info += offset_extended; xd->mode_info_context += offset_extended; xd->prev_mode_info_context += offset_extended; #if CONFIG_DEBUG assert((xd->prev_mode_info_context - cpi->common.prev_mip) == (xd->mode_info_context - cpi->common.mip)); #endif } /* Restore L & A coding context to those in place on entry */ vpx_memcpy (cpi->left_context, left_context, sizeof(left_context)); vpx_memcpy (initial_above_context_ptr, above_context, sizeof(above_context)); }
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
static void encode_sb ( VP8_COMP *cpi, VP8_COMMON *cm, int mbrow, int mbcol, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp ) { int i, j; int map_index; int mb_row, mb_col; int recon_yoffset, recon_uvoffset; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int row_delta[4] = { 0, +1, 0, -1}; int col_delta[4] = {+1, -1, +1, +1}; mb_row = mbrow; mb_col = mbcol; /* Encode MBs in raster order within the SB */ for ( i=0; i<4; i++ ) { int dy = row_delta[i]; int dx = col_delta[i]; int offset_extended = dy * xd->mode_info_stride + dx; int offset_unextended = dy * cm->mb_cols + dx; if ((mb_row >= cm->mb_rows) || (mb_col >= cm->mb_cols)) { // MB lies outside frame, move on mb_row += dy; mb_col += dx; x->src.y_buffer += 16 * (dx + dy*x->src.y_stride); x->src.u_buffer += 8 * (dx + dy*x->src.uv_stride); x->src.v_buffer += 8 * (dx + dy*x->src.uv_stride); x->gf_active_ptr += offset_unextended; x->partition_info += offset_extended; xd->mode_info_context += offset_extended; xd->prev_mode_info_context += offset_extended; #if CONFIG_DEBUG assert((xd->prev_mode_info_context - cpi->common.prev_mip) == (xd->mode_info_context - cpi->common.mip)); #endif continue; } xd->mb_index = i; #ifdef ENC_DEBUG enc_debug = (cpi->common.current_video_frame == 0 && mb_row==0 && mb_col==0); mb_col_debug=mb_col; mb_row_debug=mb_row; #endif // Restore MB state to that when it was picked #if CONFIG_SUPERBLOCKS if (x->encode_as_sb) update_state (cpi, x, &x->sb_context[i]); else #endif update_state (cpi, x, &x->mb_context[i]);
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
// Copy in the appropriate left context vpx_memcpy (&cm->left_context, &cpi->left_context[i>>1], sizeof(ENTROPY_CONTEXT_PLANES)); map_index = (mb_row * cpi->common.mb_cols) + mb_col; x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; // reset above block coeffs xd->above_context = cm->above_context + mb_col; // Set up distance of MB to edge of the frame in 1/8th pel units xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; // Set up limit values for MV components to prevent them from // extending beyond the UMV borders assuming 16x16 block size x->mv_row_min = -((mb_row * 16) + VP8BORDERINPIXELS - INTERP_EXTEND); x->mv_col_min = -((mb_col * 16) + VP8BORDERINPIXELS - INTERP_EXTEND); x->mv_row_max = ((cm->mb_rows - mb_row) * 16 + (VP8BORDERINPIXELS - 16 - INTERP_EXTEND)); x->mv_col_max = ((cm->mb_cols - mb_col) * 16 + (VP8BORDERINPIXELS - 16 - INTERP_EXTEND)); #if CONFIG_SUPERBLOCKS // Set up limit values for MV components to prevent them from // extending beyond the UMV borders assuming 32x32 block size x->mv_row_min_sb = -((mb_row * 16) + VP8BORDERINPIXELS - INTERP_EXTEND); x->mv_col_min_sb = -((mb_col * 16) + VP8BORDERINPIXELS - INTERP_EXTEND); x->mv_row_max_sb = ((cm->mb_rows - mb_row) * 16 + (VP8BORDERINPIXELS - 32 - INTERP_EXTEND)); x->mv_col_max_sb = ((cm->mb_cols - mb_col) * 16 + (VP8BORDERINPIXELS - 32 - INTERP_EXTEND)); #endif xd->up_available = (mb_row != 0); xd->left_available = (mb_col != 0); recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; // Copy current MB to a work buffer RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); if(cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); // Is segmentation enabled if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id if (cpi->segmentation_map[map_index] <= 3) xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index]; else xd->mode_info_context->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x); } else // Set to Segment 0 by default xd->mode_info_context->mbmi.segment_id = 0;
