• Timothy B. Terriberry's avatar
    Eliminate more warnings. · 97b766a4
    Timothy B. Terriberry authored
    This eliminates a large set of warnings exposed by the Mozilla build
     system (Use of C++ comments in ISO C90 source, commas at the end of
     enum lists, a couple incomplete initializers, and signed/unsigned
     comparisons).
    It also eliminates many (but not all) of the warnings expose by newer
     GCC versions and _FORTIFY_SOURCE (e.g., calling fread and fwrite
     without checking the return values).
    There are a few spurious warnings left on my system:
    
    ../vp8/encoder/encodemb.c:274:9: warning: 'sz' may be used
     uninitialized in this function
    gcc seems to be unable to figure out that the value shortcut doesn't
     change between the two if blocks that test it here.
    
    ../vp8/encoder/onyx_if.c:5314:5: warning: comparison of unsigned
     expression >= 0 is always true
    ../vp8/encoder/onyx_if.c:5319:5: warning: comparison of unsigned
     expression >= 0 is always true
    This is true, so far as it goes, but it's comparing against an enum,
     and the C standard does not mandate that enums be unsigned, so the
     checks can't be removed.
    
    Change-Id: Iead6cd561a2afaa3d801fd63f1d8d58953da7426
    97b766a4
vp9_decodframe.c 66.92 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
//#define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int merge_index(int v, int n, int modulus) {
  int max1 = (n - 1 - modulus / 2) / modulus + 1;
  if (v < max1) v = v * modulus + modulus / 2;
  else {
    int w;
    v -= max1;
    w = v;
    v += (v + modulus - modulus / 2) / modulus;
    while (v % modulus == modulus / 2 ||
           w != v - (v + modulus - modulus / 2) / modulus) v++;
  return v;
static int inv_remap_prob(int v, int m) {
  const int n = 256;
  const int modulus = MODULUS_PARAM;
  int i;
  v = merge_index(v, n - 1, modulus);
  if ((m << 1) <= n) {
    i = vp9_inv_recenter_nonneg(v + 1, m);
  } else {
    i = n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m);
  return i;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
} static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) { int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255); return (vp9_prob)inv_remap_prob(delp, oldp); } void vp9_init_de_quantizer(VP9D_COMP *pbi) { int i; int Q; VP9_COMMON *const pc = &pbi->common; for (Q = 0; Q < QINDEX_RANGE; Q++) { pc->Y1dequant[Q][0] = (int16_t)vp9_dc_quant(Q, pc->y1dc_delta_q); pc->Y2dequant[Q][0] = (int16_t)vp9_dc2quant(Q, pc->y2dc_delta_q); pc->UVdequant[Q][0] = (int16_t)vp9_dc_uv_quant(Q, pc->uvdc_delta_q); /* all the ac values =; */ for (i = 1; i < 16; i++) { int rc = vp9_default_zig_zag1d_4x4[i]; pc->Y1dequant[Q][rc] = (int16_t)vp9_ac_yquant(Q); pc->Y2dequant[Q][rc] = (int16_t)vp9_ac2quant(Q, pc->y2ac_delta_q); pc->UVdequant[Q][rc] = (int16_t)vp9_ac_uv_quant(Q, pc->uvac_delta_q); } } } static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *xd) { int i; int QIndex; VP9_COMMON *const pc = &pbi->common; int segment_id = xd->mode_info_context->mbmi.segment_id; // Set the Q baseline allowing for any segment level adjustment if (vp9_segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) { /* Abs Value */ if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA) QIndex = vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q); /* Delta Value */ else { QIndex = pc->base_qindex + vp9_get_segdata(xd, segment_id, SEG_LVL_ALT_Q); QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */ } } else QIndex = pc->base_qindex; xd->q_index = QIndex; /* Set up the block level dequant pointers */ for (i = 0; i < 16; i++) { xd->block[i].dequant = pc->Y1dequant[QIndex]; } #if CONFIG_LOSSLESS if (!QIndex) { pbi->mb.inv_xform4x4_1_x8 = vp9_short_inv_walsh4x4_1_x8; pbi->mb.inv_xform4x4_x8 = vp9_short_inv_walsh4x4_x8; pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1_lossless; pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4_lossless; pbi->idct_add = vp9_dequant_idct_add_lossless_c; pbi->dc_idct_add = vp9_dequant_dc_idct_add_lossless_c; pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block_lossless_c; pbi->idct_add_y_block = vp9_dequant_idct_add_y_block_lossless_c; pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c; } else { pbi->mb.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1; pbi->mb.inv_xform4x4_x8 = vp9_short_idct4x4llm; pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1;
