• Paul Wilkins's avatar
    Adjustments to key frame sizing. · 21ff7bdc
    Paul Wilkins authored
    Adjustments take heavier account of the frame near a kf
    in deciding boost and limit the total number that can contribute.
    Also adjusted the minq calculations such that in most cases we
    generate a smaller key frame.
    Modified the code that accounts for how static the sequence is and
    added some adjustment based on image size. This is still very
    crude but smaller images tend to behave better with a larger
    delta between KF Q and other frames than larger image formats.
    Changes give sizable gains in overall PSNR  on all the test sets but the
    biggest gains (~3%) were on the std-hd set.
    The gains were smaller for SSIM but still significant.
    Average PSNR results are mixed because this metric can very easily
    be altered by having a very good / lossless coding of one or two frames.
    Some of the YT and YT-HD clips in particular have blank lead ins and
    allowing lossless coding of these appears to make a big difference to
    average PSNR but it reality does not help much at all.
    
    Change-Id: I6bfe485a1d330b47c783832f1717c95c535464ec
    21ff7bdc
vp9_firstpass.c 89.94 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "math.h"
#include "limits.h"
#include "vp9/encoder/vp9_block.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_firstpass.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_swapyv12buffer.h"
#include <stdio.h>
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "./vpx_scale_rtcd.h"
#define OUTPUT_FPF 0
#define IIFACTOR   12.5
#define IIKFACTOR1 12.5
#define IIKFACTOR2 15.0
#define RMAX       512.0
#define GF_RMAX    96.0
#define ERR_DIVISOR   150.0
#define MIN_DECAY_FACTOR 0.1
#define KF_MB_INTRA_MIN 150
#define GF_MB_INTRA_MIN 100
#define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001)
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame);
static int select_cq_level(int qindex) {
  int ret_val = QINDEX_RANGE - 1;
  int i;
  double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0;
  for (i = 0; i < QINDEX_RANGE; i++) {
    if (target_q <= vp9_convert_qindex_to_q(i)) {
      ret_val = i;
      break;
  return ret_val;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
// Resets the first pass file to the given position using a relative seek from the current position static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *Position) { cpi->twopass.stats_in = Position; } static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *next_frame = *cpi->twopass.stats_in; return 1; } // Read frame stats at an offset from the current position static int read_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *frame_stats, int offset) { FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; // Check legality of offset if (offset >= 0) { if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) return EOF; } else if (offset < 0) { if (&fps_ptr[offset] < cpi->twopass.stats_in_start) return EOF; } *frame_stats = fps_ptr[offset]; return 1; } static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *fps = *cpi->twopass.stats_in; cpi->twopass.stats_in = (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); return 1; } static void output_stats(const VP9_COMP *cpi, struct vpx_codec_pkt_list *pktlist, FIRSTPASS_STATS *stats) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); vpx_codec_pkt_list_add(pktlist, &pkt); // TEMP debug code #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(fpfile, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", stats->frame, stats->intra_error, stats->coded_error, stats->sr_coded_error, stats->ssim_weighted_pred_err, stats->pcnt_inter, stats->pcnt_motion,
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
stats->pcnt_second_ref, stats->pcnt_neutral, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, stats->count, stats->duration); fclose(fpfile); } #endif } static void zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->intra_error = 0.0; section->coded_error = 0.0; section->sr_coded_error = 0.0; section->ssim_weighted_pred_err = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->new_mv_count = 0.0; section->count = 0.0; section->duration = 1.0; } static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame += frame->frame; section->intra_error += frame->intra_error; section->coded_error += frame->coded_error; section->sr_coded_error += frame->sr_coded_error; section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->new_mv_count += frame->new_mv_count; section->count += frame->count; section->duration += frame->duration; } static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->intra_error -= frame->intra_error; section->coded_error -= frame->coded_error; section->sr_coded_error -= frame->sr_coded_error; section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref;
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
section->pcnt_neutral -= frame->pcnt_neutral; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->new_mv_count -= frame->new_mv_count; section->count -= frame->count; section->duration -= frame->duration; } static void avg_stats(FIRSTPASS_STATS *section) { if (section->count < 1.0) return; section->intra_error /= section->count; section->coded_error /= section->count; section->sr_coded_error /= section->count; section->ssim_weighted_pred_err /= section->count; section->pcnt_inter /= section->count; section->pcnt_second_ref /= section->count; section->pcnt_neutral /= section->count; section->pcnt_motion /= section->count; section->MVr /= section->count; section->mvr_abs /= section->count; section->MVc /= section->count; section->mvc_abs /= section->count; section->MVrv /= section->count; section->MVcv /= section->count; section->mv_in_out_count /= section->count; section->duration /= section->count; } // Calculate a modified Error used in distributing bits between easier and harder frames static double calculate_modified_err(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { double av_err = (cpi->twopass.total_stats->ssim_weighted_pred_err / cpi->twopass.total_stats->count); double this_err = this_frame->ssim_weighted_pred_err; double modified_err; if (this_err > av_err) modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); else modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); return modified_err; } static const double weight_table[256] = { 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 }; static double simple_weight(YV12_BUFFER_CONFIG *source) { int i, j; uint8_t *src = source->y_buffer; double sum_weights = 0.0; // Loop throught the Y plane raw examining levels and creating a weight for the image i = source->y_height; do { j = source->y_width; do { sum_weights += weight_table[ *src]; src++; } while (--j); src -= source->y_width; src += source->y_stride; } while (--i); sum_weights /= (source->y_height * source->y_width); return sum_weights; } // This function returns the current per frame maximum bitrate target. static int frame_max_bits(VP9_COMP *cpi) { // Max allocation for a single frame based on the max section guidelines // passed in and how many bits are left. int max_bits; // For VBR base this on the bits and frames left plus the // two_pass_vbrmax_section rate passed in by the user. max_bits = (int) (((double) cpi->twopass.bits_left / (cpi->twopass.total_stats->count - (double) cpi->common .current_video_frame)) * ((double) cpi->oxcf.two_pass_vbrmax_section / 100.0)); // Trap case where we are out of bits. if (max_bits < 0) max_bits = 0; return max_bits; } void vp9_init_first_pass(VP9_COMP *cpi) { zero_stats(cpi->twopass.total_stats); } void vp9_end_first_pass(VP9_COMP *cpi) { output_stats(cpi, cpi->output_pkt_list, cpi->twopass.total_stats); } static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { MACROBLOCKD *const xd = &x->e_mbd; BLOCK *b = &x->block[0];
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