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
x->active_ptr = cpi->active_map + map_index; cpi->update_context = 0; if (cm->frame_type == KEY_FRAME) { vp8cx_encode_intra_macro_block(cpi, x, tp, 1); //Note the encoder may have changed the segment_id #ifdef MODE_STATS y_modes[xd->mode_info_context->mbmi.mode] ++; #endif } else { vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset, 1); //Note the encoder may have changed the segment_id #ifdef MODE_STATS inter_y_modes[xd->mode_info_context->mbmi.mode] ++; if (xd->mode_info_context->mbmi.mode == SPLITMV) { int b; for (b = 0; b < x->partition_info->count; b++) { inter_b_modes[x->partition_info->bmi[b].mode] ++; } } #endif // Count of last ref frame 0,0 usage if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) cpi->inter_zz_count ++; } // TODO Partitioning is broken! cpi->tplist[mb_row].stop = *tp; // Copy back updated left context vpx_memcpy (&cpi->left_context[i>>1], &cm->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); // Next MB mb_row += dy; mb_col += dx; x->src.y_buffer += 16 * (dx + dy*x->src.y_stride); x->src.u_buffer += 8 * (dx + dy*x->src.uv_stride); x->src.v_buffer += 8 * (dx + dy*x->src.uv_stride); x->gf_active_ptr += offset_unextended; x->partition_info += offset_extended; xd->mode_info_context += offset_extended; xd->prev_mode_info_context += offset_extended; #if CONFIG_DEBUG assert((xd->prev_mode_info_context - cpi->common.prev_mip) == (xd->mode_info_context - cpi->common.mip)); #endif } // debug output #if DBG_PRNT_SEGMAP
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
{ FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "\n" ); fclose(statsfile); } #endif } static void encode_sb_row ( VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *totalrate ) { int mb_col; int mb_cols = cm->mb_cols; // Initialize the left context for the new SB row vpx_memset (cpi->left_context, 0, sizeof(cpi->left_context)); vpx_memset (&cm->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); // Code each SB in the row for (mb_col=0; mb_col<mb_cols; mb_col+=2) { int mb_rate = 0; #if CONFIG_SUPERBLOCKS int sb_rate = INT_MAX; #endif #if CONFIG_DEBUG MODE_INFO *mic = xd->mode_info_context; PARTITION_INFO *pi = x->partition_info; signed char *gfa = x->gf_active_ptr; unsigned char *yb = x->src.y_buffer; unsigned char *ub = x->src.u_buffer; unsigned char *vb = x->src.v_buffer; #endif // Pick modes assuming the SB is coded as 4 independent MBs pick_mb_modes (cpi, cm, mb_row, mb_col, x, xd, tp, &mb_rate); x->src.y_buffer -= 32; x->src.u_buffer -= 16; x->src.v_buffer -= 16; x->gf_active_ptr -= 2; x->partition_info -= 2; xd->mode_info_context -= 2; xd->prev_mode_info_context -= 2; #if CONFIG_DEBUG assert (x->gf_active_ptr == gfa); assert (x->partition_info == pi); assert (xd->mode_info_context == mic); assert (x->src.y_buffer == yb); assert (x->src.u_buffer == ub); assert (x->src.v_buffer == vb); #endif #if CONFIG_SUPERBLOCKS // Pick a mode assuming that it applies all 4 of the MBs in the SB pick_sb_modes(cpi, cm, mb_row, mb_col, x, xd, &sb_rate); // Decide whether to encode as a SB or 4xMBs if(sb_rate < mb_rate) {
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