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4; pbi->idct_add = vp9_dequant_idct_add; pbi->dc_idct_add = vp9_dequant_dc_idct_add; pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block; pbi->idct_add_y_block = vp9_dequant_idct_add_y_block; pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block; } #else pbi->mb.inv_xform4x4_1_x8 = vp9_short_idct4x4llm_1; pbi->mb.inv_xform4x4_x8 = vp9_short_idct4x4llm; pbi->mb.inv_walsh4x4_1 = vp9_short_inv_walsh4x4_1; pbi->mb.inv_walsh4x4_lossless = vp9_short_inv_walsh4x4; pbi->idct_add = vp9_dequant_idct_add; pbi->dc_idct_add = vp9_dequant_dc_idct_add; pbi->dc_idct_add_y_block = vp9_dequant_dc_idct_add_y_block; pbi->idct_add_y_block = vp9_dequant_idct_add_y_block; pbi->idct_add_uv_block = vp9_dequant_idct_add_uv_block; #endif for (i = 16; i < 24; i++) { xd->block[i].dequant = pc->UVdequant[QIndex]; } xd->block[24].dequant = pc->Y2dequant[QIndex]; } /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd) { if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64) { vp9_build_intra_predictors_sb64uv_s(xd); vp9_build_intra_predictors_sb64y_s(xd); } else if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32) { vp9_build_intra_predictors_sbuv_s(xd); vp9_build_intra_predictors_sby_s(xd); } else { vp9_build_intra_predictors_mbuv_s(xd); vp9_build_intra_predictors_mby_s(xd); } } else { if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64) { vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } else if (xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32) { vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } else { vp9_build_1st_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); if (xd->mode_info_context->mbmi.second_ref_frame > 0) { vp9_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer,
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
xd->dst.y_stride, xd->dst.uv_stride); } #if CONFIG_COMP_INTERINTRA_PRED else if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) { vp9_build_interintra_16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } #endif } } } static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { BLOCKD *bd = &xd->block[0]; TX_TYPE tx_type = get_tx_type_16x16(xd, bd); assert(get_2nd_order_usage(xd) == 0); #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 16x16\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } else { vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16, xd); } static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { // First do Y // if the first one is DCT_DCT assume all the rest are as well TX_TYPE tx_type = get_tx_type_8x8(xd, &xd->block[0]); #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 8x8\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } }
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
#endif if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; uint8_t *pre = xd->block[ib].predictor; uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst; int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); } tx_type = get_tx_type_8x8(xd, &xd->block[ib]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride, xd->eobs[idx]); } else { vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride, 0, xd->eobs[idx]); } } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { assert(get_2nd_order_usage(xd) == 0); vp9_dequant_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd); } else { BLOCKD *b = &xd->block[24]; assert(get_2nd_order_usage(xd) == 1); vp9_dequantize_b_2x2(b); vp9_short_ihaar2x2(&b->dqcoeff[0], b->diff, 8); ((int *)b->qcoeff)[0] = 0; // 2nd order block are set to 0 after idct ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; vp9_dequant_dc_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); } // Now do UV if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, &xd->block[16 + i], i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, &xd->block[20 + i], i8x8mode, b->predictor);
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else { vp9_dequant_idct_add_uv_block_8x8 (xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16, xd); } #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif } static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { TX_TYPE tx_type; int i, eobtotal = 0; MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; if (mode == I8X8_PRED) { assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; const int iblock[4] = {0, 1, 4, 5}; int j; int i8x8mode; BLOCKD *b; b = &xd->block[ib]; i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); for (j = 0; j < 4; j++) { b = &xd->block[ib + iblock[j]]; tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, b->eob); } else { vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); pbi->idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); } } else if (mode == B_PRED) { assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 16; i++) { int b_mode; BLOCKD *b = &xd->block[i]; b_mode = xd->mode_info_context->bmi[i].as_mode.first;
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
#if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context = vp9_find_bpred_context(b); #endif if (!xd->mode_info_context->mbmi.mb_skip_coeff) eobtotal += vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i); vp9_intra4x4_predict(xd, b, b_mode, b->predictor); tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, b->eob); } else { vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } if (!xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc); } xd->above_context->y2 = 0; xd->left_context->y2 = 0; vp9_build_intra_predictors_mbuv(xd); pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else if (mode == SPLITMV) { assert(get_2nd_order_usage(xd) == 0); pbi->idct_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } else { #ifdef DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 4x4\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif tx_type = get_tx_type_4x4(xd, &xd->block[0]); if (tx_type != DCT_DCT) { assert(get_2nd_order_usage(xd) == 0); for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i];