BLOCKD *d = &x->e_mbd.block[0]; uint8_t *src_ptr = (*(b->base_src) + b->src); int src_stride = b->src_stride; uint8_t *ref_ptr; int ref_stride = d->pre_stride; // Set up pointers for this macro block recon buffer xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; ref_ptr = (uint8_t *)(*(d->base_pre) + d->pre); vp9_mse16x16(src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err)); } static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, int_mv *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset) { MACROBLOCKD *const xd = &x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; int num00; int_mv tmp_mv; int_mv ref_mv_full; int tmp_err; int step_param = 3; int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; int n; vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; int new_mv_mode_penalty = 256; int sr = 0; int quart_frm = MIN(cpi->common.width, cpi->common.height); // refine the motion search range accroding to the frame dimension // for first pass test while ((quart_frm << sr) < MAX_FULL_PEL_VAL) sr++; if (sr) sr--; step_param += sr; further_steps -= sr; // override the default variance function to use MSE v_fn_ptr.vf = vp9_mse16x16; // Set up pointers for this macro block recon buffer xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; // Initial step/diamond search centred on best mv tmp_mv.as_int = 0; ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3; ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3; tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, x->sadperbit16, &num00, &v_fn_ptr, x->nmvjointcost, x->mvcost, ref_mv); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; }
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
// Further step/diamond searches as necessary n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param + n, x->sadperbit16, &num00, &v_fn_ptr, x->nmvjointcost, x->mvcost, ref_mv); if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } } } } void vp9_first_pass(VP9_COMP *cpi) { int mb_row, mb_col; MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int recon_yoffset, recon_uvoffset; YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]]; YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->ref_frame_map[cpi->gld_fb_idx]]; int recon_y_stride = lst_yv12->y_stride; int recon_uv_stride = lst_yv12->uv_stride; int64_t intra_error = 0; int64_t coded_error = 0; int64_t sr_coded_error = 0; int sum_mvr = 0, sum_mvc = 0; int sum_mvr_abs = 0, sum_mvc_abs = 0; int sum_mvrs = 0, sum_mvcs = 0; int mvcount = 0; int intercount = 0; int second_ref_count = 0; int intrapenalty = 256; int neutral_count = 0; int new_mv_count = 0; int sum_in_vectors = 0; uint32_t lastmv_as_int = 0; int_mv zero_ref_mv; zero_ref_mv.as_int = 0; vp9_clear_system_state(); // __asm emms; x->src = * cpi->Source; xd->pre = *lst_yv12; xd->dst = *new_yv12; x->partition_info = x->pi;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
xd->mode_info_context = cm->mi; vp9_build_block_offsets(x); vp9_setup_block_dptrs(&x->e_mbd); vp9_setup_block_ptrs(x); // set up frame new frame for intra coded blocks vp9_setup_intra_recon(new_yv12); vp9_frame_init_quantizer(cpi); // Initialise the MV cost table to the defaults // if( cm->current_video_frame == 0) // if ( 0 ) { vp9_init_mv_probs(cm); vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q); } // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { int_mv best_ref_mv; best_ref_mv.as_int = 0; // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_row_min = -((mb_row * 16) + (VP9BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP9BORDERINPIXELS - 16); // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { int this_error; int gf_motion_error = INT_MAX; int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); // do intra 16x16 prediction this_error = vp9_encode_intra(cpi, x, use_dc_pred); // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames. // This penalty adds a cost matching that of a 0,0 mv to the intra case. this_error += intrapenalty; // Cumulative intra error total intra_error += (int64_t)this_error; // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_col_min = -((mb_col * 16) + (VP9BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP9BORDERINPIXELS - 16); // Other than for the first frame do a motion search if (cm->current_video_frame > 0) { int tmp_err; int motion_error = INT_MAX; int_mv mv, tmp_mv;
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
// Simple 0,0 motion with no mv overhead zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset); mv.as_int = tmp_mv.as_int = 0; // Test last reference frame using the previous best mv as the // starting point (best reference) for the search first_pass_motion_search(cpi, x, &best_ref_mv, &mv.as_mv, lst_yv12, &motion_error, recon_yoffset); // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well if (best_ref_mv.as_int) { tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, lst_yv12, &tmp_err, recon_yoffset); if (tmp_err < motion_error) { motion_error = tmp_err; mv.as_int = tmp_mv.as_int; } } // Experimental search in an older reference frame if (cm->current_video_frame > 1) { // Simple 0,0 motion with no mv overhead zz_motion_search(cpi, x, gld_yv12, &gf_motion_error, recon_yoffset); first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv, gld_yv12, &gf_motion_error, recon_yoffset); if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) { second_ref_count++; } // Reset to last frame as reference buffer xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; // In accumulating a score for the older reference frame // take the best of the motion predicted score and // the intra coded error (just as will be done for) // accumulation of "coded_error" for the last frame. if (gf_motion_error < this_error) sr_coded_error += gf_motion_error; else sr_coded_error += this_error; } else sr_coded_error += motion_error; /* Intra assumed best */ best_ref_mv.as_int = 0; if (motion_error <= this_error) { // Keep a count of cases where the inter and intra were // very close and very low. This helps with scene cut // detection for example in cropped clips with black bars // at the sides or top and bottom. if ((((this_error - intrapenalty) * 9) <= (motion_error * 10)) && (this_error < (2 * intrapenalty))) { neutral_count++; } mv.as_mv.row <<= 3; mv.as_mv.col <<= 3;
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
this_error = motion_error; vp9_set_mbmode_and_mvs(x, NEWMV, &mv); xd->mode_info_context->mbmi.txfm_size = TX_4X4; vp9_encode_inter16x16y(x, mb_row, mb_col); sum_mvr += mv.as_mv.row; sum_mvr_abs += abs(mv.as_mv.row); sum_mvc += mv.as_mv.col; sum_mvc_abs += abs(mv.as_mv.col); sum_mvrs += mv.as_mv.row * mv.as_mv.row; sum_mvcs += mv.as_mv.col * mv.as_mv.col; intercount++; best_ref_mv.as_int = mv.as_int; // Was the vector non-zero if (mv.as_int) { mvcount++; // Was it different from the last non zero vector if (mv.as_int != lastmv_as_int) new_mv_count++; lastmv_as_int = mv.as_int; // Does the Row vector point inwards or outwards if (mb_row < cm->mb_rows / 2) { if (mv.as_mv.row > 0) sum_in_vectors--; else if (mv.as_mv.row < 0) sum_in_vectors++; } else if (mb_row > cm->mb_rows / 2) { if (mv.as_mv.row > 0) sum_in_vectors++; else if (mv.as_mv.row < 0) sum_in_vectors--; } // Does the Row vector point inwards or outwards if (mb_col < cm->mb_cols / 2) { if (mv.as_mv.col > 0) sum_in_vectors--; else if (mv.as_mv.col < 0) sum_in_vectors++; } else if (mb_col > cm->mb_cols / 2) { if (mv.as_mv.col > 0) sum_in_vectors++; else if (mv.as_mv.col < 0) sum_in_vectors--; } } } } else sr_coded_error += (int64_t)this_error; coded_error += (int64_t)this_error; // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; } // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; // extend the recon for intra prediction
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
vp9_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); vp9_clear_system_state(); // __asm emms; } vp9_clear_system_state(); // __asm emms; { double weight = 0.0; FIRSTPASS_STATS fps; fps.frame = cm->current_video_frame; fps.intra_error = (double)(intra_error >> 8); fps.coded_error = (double)(coded_error >> 8); fps.sr_coded_error = (double)(sr_coded_error >> 8); weight = simple_weight(cpi->Source); if (weight < 0.1) weight = 0.1; fps.ssim_weighted_pred_err = fps.coded_error * weight; fps.pcnt_inter = 0.0; fps.pcnt_motion = 0.0; fps.MVr = 0.0; fps.mvr_abs = 0.0; fps.MVc = 0.0; fps.mvc_abs = 0.0; fps.MVrv = 0.0; fps.MVcv = 0.0; fps.mv_in_out_count = 0.0; fps.new_mv_count = 0.0; fps.count = 1.0; fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; if (mvcount > 0) { fps.MVr = (double)sum_mvr / (double)mvcount; fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; fps.MVc = (double)sum_mvc / (double)mvcount; fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); fps.new_mv_count = new_mv_count; fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; } // TODO: handle the case when duration is set to 0, or something less // than the full time between subsequent values of cpi->source_time_stamp. fps.duration = (double)(cpi->source->ts_end - cpi->source->ts_start); // don't want to do output stats with a stack variable! memcpy(cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); output_stats(cpi, cpi->output_pkt_list, cpi->twopass.this_frame_stats); accumulate_stats(cpi->twopass.total_stats, &fps); } // Copy the previous Last Frame back into gf and and arf buffers if // the prediction is good enough... but also dont allow it to lag too far if ((cpi->twopass.sr_update_lag > 3) || ((cm->current_video_frame > 0) && (cpi->twopass.this_frame_stats->pcnt_inter > 0.20) &&