x->encode_as_sb = 1; *totalrate += sb_rate; } else #endif { x->encode_as_sb = 0; *totalrate += mb_rate; } // Encode SB using best computed mode(s) encode_sb (cpi, cm, mb_row, mb_col, x, xd, tp); #if CONFIG_DEBUG assert (x->gf_active_ptr == gfa+2); assert (x->partition_info == pi+2); assert (xd->mode_info_context == mic+2); assert (x->src.y_buffer == yb+32); assert (x->src.u_buffer == ub+16); assert (x->src.v_buffer == vb+16); #endif } // this is to account for the border x->gf_active_ptr += mb_cols - (mb_cols & 0x1); x->partition_info += xd->mode_info_stride + 1 - (mb_cols & 0x1); xd->mode_info_context += xd->mode_info_stride + 1 - (mb_cols & 0x1); xd->prev_mode_info_context += xd->mode_info_stride + 1 - (mb_cols & 0x1); #if CONFIG_DEBUG assert((xd->prev_mode_info_context - cpi->common.prev_mip) == (xd->mode_info_context - cpi->common.mip)); #endif } void init_encode_frame_mb_context(VP8_COMP *cpi) { MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; // GF active flags data structure x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Activity map pointer x->mb_activity_ptr = cpi->mb_activity_map; x->act_zbin_adj = 0; cpi->seg0_idx = 0; vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count)); x->partition_info = x->pi; xd->mode_info_context = cm->mi; xd->mode_info_stride = cm->mode_info_stride; xd->prev_mode_info_context = cm->prev_mi; xd->frame_type = cm->frame_type; xd->frames_since_golden = cm->frames_since_golden; xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm); // Copy data over into macro block data structures. x->src = * cpi->Source; xd->pre = cm->yv12_fb[cm->lst_fb_idx]; xd->dst = cm->yv12_fb[cm->new_fb_idx];
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
// set up frame for intra coded blocks vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_context->mbmi.uv_mode = DC_PRED; xd->left_context = &cm->left_context; vp8_zero(cpi->count_mb_ref_frame_usage) vp8_zero(cpi->bmode_count) vp8_zero(cpi->ymode_count) vp8_zero(cpi->i8x8_mode_count) vp8_zero(cpi->y_uv_mode_count) //vp8_zero(cpi->uv_mode_count) x->mvc = cm->fc.mvc; #if CONFIG_HIGH_PRECISION_MV x->mvc_hp = cm->fc.mvc_hp; #endif vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); xd->fullpixel_mask = 0xffffffff; if(cm->full_pixel) xd->fullpixel_mask = 0xfffffff8; } static void encode_frame_internal(VP8_COMP *cpi) { int mb_row; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; TOKENEXTRA *tp = cpi->tok; int totalrate; // Compute a modified set of reference frame probabilities to use when // prediction fails. These are based on the current general estimates for // this frame which may be updated with each iteration of the recode loop. compute_mod_refprobs( cm ); // debug output #if DBG_PRNT_SEGMAP { FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "\n" ); fclose(statsfile); } #endif totalrate = 0; // Functions setup for all frame types so we can use MC in AltRef if (cm->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
&cpi->common.rtcd.subpix, sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap_avg16x16); } #if CONFIG_ENHANCED_INTERP else if (cm->mcomp_filter_type == EIGHTTAP) { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap_avg16x16); } else if (cm->mcomp_filter_type == EIGHTTAP_SHARP) { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap4x4_sharp); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap8x4_sharp); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap8x8_sharp); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap16x16_sharp); xd->subpixel_predict_avg = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap_avg4x4_sharp); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap_avg8x8_sharp); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, eighttap_avg16x16_sharp); } #endif else { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear16x16); xd->subpixel_predict_avg = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear_avg4x4); xd->subpixel_predict_avg8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear_avg8x8); xd->subpixel_predict_avg16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear_avg16x16); } // Reset frame count of inter 0,0 motion vector usage. cpi->inter_zz_count = 0; cpi->prediction_error = 0; cpi->intra_error = 0; #if CONFIG_NEWENTROPY