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, b->eob); } else { vp9_dequant_idct_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } } else { BLOCKD *b = &xd->block[24]; assert(get_2nd_order_usage(xd) == 1); vp9_dequantize_b(b); if (xd->eobs[24] > 1) { vp9_short_inv_walsh4x4(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { xd->inv_walsh4x4_1(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } vp9_dequantize_b(b); pbi->dc_idct_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff); } pbi->idct_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } } static void decode_16x16_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc, int n, int maska, int shiftb) { int x_idx = n & maska, y_idx = n >> shiftb; TX_TYPE tx_type = get_tx_type_16x16(xd, &xd->block[0]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c( tx_type, xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->dst.y_stride, xd->block[0].eob); } else { vp9_dequant_idct_add_16x16( xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8,
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); }; static void decode_8x8_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc, int n, int maska, int shiftb) { int x_idx = n & maska, y_idx = n >> shiftb; BLOCKD *b = &xd->block[24]; TX_TYPE tx_type = get_tx_type_8x8(xd, &xd->block[0]); if (tx_type != DCT_DCT) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; tx_type = get_tx_type_8x8(xd, &xd->block[ib]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c( tx_type, q, dq, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, stride, stride, b->eob); } else { vp9_dequant_idct_add_8x8_c( q, dq, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, xd->dst.y_buffer + (y_idx * 16 + (i / 2) * 8) * xd->dst.y_stride + x_idx * 16 + (i & 1) * 8, stride, stride, 0, b->eob); } vp9_dequant_idct_add_uv_block_8x8_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); } } else { vp9_dequantize_b_2x2(b); vp9_short_ihaar2x2(&b->dqcoeff[0], b->diff, 8); ((int *)b->qcoeff)[0] = 0; // 2nd order block are set to 0 after idct ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; vp9_dequant_dc_idct_add_y_block_8x8_inplace_c( xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); vp9_dequant_idct_add_uv_block_8x8_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); } }; static void decode_4x4_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc, int n, int maska, int shiftb) { int x_idx = n & maska, y_idx = n >> shiftb;
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
BLOCKD *b = &xd->block[24]; TX_TYPE tx_type = get_tx_type_4x4(xd, &xd->block[0]); if (tx_type != DCT_DCT) { int i; for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; tx_type = get_tx_type_4x4(xd, b); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c( tx_type, b->qcoeff, b->dequant, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_stride, xd->dst.y_stride, b->eob); } else { vp9_dequant_idct_add_c( b->qcoeff, b->dequant, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_buffer + (y_idx * 16 + (i / 4) * 4) * xd->dst.y_stride + x_idx * 16 + (i & 3) * 4, xd->dst.y_stride, xd->dst.y_stride); } } } else { vp9_dequantize_b(b); if (xd->eobs[24] > 1) { vp9_short_inv_walsh4x4(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { xd->inv_walsh4x4_1(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } vp9_dequant_dc_idct_add_y_block_4x4_inplace_c( xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer + y_idx * 16 * xd->dst.y_stride + x_idx * 16, xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd); } vp9_dequant_idct_add_uv_block_4x4_inplace_c( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->dst.u_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.v_buffer + y_idx * 8 * xd->dst.uv_stride + x_idx * 8, xd->dst.uv_stride, xd->eobs + 16, xd); }; static void decode_superblock64(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int i, n, eobtotal; TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; VP9_COMMON *const pc = &pbi->common; MODE_INFO *orig_mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB64X64); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd);
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