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
((cpi->twopass.this_frame_stats->intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats->coded_error)) > 2.0))) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); cpi->twopass.sr_update_lag = 1; } else cpi->twopass.sr_update_lag++; // swap frame pointers so last frame refers to the frame we just compressed vp9_swap_yv12_buffer(lst_yv12, new_yv12); vp8_yv12_extend_frame_borders(lst_yv12); // Special case for the first frame. Copy into the GF buffer as a second reference. if (cm->current_video_frame == 0) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); } // use this to see what the first pass reconstruction looks like if (0) { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); if (cm->current_video_frame == 0) recon_file = fopen(filename, "wb"); else recon_file = fopen(filename, "ab"); (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); fclose(recon_file); } cm->current_video_frame++; } // Estimate a cost per mb attributable to overheads such as the coding of // modes and motion vectors. // Currently simplistic in its assumptions for testing. // static double bitcost(double prob) { return -(log(prob) / log(2.0)); } static int64_t estimate_modemvcost(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats) { #if 0 int mv_cost; int mode_cost; double av_pct_inter = fpstats->pcnt_inter / fpstats->count; double av_pct_motion = fpstats->pcnt_motion / fpstats->count; double av_intra = (1.0 - av_pct_inter); double zz_cost; double motion_cost; double intra_cost; zz_cost = bitcost(av_pct_inter - av_pct_motion); motion_cost = bitcost(av_pct_motion); intra_cost = bitcost(av_intra); // Estimate of extra bits per mv overhead for mbs // << 9 is the normalization to the (bits * 512) used in vp9_bits_per_mb mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; // Crude estimate of overhead cost from modes
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
// << 9 is the normalization to (bits * 512) used in vp9_bits_per_mb mode_cost = (int)((((av_pct_inter - av_pct_motion) * zz_cost) + (av_pct_motion * motion_cost) + (av_intra * intra_cost)) * cpi->common.MBs) << 9; // return mv_cost + mode_cost; // TODO PGW Fix overhead costs for extended Q range #endif return 0; } static double calc_correction_factor(double err_per_mb, double err_divisor, double pt_low, double pt_high, int Q) { double power_term; double error_term = err_per_mb / err_divisor; double correction_factor; // Adjustment based on actual quantizer to power term. power_term = (vp9_convert_qindex_to_q(Q) * 0.01) + pt_low; power_term = (power_term > pt_high) ? pt_high : power_term; // Calculate correction factor if (power_term < 1.0) assert(error_term >= 0.0); correction_factor = pow(error_term, power_term); // Clip range correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; return correction_factor; } // Given a current maxQ value sets a range for future values. // PGW TODO.. // This code removes direct dependency on QIndex to determine the range // (now uses the actual quantizer) but has not been tuned. static void adjust_maxq_qrange(VP9_COMP *cpi) { int i; double q; // Set the max corresponding to cpi->avg_q * 2.0 q = cpi->avg_q * 2.0; cpi->twopass.maxq_max_limit = cpi->worst_quality; for (i = cpi->best_quality; i <= cpi->worst_quality; i++) { cpi->twopass.maxq_max_limit = i; if (vp9_convert_qindex_to_q(i) >= q) break; } // Set the min corresponding to cpi->avg_q * 0.5 q = cpi->avg_q * 0.5; cpi->twopass.maxq_min_limit = cpi->best_quality; for (i = cpi->worst_quality; i >= cpi->best_quality; i--) { cpi->twopass.maxq_min_limit = i; if (vp9_convert_qindex_to_q(i) <= q) break; } } static int estimate_max_q(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats, int section_target_bandwitdh) { int Q; int num_mbs = cpi->common.MBs;
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double sr_err_diff; double sr_correction; double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; if (section_target_bandwitdh <= 0) return cpi->twopass.maxq_max_limit; // Highest value allowed target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Look at the drop in prediction quality between the last frame // and the GF buffer (which contained an older frame). if (fpstats->sr_coded_error > fpstats->coded_error) { sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) / (fpstats->count * cpi->common.MBs); sr_correction = (sr_err_diff / 32.0); sr_correction = pow(sr_correction, 0.25); if (sr_correction < 0.75) sr_correction = 0.75; else if (sr_correction > 1.25) sr_correction = 1.25; } else { sr_correction = 0.75; } // Calculate a corrective factor based on a rolling ratio of bits spent // vs target bits if ((cpi->rolling_target_bits > 0) && (cpi->active_worst_quality < cpi->worst_quality)) { double rolling_ratio; rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; if (rolling_ratio < 0.95) cpi->twopass.est_max_qcorrection_factor -= 0.005; else if (rolling_ratio > 1.05) cpi->twopass.est_max_qcorrection_factor += 0.005; cpi->twopass.est_max_qcorrection_factor = (cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->twopass.est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->twopass.est_max_qcorrection_factor; } // Corrections for higher compression speed settings // (reduced compression expected) if (cpi->compressor_speed == 1) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // Try and pick a max Q that will be high enough to encode the // content at the given rate. for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) { int bits_per_mb_at_this_q; err_correction_factor = calc_correction_factor(err_per_mb, ERR_DIVISOR, 0.4, 0.90, Q) *
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
sr_correction * speed_correction * cpi->twopass.est_max_qcorrection_factor; bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, Q, err_correction_factor); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Restriction on active max q for constrained quality mode. if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < cpi->cq_target_quality)) { Q = cpi->cq_target_quality; } // Adjust maxq_min_limit and maxq_max_limit limits based on // average q observed in clip for non kf/gf/arf frames // Give average a chance to settle though. // PGW TODO.. This code is broken for the extended Q range if ((cpi->ni_frames > ((int)cpi->twopass.total_stats->count >> 8)) && (cpi->ni_frames > 25)) { adjust_maxq_qrange(cpi); } return Q; } // For cq mode estimate a cq level that matches the observed // complexity and data rate. static int estimate_cq(VP9_COMP *cpi, FIRSTPASS_STATS *fpstats, int section_target_bandwitdh) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double sr_err_diff; double sr_correction; double speed_correction = 1.0; double clip_iiratio; double clip_iifactor; target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Corrections for higher compression speed settings // (reduced compression expected) if (cpi->compressor_speed == 1) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // Look at the drop in prediction quality between the last frame // and the GF buffer (which contained an older frame). if (fpstats->sr_coded_error > fpstats->coded_error) { sr_err_diff = (fpstats->sr_coded_error - fpstats->coded_error) / (fpstats->count * cpi->common.MBs); sr_correction = (sr_err_diff / 32.0); sr_correction = pow(sr_correction, 0.25);
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
if (sr_correction < 0.75) sr_correction = 0.75; else if (sr_correction > 1.25) sr_correction = 1.25; } else { sr_correction = 0.75; } // II ratio correction factor for clip as a whole clip_iiratio = cpi->twopass.total_stats->intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats->coded_error); clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); if (clip_iifactor < 0.80) clip_iifactor = 0.80; // Try and pick a Q that can encode the content at the given rate. for (Q = 0; Q < MAXQ; Q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, Q) * sr_correction * speed_correction * clip_iifactor; bits_per_mb_at_this_q = vp9_bits_per_mb(INTER_FRAME, Q, err_correction_factor); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Clip value to range "best allowed to (worst allowed - 1)" Q = select_cq_level(Q); if (Q >= cpi->worst_quality) Q = cpi->worst_quality - 1; if (Q < cpi->best_quality) Q = cpi->best_quality; return Q; } extern void vp9_new_frame_rate(VP9_COMP *cpi, double framerate); void vp9_init_second_pass(VP9_COMP *cpi) { FIRSTPASS_STATS this_frame; FIRSTPASS_STATS *start_pos; double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); if (two_pass_min_rate < lower_bounds_min_rate) two_pass_min_rate = lower_bounds_min_rate; zero_stats(cpi->twopass.total_stats); zero_stats(cpi->twopass.total_left_stats); if (!cpi->twopass.stats_in_end) return; *cpi->twopass.total_stats = *cpi->twopass.stats_in_end; *cpi->twopass.total_left_stats = *cpi->twopass.total_stats; // each frame can have a different duration, as the frame rate in the source // isn't guaranteed to be constant. The frame rate prior to the first frame // encoded in the second pass is a guess. However the sum duration is not. // Its calculated based on the actual durations of all frames from the first // pass. vp9_new_frame_rate(cpi,