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0; cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0; #else cpi->skip_true_count = 0; cpi->skip_false_count = 0; #endif #if 0 // Experimental code cpi->frame_distortion = 0; cpi->last_mb_distortion = 0; #endif xd->mode_info_context = cm->mi; xd->prev_mode_info_context = cm->prev_mi; vp8_zero(cpi->MVcount); #if CONFIG_HIGH_PRECISION_MV vp8_zero(cpi->MVcount_hp); #endif vp8_zero(cpi->coef_counts); vp8_zero(cpi->coef_counts_8x8); vp8cx_frame_init_quantizer(cpi); vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q); vp8cx_initialize_me_consts(cpi, cm->base_qindex); if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Initialize encode frame context. init_encode_frame_mb_context(cpi); // Build a frame level activity map build_activity_map(cpi); } // re-initencode frame context. init_encode_frame_mb_context(cpi); cpi->rd_single_diff = cpi->rd_comp_diff = cpi->rd_hybrid_diff = 0; vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count)); vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count)); { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); { // For each row of SBs in the frame for (mb_row = 0; mb_row < cm->mb_rows; mb_row+=2) { int offset = (cm->mb_cols+1) & ~0x1; encode_sb_row(cpi, cm, mb_row, x, xd, &tp, &totalrate); // adjust to the next row of SBs x->src.y_buffer += 32 * x->src.y_stride - 16 * offset; x->src.u_buffer += 16 * x->src.uv_stride - 8 * offset; x->src.v_buffer += 16 * x->src.uv_stride - 8 * offset; } cpi->tok_count = tp - cpi->tok; } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); }
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
// 256 rate units to the bit, // projected_frame_size in units of BYTES cpi->projected_frame_size = totalrate >> 8; #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } static int check_dual_ref_flags(VP8_COMP *cpi) { MACROBLOCKD *xd = &cpi->mb.e_mbd; int ref_flags = cpi->ref_frame_flags; if (segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) { if ((ref_flags & (VP8_LAST_FLAG | VP8_GOLD_FLAG)) == (VP8_LAST_FLAG | VP8_GOLD_FLAG) && check_segref(xd, 1, LAST_FRAME)) return 1; if ((ref_flags & (VP8_GOLD_FLAG | VP8_ALT_FLAG )) == (VP8_GOLD_FLAG | VP8_ALT_FLAG ) && check_segref(xd, 1, GOLDEN_FRAME)) return 1; if ((ref_flags & (VP8_ALT_FLAG | VP8_LAST_FLAG)) == (VP8_ALT_FLAG | VP8_LAST_FLAG) && check_segref(xd, 1, ALTREF_FRAME)) return 1; return 0; } else { return (!!(ref_flags & VP8_GOLD_FLAG) + !!(ref_flags & VP8_LAST_FLAG) + !!(ref_flags & VP8_ALT_FLAG) ) >= 2; } } void vp8_encode_frame(VP8_COMP *cpi) { if (cpi->sf.RD) { int frame_type, pred_type; int redo = 0; int single_diff, comp_diff, hybrid_diff; /* * This code does a single RD pass over the whole frame assuming * either compound, single or hybrid prediction as per whatever has * worked best for that type of frame in the past. * It also predicts whether another coding mode would have worked * better that this coding mode. If that is the case, it remembers * that for subsequent frames. If the difference is above a certain * threshold, it will actually re-encode the current frame using * that different coding mode. */ if (cpi->common.frame_type == KEY_FRAME) frame_type = 0; else if (cpi->is_src_frame_alt_ref && cpi->common.refresh_golden_frame) frame_type = 3; else if (cpi->common.refresh_golden_frame || cpi->common.refresh_alt_ref_frame) frame_type = 1; else frame_type = 2; if (frame_type == 3) pred_type = SINGLE_PREDICTION_ONLY; else if (cpi->rd_prediction_type_threshes[frame_type][1] > cpi->rd_prediction_type_threshes[frame_type][0] && cpi->rd_prediction_type_threshes[frame_type][1] >
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