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
10000000.0 * cpi->twopass.total_stats->count / cpi->twopass.total_stats->duration); cpi->output_frame_rate = cpi->oxcf.frame_rate; cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats->duration * cpi->oxcf.target_bandwidth / 10000000.0); cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats->duration * two_pass_min_rate / 10000000.0); // Calculate a minimum intra value to be used in determining the IIratio // scores used in the second pass. We have this minimum to make sure // that clips that are static but "low complexity" in the intra domain // are still boosted appropriately for KF/GF/ARF cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; // This variable monitors how far behind the second ref update is lagging cpi->twopass.sr_update_lag = 1; // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence { double sum_iiratio = 0.0; double IIRatio; start_pos = cpi->twopass.stats_in; // Note starting "file" position while (input_stats(cpi, &this_frame) != EOF) { IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; sum_iiratio += IIRatio; } cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats->count); // Reset file position reset_fpf_position(cpi, start_pos); } // Scan the first pass file and calculate a modified total error based upon the bias/power function // used to allocate bits { start_pos = cpi->twopass.stats_in; // Note starting "file" position cpi->twopass.modified_error_total = 0.0; cpi->twopass.modified_error_used = 0.0; while (input_stats(cpi, &this_frame) != EOF) { cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); } cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; reset_fpf_position(cpi, start_pos); // Reset file position } } void vp9_end_second_pass(VP9_COMP *cpi) { } // This function gives and estimate of how badly we believe // the prediction quality is decaying from frame to frame. static double get_prediction_decay_rate(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { double prediction_decay_rate; double second_ref_decay; double mb_sr_err_diff; // Initial basis is the % mbs inter coded prediction_decay_rate = next_frame->pcnt_inter;
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
// Look at the observed drop in prediction quality between the last frame // and the GF buffer (which contains an older frame). mb_sr_err_diff = (next_frame->sr_coded_error - next_frame->coded_error) / (cpi->common.MBs); if (mb_sr_err_diff <= 512.0) { second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0); second_ref_decay = pow(second_ref_decay, 0.5); if (second_ref_decay < 0.85) second_ref_decay = 0.85; else if (second_ref_decay > 1.0) second_ref_decay = 1.0; } else { second_ref_decay = 0.85; } if (second_ref_decay < prediction_decay_rate) prediction_decay_rate = second_ref_decay; return prediction_decay_rate; } // Function to test for a condition where a complex transition is followed // by a static section. For example in slide shows where there is a fade // between slides. This is to help with more optimal kf and gf positioning. static int detect_transition_to_still( VP9_COMP *cpi, int frame_interval, int still_interval, double loop_decay_rate, double last_decay_rate) { int trans_to_still = 0; // Break clause to detect very still sections after motion // For example a static image after a fade or other transition // instead of a clean scene cut. if ((frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && (last_decay_rate < 0.9)) { int j; FIRSTPASS_STATS *position = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_next_frame; double zz_inter; // Look ahead a few frames to see if static condition // persists... for (j = 0; j < still_interval; j++) { if (EOF == input_stats(cpi, &tmp_next_frame)) break; zz_inter = (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion); if (zz_inter < 0.999) break; } // Reset file position reset_fpf_position(cpi, position); // Only if it does do we signal a transition to still if (j == still_interval) trans_to_still = 1; } return trans_to_still; } // This function detects a flash through the high relative pcnt_second_ref // score in the frame following a flash frame. The offset passed in should // reflect this static int detect_flash(VP9_COMP *cpi, int offset) {
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
FIRSTPASS_STATS next_frame; int flash_detected = 0; // Read the frame data. // The return is FALSE (no flash detected) if not a valid frame if (read_frame_stats(cpi, &next_frame, offset) != EOF) { // What we are looking for here is a situation where there is a // brief break in prediction (such as a flash) but subsequent frames // are reasonably well predicted by an earlier (pre flash) frame. // The recovery after a flash is indicated by a high pcnt_second_ref // comapred to pcnt_inter. if ((next_frame.pcnt_second_ref > next_frame.pcnt_inter) && (next_frame.pcnt_second_ref >= 0.5)) { flash_detected = 1; } } return flash_detected; } // Update the motion related elements to the GF arf boost calculation static void accumulate_frame_motion_stats( VP9_COMP *cpi, FIRSTPASS_STATS *this_frame, double *this_frame_mv_in_out, double *mv_in_out_accumulator, double *abs_mv_in_out_accumulator, double *mv_ratio_accumulator) { // double this_frame_mv_in_out; double this_frame_mvr_ratio; double this_frame_mvc_ratio; double motion_pct; // Accumulate motion stats. motion_pct = this_frame->pcnt_motion; // Accumulate Motion In/Out of frame stats *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); // Accumulate a measure of how uniform (or conversely how random) // the motion field is. (A ratio of absmv / mv) if (motion_pct > 0.05) { this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) ? (this_frame_mvr_ratio * motion_pct) : this_frame->mvr_abs * motion_pct; *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) ? (this_frame_mvc_ratio * motion_pct) : this_frame->mvc_abs * motion_pct; } } // Calculate a baseline boost number for the current frame. static double calc_frame_boost( VP9_COMP *cpi, FIRSTPASS_STATS *this_frame, double this_frame_mv_in_out) {
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
double frame_boost; // Underlying boost factor is based on inter intra error ratio if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) frame_boost = (IIFACTOR * this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); else frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); // Increase boost for frames where new data coming into frame // (eg zoom out). Slightly reduce boost if there is a net balance // of motion out of the frame (zoom in). // The range for this_frame_mv_in_out is -1.0 to +1.0 if (this_frame_mv_in_out > 0.0) frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); // In extreme case boost is halved else frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); // Clip to maximum if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; return frame_boost; } static int calc_arf_boost( VP9_COMP *cpi, int offset, int f_frames, int b_frames, int *f_boost, int *b_boost) { FIRSTPASS_STATS this_frame; int i; double boost_score = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; int arf_boost; int flash_detected = 0; // Search forward from the proposed arf/next gf position for (i = 0; i < f_frames; i++) { if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats(cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // We want to discount the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); // Cumulative effect of prediction quality decay if (!flash_detected) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += (decay_accumulator *
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); } *f_boost = (int)boost_score; // Reset for backward looking loop boost_score = 0.0; mv_ratio_accumulator = 0.0; decay_accumulator = 1.0; this_frame_mv_in_out = 0.0; mv_in_out_accumulator = 0.0; abs_mv_in_out_accumulator = 0.0; // Search backward towards last gf position for (i = -1; i >= -b_frames; i--) { if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats(cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i + offset)) || detect_flash(cpi, (i + offset + 1)); // Cumulative effect of prediction quality decay if (!flash_detected) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += (decay_accumulator * calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); } *b_boost = (int)boost_score; arf_boost = (*f_boost + *b_boost); if (arf_boost < ((b_frames + f_frames) * 20)) arf_boost = ((b_frames + f_frames) * 20); return arf_boost; } #if CONFIG_MULTIPLE_ARF // Work out the frame coding order for a GF or an ARF group. // The current implementation codes frames in their natural order for a // GF group, and inserts additional ARFs into an ARF group using a // binary split approach. // NOTE: this function is currently implemented recursively. static void schedule_frames(VP9_COMP *cpi, const int start, const int end, const int arf_idx, const int gf_or_arf_group, const int level) { int i, abs_end, half_range; int *cfo = cpi->frame_coding_order; int idx = cpi->new_frame_coding_order_period; // If (end < 0) an ARF should be coded at position (-end). assert(start >= 0); // printf("start:%d end:%d\n", start, end); // GF Group: code frames in logical order. if (gf_or_arf_group == 0) { assert(end >= start);
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
for (i = start; i <= end; ++i) { cfo[idx] = i; cpi->arf_buffer_idx[idx] = arf_idx; cpi->arf_weight[idx] = -1; ++idx; } cpi->new_frame_coding_order_period = idx; return; } // ARF Group: work out the ARF schedule. // Mark ARF frames as negative. if (end < 0) { // printf("start:%d end:%d\n", -end, -end); // ARF frame is at the end of the range. cfo[idx] = end; // What ARF buffer does this ARF use as predictor. cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2; cpi->arf_weight[idx] = level; ++idx; abs_end = -end; } else { abs_end = end; } half_range = (abs_end - start) >> 1; // ARFs may not be adjacent, they must be separated by at least // MIN_GF_INTERVAL non-ARF frames. if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) { // printf("start:%d end:%d\n", start, abs_end); // Update the coding order and active ARF. for (i = start; i <= abs_end; ++i) { cfo[idx] = i; cpi->arf_buffer_idx[idx] = arf_idx; cpi->arf_weight[idx] = -1; ++idx; } cpi->new_frame_coding_order_period = idx; } else { // Place a new ARF at the mid-point of the range. cpi->new_frame_coding_order_period = idx; schedule_frames(cpi, start, -(start + half_range), arf_idx + 1, gf_or_arf_group, level + 1); schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx, gf_or_arf_group, level + 1); } } #define FIXED_ARF_GROUP_SIZE 16 void define_fixed_arf_period(VP9_COMP *cpi) { int i; int max_level = INT_MIN; assert(cpi->multi_arf_enabled); assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE); // Save the weight of the last frame in the sequence before next // sequence pattern overwrites it. cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; assert(cpi->this_frame_weight >= 0); // Initialize frame coding order variables. cpi->new_frame_coding_order_period = 0; cpi->next_frame_in_order = 0; cpi->arf_buffered = 0; vp9_zero(cpi->frame_coding_order); vp9_zero(cpi->arf_buffer_idx); vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
if (cpi->twopass.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) { // Setup a GF group close to the keyframe. cpi->source_alt_ref_pending = 0; cpi->baseline_gf_interval = cpi->twopass.frames_to_key; schedule_frames(cpi, 0, (cpi->baseline_gf_interval - 1), 2, 0, 0); } else { // Setup a fixed period ARF group. cpi->source_alt_ref_pending = 1; cpi->baseline_gf_interval = FIXED_ARF_GROUP_SIZE; schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0); } // Replace level indicator of -1 with correct level. for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { if (cpi->arf_weight[i] > max_level) { max_level = cpi->arf_weight[i]; } } ++max_level; for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { if (cpi->arf_weight[i] == -1) { cpi->arf_weight[i] = max_level; } } cpi->max_arf_level = max_level; #if 0 printf("\nSchedule: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->frame_coding_order[i]); } printf("\n"); printf("ARFref: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_buffer_idx[i]); } printf("\n"); printf("Weight: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_weight[i]); } printf("\n"); #endif } #endif // Analyse and define a gf/arf group. static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_pos; int i; double boost_score = 0.0; double old_boost_score = 0.0; double gf_group_err = 0.0; double gf_first_frame_err = 0.0; double mod_frame_err = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double zero_motion_accumulator = 1.0; double loop_decay_rate = 1.00; // Starting decay rate double last_loop_decay_rate = 1.00; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double mv_ratio_accumulator_thresh; int max_bits = frame_max_bits(cpi); // Max for a single frame
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
unsigned int allow_alt_ref = cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; int f_boost = 0; int b_boost = 0; int flash_detected; int active_max_gf_interval; cpi->twopass.gf_group_bits = 0; vp9_clear_system_state(); // __asm emms; start_pos = cpi->twopass.stats_in; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean // Load stats for the current frame. mod_frame_err = calculate_modified_err(cpi, this_frame); // Note the error of the frame at the start of the group (this will be // the GF frame error if we code a normal gf gf_first_frame_err = mod_frame_err; // Special treatment if the current frame is a key frame (which is also // a gf). If it is then its error score (and hence bit allocation) need // to be subtracted out from the calculation for the GF group if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; // Motion breakout threshold for loop below depends on image size. mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0; // Work out a maximum interval for the GF. // If the image appears completely static we can extend beyond this. // The value chosen depends on the active Q range. At low Q we have // bits to spare and are better with a smaller interval and smaller boost. // At high Q when there are few bits to spare we are better with a longer // interval to spread the cost of the GF. active_max_gf_interval = 12 + ((int)vp9_convert_qindex_to_q(cpi->active_worst_quality) >> 5); if (active_max_gf_interval > cpi->max_gf_interval) active_max_gf_interval = cpi->max_gf_interval; i = 0; while (((i < cpi->twopass.static_scene_max_gf_interval) || ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->twopass.frames_to_key)) { i++; // Increment the loop counter // Accumulate error score of frames in this gf group mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; if (EOF == input_stats(cpi, &next_frame)) break; // Test for the case where there is a brief flash but the prediction // quality back to an earlier frame is then restored. flash_detected = detect_flash(cpi, 0); // Update the motion related elements to the boost calculation accumulate_frame_motion_stats(cpi, &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator); // Cumulative effect of prediction quality decay if (!flash_detected) { last_loop_decay_rate = loop_decay_rate; loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
decay_accumulator = decay_accumulator * loop_decay_rate; // Monitor for static sections. if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < zero_motion_accumulator) { zero_motion_accumulator = (next_frame.pcnt_inter - next_frame.pcnt_motion); } // Break clause to detect very still sections after motion // (for example a static image after a fade or other transition). if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, last_loop_decay_rate)) { allow_alt_ref = 0; break; } } // Calculate a boost number for this frame boost_score += (decay_accumulator * calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out)); // Break out conditions. if ( // Break at cpi->max_gf_interval unless almost totally static (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) || ( // Don't break out with a very short interval (i > MIN_GF_INTERVAL) && // Don't break out very close to a key frame ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && (!flash_detected) && ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) || ((boost_score - old_boost_score) < IIFACTOR)) )) { boost_score = old_boost_score; break; } vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); old_boost_score = boost_score; } // Don't allow a gf too near the next kf if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { while (i < cpi->twopass.frames_to_key) { i++; if (EOF == input_stats(cpi, this_frame)) break; if (i < cpi->twopass.frames_to_key) { mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; } } } // Set the interval until the next gf or arf. cpi->baseline_gf_interval = i; #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { // Initialize frame coding order variables. cpi->new_frame_coding_order_period = 0;