cpi->rd_prediction_type_threshes[frame_type][2] && check_dual_ref_flags(cpi)) pred_type = COMP_PREDICTION_ONLY; else if (cpi->rd_prediction_type_threshes[frame_type][0] > cpi->rd_prediction_type_threshes[frame_type][1] && cpi->rd_prediction_type_threshes[frame_type][0] > cpi->rd_prediction_type_threshes[frame_type][2]) pred_type = SINGLE_PREDICTION_ONLY; else pred_type = HYBRID_PREDICTION; cpi->common.comp_pred_mode = pred_type; encode_frame_internal(cpi); single_diff = cpi->rd_single_diff / cpi->common.MBs; cpi->rd_prediction_type_threshes[frame_type][0] += single_diff; cpi->rd_prediction_type_threshes[frame_type][0] >>= 1; comp_diff = cpi->rd_comp_diff / cpi->common.MBs; cpi->rd_prediction_type_threshes[frame_type][1] += comp_diff; cpi->rd_prediction_type_threshes[frame_type][1] >>= 1; hybrid_diff = cpi->rd_hybrid_diff / cpi->common.MBs; cpi->rd_prediction_type_threshes[frame_type][2] += hybrid_diff; cpi->rd_prediction_type_threshes[frame_type][2] >>= 1; if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { int single_count_zero = 0; int comp_count_zero = 0; int i; for ( i = 0; i < COMP_PRED_CONTEXTS; i++ ) { single_count_zero += cpi->single_pred_count[i]; comp_count_zero += cpi->comp_pred_count[i]; } if (comp_count_zero == 0) { cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY; } else if (single_count_zero == 0) { cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY; } } } else { encode_frame_internal(cpi); } } void vp8_setup_block_ptrs(MACROBLOCK *x) { int r, c; int i; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) {
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; } } x->block[24].src_diff = x->src_diff + 384; for (i = 0; i < 25; i++) { x->block[i].coeff = x->coeff + i * 16; } } void vp8_build_block_offsets(MACROBLOCK *x) { int block = 0; int br, bc; vp8_build_block_doffsets(&x->e_mbd); // y blocks x->thismb_ptr = &x->thismb[0]; for (br = 0; br < 4; br++) { for (bc = 0; bc < 4; bc++) { BLOCK *this_block = &x->block[block]; //this_block->base_src = &x->src.y_buffer; //this_block->src_stride = x->src.y_stride; //this_block->src = 4 * br * this_block->src_stride + 4 * bc; this_block->base_src = &x->thismb_ptr; this_block->src_stride = 16; this_block->src = 4 * br * 16 + 4 * bc; ++block; } } // u blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.u_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // v blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.v_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; }
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
} } static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = & x->e_mbd; const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; #ifdef MODE_STATS const int is_key = cpi->common.frame_type == KEY_FRAME; ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; ++ uv_modes_y[m][uvm]; if (m == B_PRED) { unsigned int *const bct = is_key ? b_modes : inter_b_modes; int b = 0; do { ++ bct[xd->block[b].bmi.as_mode.first]; } while (++b < 16); } if(m==I8X8_PRED) { i8x8_modes[xd->block[0].bmi.as_mode.first]++; i8x8_modes[xd->block[2].bmi.as_mode.first]++; i8x8_modes[xd->block[8].bmi.as_mode.first]++; i8x8_modes[xd->block[10].bmi.as_mode.first]++; } #endif ++cpi->ymode_count[m]; if (m!=I8X8_PRED) ++cpi->y_uv_mode_count[m][uvm]; else { cpi->i8x8_mode_count[xd->block[0].bmi.as_mode.first]++; cpi->i8x8_mode_count[xd->block[2].bmi.as_mode.first]++; cpi->i8x8_mode_count[xd->block[8].bmi.as_mode.first]++; cpi->i8x8_mode_count[xd->block[10].bmi.as_mode.first]++; } if (m == B_PRED) { int b = 0; do { ++ cpi->bmode_count[xd->block[b].bmi.as_mode.first]; } while (++b < 16); } } // Experimental stub function to create a per MB zbin adjustment based on // some previously calculated measure of MB activity. static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x ) { #if USE_ACT_INDEX x->act_zbin_adj = *(x->mb_activity_ptr); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier.