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
cpi->next_frame_in_order = 0; cpi->arf_buffered = 0; vp9_zero(cpi->frame_coding_order); vp9_zero(cpi->arf_buffer_idx); vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); } #endif // Should we use the alternate reference frame if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) && (i >= MIN_GF_INTERVAL) && // dont use ARF very near next kf (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (boost_score > 100)) { // Alternative boost calculation for alt ref cpi->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost); cpi->source_alt_ref_pending = 1; #if CONFIG_MULTIPLE_ARF // Set the ARF schedule. if (cpi->multi_arf_enabled) { schedule_frames(cpi, 0, -(cpi->baseline_gf_interval - 1), 2, 1, 0); } #endif } else { cpi->gfu_boost = (int)boost_score; cpi->source_alt_ref_pending = 0; #if CONFIG_MULTIPLE_ARF // Set the GF schedule. if (cpi->multi_arf_enabled) { schedule_frames(cpi, 0, cpi->baseline_gf_interval - 1, 2, 0, 0); assert(cpi->new_frame_coding_order_period == cpi->baseline_gf_interval); } #endif } #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) { int max_level = INT_MIN; // Replace level indicator of -1 with correct level. for (i = 0; i < cpi->frame_coding_order_period; ++i) { if (cpi->arf_weight[i] > max_level) { max_level = cpi->arf_weight[i]; } } ++max_level; for (i = 0; i < cpi->frame_coding_order_period; ++i) { if (cpi->arf_weight[i] == -1) { cpi->arf_weight[i] = max_level; } } cpi->max_arf_level = max_level; } #if 0 if (cpi->multi_arf_enabled) { printf("\nSchedule: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->frame_coding_order[i]); } printf("\n"); printf("ARFref: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_buffer_idx[i]); } printf("\n");
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
printf("Weight: "); for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { printf("%4d ", cpi->arf_weight[i]); } printf("\n"); } #endif #endif // Now decide how many bits should be allocated to the GF group as a // proportion of those remaining in the kf group. // The final key frame group in the clip is treated as a special case // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. // This is also important for short clips where there may only be one // key frame. if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame)) { cpi->twopass.kf_group_bits = (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; } // Calculate the bits to be allocated to the group as a whole if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) { cpi->twopass.gf_group_bits = (int64_t)(cpi->twopass.kf_group_bits * (gf_group_err / cpi->twopass.kf_group_error_left)); } else cpi->twopass.gf_group_bits = 0; cpi->twopass.gf_group_bits = (cpi->twopass.gf_group_bits < 0) ? 0 : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; // Clip cpi->twopass.gf_group_bits based on user supplied data rate // variability limit (cpi->oxcf.two_pass_vbrmax_section) if (cpi->twopass.gf_group_bits > (int64_t)max_bits * cpi->baseline_gf_interval) cpi->twopass.gf_group_bits = (int64_t)max_bits * cpi->baseline_gf_interval; // Reset the file position reset_fpf_position(cpi, start_pos); // Update the record of error used so far (only done once per gf group) cpi->twopass.modified_error_used += gf_group_err; // Assign bits to the arf or gf. for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); ++i) { int boost; int allocation_chunks; int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int gf_bits; boost = (cpi->gfu_boost * vp9_gfboost_qadjust(Q)) / 100; // Set max and minimum boost and hence minimum allocation if (boost > ((cpi->baseline_gf_interval + 1) * 200)) boost = ((cpi->baseline_gf_interval + 1) * 200); else if (boost < 125) boost = 125; if (cpi->source_alt_ref_pending && i == 0) allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + boost; else
1891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
allocation_chunks = (cpi->baseline_gf_interval * 100) + (boost - 100); // Prevent overflow if (boost > 1023) { int divisor = boost >> 10; boost /= divisor; allocation_chunks /= divisor; } // Calculate the number of bits to be spent on the gf or arf based on // the boost number gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits / (double)allocation_chunks)); // If the frame that is to be boosted is simpler than the average for // the gf/arf group then use an alternative calculation // based on the error score of the frame itself if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { double alt_gf_grp_bits; int alt_gf_bits; alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits * (mod_frame_err * (double)cpi->baseline_gf_interval) / DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left); alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits / (double)allocation_chunks)); if (gf_bits > alt_gf_bits) { gf_bits = alt_gf_bits; } } // Else if it is harder than other frames in the group make sure it at // least receives an allocation in keeping with its relative error // score, otherwise it may be worse off than an "un-boosted" frame else { int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left)); if (alt_gf_bits > gf_bits) { gf_bits = alt_gf_bits; } } // Dont allow a negative value for gf_bits if (gf_bits < 0) gf_bits = 0; // Add in minimum for a frame gf_bits += cpi->min_frame_bandwidth; if (i == 0) { cpi->twopass.gf_bits = gf_bits; } if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) { // Per frame bit target for this frame cpi->per_frame_bandwidth = gf_bits; } } { // Adjust KF group bits and error remaining cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
1961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; // Note the error score left in the remaining frames of the group. // For normal GFs we want to remove the error score for the first frame // of the group (except in Key frame case where this has already // happened) if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err - gf_first_frame_err); else cpi->twopass.gf_group_error_left = (int64_t)gf_group_err; cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; // This condition could fail if there are two kfs very close together // despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the // calculation of alt_extra_bits. if (cpi->baseline_gf_interval >= 3) { int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; if (boost >= 150) { int pct_extra; int alt_extra_bits; pct_extra = (boost - 100) / 50; pct_extra = (pct_extra > 20) ? 20 : pct_extra; alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100); cpi->twopass.gf_group_bits -= alt_extra_bits; } } } if (cpi->common.frame_type != KEY_FRAME) { FIRSTPASS_STATS sectionstats; zero_stats(&sectionstats); reset_fpf_position(cpi, start_pos); for (i = 0; i < cpi->baseline_gf_interval; i++) { input_stats(cpi, &next_frame); accumulate_stats(&sectionstats, &next_frame); } avg_stats(&sectionstats); cpi->twopass.section_intra_rating = (int) (sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); reset_fpf_position(cpi, start_pos); } } // Allocate bits to a normal frame that is neither a gf an arf or a key frame. static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { int target_frame_size; double modified_err; double err_fraction; // Max for a single frame. int max_bits = frame_max_bits(cpi);
2031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100