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
a = act + 4*cpi->activity_avg; b = 4*act + cpi->activity_avg; if ( act > cpi->activity_avg ) x->act_zbin_adj = (int)(((int64_t)b + (a>>1))/a) - 1; else x->act_zbin_adj = 1 - (int)(((int64_t)a + (b>>1))/b); #endif } void vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int output_enabled) { if((cpi->oxcf.tuning == VP8_TUNE_SSIM) && output_enabled) { adjust_act_zbin( cpi, x ); vp8_update_zbin_extra(cpi, x); } /* test code: set transform size based on mode selection */ if(cpi->common.txfm_mode == ALLOW_8X8 && ( x->e_mbd.mode_info_context->mbmi.mode == DC_PRED || x->e_mbd.mode_info_context->mbmi.mode == TM_PRED)) { x->e_mbd.mode_info_context->mbmi.txfm_size = TX_8X8; cpi->t8x8_count++; } else { x->e_mbd.mode_info_context->mbmi.txfm_size = TX_4X4; cpi->t4x4_count ++; } if(x->e_mbd.mode_info_context->mbmi.mode == I8X8_PRED) { vp8_encode_intra8x8mby(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra8x8mbuv(IF_RTCD(&cpi->rtcd), x); } else if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); else vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); if(x->e_mbd.mode_info_context->mbmi.mode != I8X8_PRED) vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); if (output_enabled) { // Tokenize sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); } } #ifdef SPEEDSTATS extern int cnt_pm; #endif extern void vp8_fix_contexts(MACROBLOCKD *x); void vp8cx_encode_inter_macroblock ( VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset, int output_enabled ) { VP8_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd;
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
int intra_error = 0; int rate; int distortion; unsigned char *segment_id = &xd->mode_info_context->mbmi.segment_id; int seg_ref_active; unsigned char ref_pred_flag; x->skip = 0; if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Adjust the zbin based on this MB rate. adjust_act_zbin( cpi, x ); } { // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to suppress noise cpi->zbin_mode_boost = 0; if (cpi->zbin_mode_boost_enabled) { if ( xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME ) { if (xd->mode_info_context->mbmi.mode == ZEROMV) { if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (xd->mode_info_context->mbmi.mode == SPLITMV) cpi->zbin_mode_boost = 0; else cpi->zbin_mode_boost = MV_ZBIN_BOOST; } } vp8_update_zbin_extra(cpi, x); } seg_ref_active = segfeature_active( xd, *segment_id, SEG_LVL_REF_FRAME ); // SET VARIOUS PREDICTION FLAGS // Did the chosen reference frame match its predicted value. ref_pred_flag = ( (xd->mode_info_context->mbmi.ref_frame == get_pred_ref( cm, xd )) ); set_pred_flag( xd, PRED_REF, ref_pred_flag ); /* test code: set transform size based on mode selection */ if( cpi->common.txfm_mode == ALLOW_8X8 && x->e_mbd.mode_info_context->mbmi.mode != I8X8_PRED && x->e_mbd.mode_info_context->mbmi.mode != B_PRED && x->e_mbd.mode_info_context->mbmi.mode != SPLITMV) { x->e_mbd.mode_info_context->mbmi.txfm_size = TX_8X8; cpi->t8x8_count ++; } else { x->e_mbd.mode_info_context->mbmi.txfm_size = TX_4X4; cpi->t4x4_count++; } // If we have just a single reference frame coded for a segment then // exclude from the reference frame counts used to work out // probabilities. NOTE: At the moment we dont support custom trees // for the reference frame coding for each segment but this is a // possible future action. if ( !seg_ref_active ||