// Calculate modified prediction error used in bit allocation. modified_err = calculate_modified_err(cpi, this_frame); if (cpi->twopass.gf_group_error_left > 0) // What portion of the remaining GF group error is used by this frame. err_fraction = modified_err / cpi->twopass.gf_group_error_left; else err_fraction = 0.0; // How many of those bits available for allocation should we give it? target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at // the top end. if (target_frame_size < 0) target_frame_size = 0; else { if (target_frame_size > max_bits) target_frame_size = max_bits; if (target_frame_size > cpi->twopass.gf_group_bits) target_frame_size = (int)cpi->twopass.gf_group_bits; } // Adjust error and bits remaining. cpi->twopass.gf_group_error_left -= (int64_t)modified_err; cpi->twopass.gf_group_bits -= target_frame_size; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; // Add in the minimum number of bits that is set aside for every frame. target_frame_size += cpi->min_frame_bandwidth; // Per frame bit target for this frame. cpi->per_frame_bandwidth = target_frame_size; } // Make a damped adjustment to the active max q. static int adjust_active_maxq(int old_maxqi, int new_maxqi) { int i; int ret_val = new_maxqi; double old_q; double new_q; double target_q; old_q = vp9_convert_qindex_to_q(old_maxqi); new_q = vp9_convert_qindex_to_q(new_maxqi); target_q = ((old_q * 7.0) + new_q) / 8.0; if (target_q > old_q) { for (i = old_maxqi; i <= new_maxqi; i++) { if (vp9_convert_qindex_to_q(i) >= target_q) { ret_val = i; break; } } } else { for (i = old_maxqi; i >= new_maxqi; i--) { if (vp9_convert_qindex_to_q(i) <= target_q) { ret_val = i; break; } } } return ret_val; }
2101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170
void vp9_second_pass(VP9_COMP *cpi) { int tmp_q; int frames_left = (int)(cpi->twopass.total_stats->count - cpi->common.current_video_frame); FIRSTPASS_STATS this_frame; FIRSTPASS_STATS this_frame_copy; double this_frame_intra_error; double this_frame_coded_error; if (!cpi->twopass.stats_in) { return; } vp9_clear_system_state(); // Special case code for first frame. if (cpi->common.current_video_frame == 0) { cpi->twopass.est_max_qcorrection_factor = 1.0; // Set a cq_level in constrained quality mode. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { int est_cq; est_cq = estimate_cq(cpi, cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left)); cpi->cq_target_quality = cpi->oxcf.cq_level; if (est_cq > cpi->cq_target_quality) cpi->cq_target_quality = est_cq; } // guess at maxq needed in 2nd pass cpi->twopass.maxq_max_limit = cpi->worst_quality; cpi->twopass.maxq_min_limit = cpi->best_quality; tmp_q = estimate_max_q( cpi, cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left)); cpi->active_worst_quality = tmp_q; cpi->ni_av_qi = tmp_q; cpi->avg_q = vp9_convert_qindex_to_q(tmp_q); #ifndef ONE_SHOT_Q_ESTIMATE // Limit the maxq value returned subsequently. // This increases the risk of overspend or underspend if the initial // estimate for the clip is bad, but helps prevent excessive // variation in Q, especially near the end of a clip // where for example a small overspend may cause Q to crash adjust_maxq_qrange(cpi); #endif } #ifndef ONE_SHOT_Q_ESTIMATE // The last few frames of a clip almost always have to few or too many // bits and for the sake of over exact rate control we dont want to make // radical adjustments to the allowed quantizer range just to use up a // few surplus bits or get beneath the target rate. else if ((cpi->common.current_video_frame < (((unsigned int)cpi->twopass.total_stats->count * 255) >> 8)) && ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < (unsigned int)cpi->twopass.total_stats->count)) { if (frames_left < 1) frames_left = 1;
2171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240
tmp_q = estimate_max_q( cpi, cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left)); // Make a damped adjustment to active max Q cpi->active_worst_quality = adjust_active_maxq(cpi->active_worst_quality, tmp_q); } #endif vpx_memset(&this_frame, 0, sizeof(FIRSTPASS_STATS)); if (EOF == input_stats(cpi, &this_frame)) return; this_frame_intra_error = this_frame.intra_error; this_frame_coded_error = this_frame.coded_error; // keyframe and section processing ! if (cpi->twopass.frames_to_key == 0) { // Define next KF group and assign bits to it vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); find_next_key_frame(cpi, &this_frame_copy); } // Is this a GF / ARF (Note that a KF is always also a GF) if (cpi->frames_till_gf_update_due == 0) { // Define next gf group and assign bits to it vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); #if CONFIG_MULTIPLE_ARF if (cpi->multi_arf_enabled) { define_fixed_arf_period(cpi); } else { #endif define_gf_group(cpi, &this_frame_copy); #if CONFIG_MULTIPLE_ARF } #endif // If we are going to code an altref frame at the end of the group // and the current frame is not a key frame.... // If the previous group used an arf this frame has already benefited // from that arf boost and it should not be given extra bits // If the previous group was NOT coded using arf we may want to apply // some boost to this GF as well if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { // Assign a standard frames worth of bits from those allocated // to the GF group int bak = cpi->per_frame_bandwidth; vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); cpi->per_frame_bandwidth = bak; } } else { // Otherwise this is an ordinary frame // Assign bits from those allocated to the GF group vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); } // Keep a globally available copy of this and the next frame's iiratio. cpi->twopass.this_iiratio = (int)(this_frame_intra_error / DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); { FIRSTPASS_STATS next_frame; if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { cpi->twopass.next_iiratio = (int)(next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
2241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310
} } // Set nominal per second bandwidth for this frame cpi->target_bandwidth = (int)(cpi->per_frame_bandwidth * cpi->output_frame_rate); if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; cpi->twopass.frames_to_key--; // Update the total stats remaining structure subtract_stats(cpi->twopass.total_left_stats, &this_frame); } static int test_candidate_kf(VP9_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) { int is_viable_kf = 0; // Does the frame satisfy the primary criteria of a key frame // If so, then examine how well it predicts subsequent frames if ((this_frame->pcnt_second_ref < 0.10) && (next_frame->pcnt_second_ref < 0.10) && ((this_frame->pcnt_inter < 0.05) || ( ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) && ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) ) ) ) ) { int i; FIRSTPASS_STATS *start_pos; FIRSTPASS_STATS local_next_frame; double boost_score = 0.0; double old_boost_score = 0.0; double decay_accumulator = 1.0; double next_iiratio; vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); // Note the starting file position so we can reset to it start_pos = cpi->twopass.stats_in; // Examine how well the key frame predicts subsequent frames for (i = 0; i < 16; i++) { next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); if (next_iiratio > RMAX) next_iiratio = RMAX; // Cumulative effect of decay in prediction quality if (local_next_frame.pcnt_inter > 0.85) decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; else decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; // Keep a running total boost_score += (decay_accumulator * next_iiratio); // Test various breakout clauses
2311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380
if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < 0.20) && (next_iiratio < 3.0)) || ((boost_score - old_boost_score) < 3.0) || (local_next_frame.intra_error < 200) ) { break; } old_boost_score = boost_score; // Get the next frame details if (EOF == input_stats(cpi, &local_next_frame)) break; } // If there is tolerable prediction for at least the next 3 frames then // break out else discard this potential key frame and move on if (boost_score > 30.0 && (i > 3)) is_viable_kf = 1; else { // Reset the file position reset_fpf_position(cpi, start_pos); is_viable_kf = 0; } } return is_viable_kf; } static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { int i, j; FIRSTPASS_STATS last_frame; FIRSTPASS_STATS first_frame; FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_position; double decay_accumulator = 1.0; double zero_motion_accumulator = 1.0; double boost_score = 0; double loop_decay_rate; double kf_mod_err = 0.0; double kf_group_err = 0.0; double kf_group_intra_err = 0.0; double kf_group_coded_err = 0.0; double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean vp9_clear_system_state(); // __asm emms; start_position = cpi->twopass.stats_in; cpi->common.frame_type = KEY_FRAME; // is this a forced key frame by interval cpi->this_key_frame_forced = cpi->next_key_frame_forced; // Clear the alt ref active flag as this can never be active on a key frame cpi->source_alt_ref_active = 0; // Kf is always a gf so clear frames till next gf counter cpi->frames_till_gf_update_due = 0; cpi->twopass.frames_to_key = 1; // Take a copy of the initial frame details vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame));
2381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
cpi->twopass.kf_group_bits = 0; // Total bits available to kf group cpi->twopass.kf_group_error_left = 0; // Group modified error score. kf_mod_err = calculate_modified_err(cpi, this_frame); // find the next keyframe i = 0; while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; // load a the next frame's stats vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); input_stats(cpi, this_frame); // Provided that we are not at the end of the file... if (cpi->oxcf.auto_key && lookup_next_frame_stats(cpi, &next_frame) != EOF) { // Normal scene cut check if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) { break; } // How fast is prediction quality decaying loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); // We want to know something about the recent past... rather than // as used elsewhere where we are concened with decay in prediction // quality since the last GF or KF. recent_loop_decay[i % 8] = loop_decay_rate; decay_accumulator = 1.0; for (j = 0; j < 8; j++) { decay_accumulator = decay_accumulator * recent_loop_decay[j]; } // Special check for transition or high motion followed by a // to a static scene. if (detect_transition_to_still(cpi, i, (cpi->key_frame_frequency - i), loop_decay_rate, decay_accumulator)) { break; } // Step on to the next frame cpi->twopass.frames_to_key++; // If we don't have a real key frame within the next two // forcekeyframeevery intervals then break out of the loop. if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency) break; } else cpi->twopass.frames_to_key++; i++; } // If there is a max kf interval set by the user we must obey it. // We already breakout of the loop above at 2x max. // This code centers the extra kf if the actual natural // interval is between 1x and 2x if (cpi->oxcf.auto_key && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
2451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_frame; cpi->twopass.frames_to_key /= 2; // Copy first frame details vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); // Reset to the start of the group reset_fpf_position(cpi, start_position); kf_group_err = 0; kf_group_intra_err = 0; kf_group_coded_err = 0; // Rescan to get the correct error data for the forced kf group for (i = 0; i < cpi->twopass.frames_to_key; i++) { // Accumulate kf group errors kf_group_err += calculate_modified_err(cpi, &tmp_frame); kf_group_intra_err += tmp_frame.intra_error; kf_group_coded_err += tmp_frame.coded_error; // Load a the next frame's stats input_stats(cpi, &tmp_frame); } // Reset to the start of the group reset_fpf_position(cpi, current_pos); cpi->next_key_frame_forced = 1; } else cpi->next_key_frame_forced = 0; // Special case for the last frame of the file if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; } // Calculate the number of bits that should be assigned to the kf group. if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) { // Max for a single normal frame (not key frame) int max_bits = frame_max_bits(cpi); // Maximum bits for the kf group int64_t max_grp_bits; // Default allocation based on bits left and relative // complexity of the section cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left * (kf_group_err / cpi->twopass.modified_error_left)); // Clip based on maximum per frame rate defined by the user. max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; if (cpi->twopass.kf_group_bits > max_grp_bits) cpi->twopass.kf_group_bits = max_grp_bits; } else cpi->twopass.kf_group_bits = 0; // Reset the first pass file position reset_fpf_position(cpi, start_position); // determine how big to make this keyframe based on how well the subsequent frames use inter blocks decay_accumulator = 1.0;
2521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590
boost_score = 0.0; loop_decay_rate = 1.00; // Starting decay rate // Scan through the kf group collating various stats. for (i = 0; i < cpi->twopass.frames_to_key; i++) { double r; if (EOF == input_stats(cpi, &next_frame)) break; // Monitor for static sections. if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < zero_motion_accumulator) { zero_motion_accumulator = (next_frame.pcnt_inter - next_frame.pcnt_motion); } // For the first few frames collect data to decide kf boost. if (i <= (cpi->max_gf_interval * 2)) { if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); else r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); if (r > RMAX) r = RMAX; // How fast is prediction quality decaying if (!detect_flash(cpi, 0)) { loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR ? MIN_DECAY_FACTOR : decay_accumulator; } boost_score += (decay_accumulator * r); } } { FIRSTPASS_STATS sectionstats; zero_stats(&sectionstats); reset_fpf_position(cpi, start_position); for (i = 0; i < cpi->twopass.frames_to_key; i++) { input_stats(cpi, &next_frame); accumulate_stats(&sectionstats, &next_frame); } avg_stats(&sectionstats); cpi->twopass.section_intra_rating = (int) (sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); } // Reset the first pass file position reset_fpf_position(cpi, start_position); // Work out how many bits to allocate for the key frame itself if (1) { int kf_boost = (int)boost_score; int allocation_chunks; int alt_kf_bits; if (kf_boost < (cpi->twopass.frames_to_key * 3)) kf_boost = (cpi->twopass.frames_to_key * 3);
2591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660
if (kf_boost < 300) // Min KF boost kf_boost = 300; // Make a note of baseline boost and the zero motion // accumulator value for use elsewhere. cpi->kf_boost = kf_boost; cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); // We do three calculations for kf size. // The first is based on the error score for the whole kf group. // The second (optionaly) on the key frames own error if this is // smaller than the average for the group. // The final one insures that the frame receives at least the // allocation it would have received based on its own error score vs // the error score remaining // Special case if the sequence appears almost totaly static // In this case we want to spend almost all of the bits on the // key frame. // cpi->twopass.frames_to_key-1 because key frame itself is taken // care of by kf_boost. if (zero_motion_accumulator >= 0.99) { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; } else { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; } // Prevent overflow if (kf_boost > 1028) { int divisor = kf_boost >> 10; kf_boost /= divisor; allocation_chunks /= divisor; } cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; // Calculate the number of bits to be spent on the key frame cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); // If the key frame is actually easier than the average for the // kf group (which does sometimes happen... eg a blank intro frame) // Then use an alternate calculation based on the kf error score // which should give a smaller key frame. if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { double alt_kf_grp_bits = ((double)cpi->twopass.bits_left * (kf_mod_err * (double)cpi->twopass.frames_to_key) / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); alt_kf_bits = (int)((double)kf_boost * (alt_kf_grp_bits / (double)allocation_chunks)); if (cpi->twopass.kf_bits > alt_kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } // Else if it is much harder than other frames in the group make sure // it at least receives an allocation in keeping with its relative // error score else { alt_kf_bits = (int)((double)cpi->twopass.bits_left * (kf_mod_err / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); if (alt_kf_bits > cpi->twopass.kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; }
266126622663266426652666266726682669267026712672267326742675267626772678267926802681
} cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; // Add in the minimum frame allowance cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Peer frame bit target for this frame cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Convert to a per second bitrate cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * cpi->output_frame_rate); } // Note the total error score of the kf group minus the key frame itself cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); // Adjust the count of total modified error left. // The count of bits left is adjusted elsewhere based on real coded frame sizes cpi->twopass.modified_error_left -= kf_group_err; }