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
( ( check_segref( xd, *segment_id, INTRA_FRAME ) + check_segref( xd, *segment_id, LAST_FRAME ) + check_segref( xd, *segment_id, GOLDEN_FRAME ) + check_segref( xd, *segment_id, ALTREF_FRAME ) ) > 1 ) ) { // TODO this may not be a good idea as it makes sample size small and means // the predictor functions cannot use data about most likely value only most // likely unpredicted value. //#if CONFIG_COMPRED // // Only update count for incorrectly predicted cases // if ( !ref_pred_flag ) //#endif { cpi->count_mb_ref_frame_usage [xd->mode_info_context->mbmi.ref_frame]++; } } if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (xd->mode_info_context->mbmi.mode == B_PRED) { vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); } else if(xd->mode_info_context->mbmi.mode == I8X8_PRED) { vp8_encode_intra8x8mby(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra8x8mbuv(IF_RTCD(&cpi->rtcd), x); } else { vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } if (output_enabled) sum_intra_stats(cpi, x); } else { int ref_fb_idx; if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = cpi->common.lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = cpi->common.gld_fb_idx; else ref_fb_idx = cpi->common.alt_fb_idx; xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (xd->mode_info_context->mbmi.second_ref_frame) { int second_ref_fb_idx; if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME) second_ref_fb_idx = cpi->common.lst_fb_idx; else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME) second_ref_fb_idx = cpi->common.gld_fb_idx; else second_ref_fb_idx = cpi->common.alt_fb_idx; xd->second_pre.y_buffer = cpi->common.yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset; xd->second_pre.u_buffer = cpi->common.yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset; xd->second_pre.v_buffer = cpi->common.yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
} if (!x->skip) { vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); // Clear mb_skip_coeff if mb_no_coeff_skip is not set if (!cpi->common.mb_no_coeff_skip) xd->mode_info_context->mbmi.mb_skip_coeff = 0; } else { vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } } if (!x->skip) { #ifdef ENC_DEBUG if (enc_debug) { int i; printf("Segment=%d [%d, %d]: %d %d:\n", x->e_mbd.mode_info_context->mbmi.segment_id, mb_col_debug, mb_row_debug, xd->mb_to_left_edge, xd->mb_to_top_edge); for (i =0; i<400; i++) { printf("%3d ", xd->qcoeff[i]); if (i%16 == 15) printf("\n"); } printf("\n"); printf("eobs = "); for (i=0;i<25;i++) printf("%d:%d ", i, xd->block[i].eob); printf("\n"); fflush(stdout); } #endif if (output_enabled) vp8_tokenize_mb(cpi, xd, t); #ifdef ENC_DEBUG if (enc_debug) { printf("Tokenized\n"); fflush(stdout); } #endif } else { #if CONFIG_NEWENTROPY int mb_skip_context = cpi->common.mb_no_coeff_skip ? (x->e_mbd.mode_info_context-1)->mbmi.mb_skip_coeff + (x->e_mbd.mode_info_context-cpi->common.mode_info_stride)->mbmi.mb_skip_coeff : 0; #endif if (cpi->common.mb_no_coeff_skip) { xd->mode_info_context->mbmi.mb_skip_coeff = 1; #if CONFIG_NEWENTROPY cpi->skip_true_count[mb_skip_context] ++; #else cpi->skip_true_count ++; #endif vp8_fix_contexts(xd); } else { vp8_stuff_mb(cpi, xd, t); xd->mode_info_context->mbmi.mb_skip_coeff = 0;
182118221823182418251826182718281829
#if CONFIG_NEWENTROPY cpi->skip_false_count[mb_skip_context] ++; #else cpi->skip_false_count ++; #endif } } }