if (xd->mode_info_context->mbmi.mb_skip_coeff) { int n; vp9_reset_mb_tokens_context(xd); for (n = 1; n <= 3; n++) { if (mb_col < pc->mb_cols - n) xd->above_context += n; if (mb_row < pc->mb_rows - n) xd->left_context += n; vp9_reset_mb_tokens_context(xd); if (mb_col < pc->mb_cols - n) xd->above_context -= n; if (mb_row < pc->mb_rows - n) xd->left_context -= n; } /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. */ skip_recon_mb(pbi, xd); return; } /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sb64y_s(xd); vp9_build_intra_predictors_sb64uv_s(xd); } else { vp9_build_inter64x64_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } /* dequantization and idct */ if (xd->mode_info_context->mbmi.txfm_size == TX_32X32) { for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; if (mb_col + x_idx * 2 >= pc->mb_cols || mb_row + y_idx * 2 >= pc->mb_rows) continue; xd->left_context = pc->left_context + (y_idx << 1); xd->above_context = pc->above_context + mb_col + (x_idx << 1); xd->mode_info_context = orig_mi + x_idx * 2 + y_idx * 2 * mis; eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { xd->mode_info_context[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = 1; } } else { vp9_dequant_idct_add_32x32(xd->sb_coeff_data.qcoeff, xd->block[0].dequant, xd->dst.y_buffer + x_idx * 32 + xd->dst.y_stride * y_idx * 32, xd->dst.y_buffer + x_idx * 32 + xd->dst.y_stride * y_idx * 32, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->sb_coeff_data.qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer + x_idx * 16 + xd->dst.uv_stride * y_idx * 16, xd->dst.v_buffer + x_idx * 16 + xd->dst.uv_stride * y_idx * 16,
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
xd->dst.uv_stride, xd->eobs + 16); } } } else { for (n = 0; n < 16; n++) { int x_idx = n & 3, y_idx = n >> 2; if (mb_col + x_idx >= pc->mb_cols || mb_row + y_idx >= pc->mb_rows) continue; xd->above_context = pc->above_context + mb_col + x_idx; xd->left_context = pc->left_context + y_idx; xd->mode_info_context = orig_mi + x_idx + y_idx * mis; for (i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; continue; } if (tx_size == TX_16X16) { decode_16x16_sb(pbi, xd, bc, n, 3, 2); } else if (tx_size == TX_8X8) { decode_8x8_sb(pbi, xd, bc, n, 3, 2); } else { decode_4x4_sb(pbi, xd, bc, n, 3, 2); } } } xd->above_context = pc->above_context + mb_col; xd->left_context = pc->left_context; xd->mode_info_context = orig_mi; } static void decode_superblock32(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int i, n, eobtotal; TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; VP9_COMMON *const pc = &pbi->common; MODE_INFO *orig_mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_SB32X32); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); if (mb_col < pc->mb_cols - 1) xd->above_context++; if (mb_row < pc->mb_rows - 1) xd->left_context++; vp9_reset_mb_tokens_context(xd); if (mb_col < pc->mb_cols - 1) xd->above_context--; if (mb_row < pc->mb_rows - 1) xd->left_context--; /* Special case: Force the loopfilter to skip when eobtotal and
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
* mb_skip_coeff are zero. */ skip_recon_mb(pbi, xd); return; } /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sby_s(xd); vp9_build_intra_predictors_sbuv_s(xd); } else { vp9_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } /* dequantization and idct */ if (xd->mode_info_context->mbmi.txfm_size == TX_32X32) { eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { xd->mode_info_context[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = 1; } } else { vp9_dequant_idct_add_32x32(xd->sb_coeff_data.qcoeff, xd->block[0].dequant, xd->dst.y_buffer, xd->dst.y_buffer, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->sb_coeff_data.qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs + 16); } } else { for (n = 0; n < 4; n++) { int x_idx = n & 1, y_idx = n >> 1; if (mb_col + x_idx >= pc->mb_cols || mb_row + y_idx >= pc->mb_rows) continue; xd->above_context = pc->above_context + mb_col + x_idx; xd->left_context = pc->left_context + y_idx + (mb_row & 2); xd->mode_info_context = orig_mi + x_idx + y_idx * mis; for (i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter xd->mode_info_context->mbmi.mb_skip_coeff = 1; continue; } if (tx_size == TX_16X16) { decode_16x16_sb(pbi, xd, bc, n, 1, 1); } else if (tx_size == TX_8X8) { decode_8x8_sb(pbi, xd, bc, n, 1, 1); } else { decode_4x4_sb(pbi, xd, bc, n, 1, 1); } } xd->above_context = pc->above_context + mb_col; xd->left_context = pc->left_context + (mb_row & 2);
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
xd->mode_info_context = orig_mi; } } static void decode_macroblock(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, unsigned int mb_col, BOOL_DECODER* const bc) { int eobtotal = 0; MB_PREDICTION_MODE mode; int i; int tx_size; assert(!xd->mode_info_context->mbmi.sb_type); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); tx_size = xd->mode_info_context->mbmi.txfm_size; mode = xd->mode_info_context->mbmi.mode; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); } else if (!bool_error(bc)) { for (i = 0; i < 25; i++) { xd->block[i].eob = 0; xd->eobs[i] = 0; } if (mode != B_PRED) { eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); } } //mode = xd->mode_info_context->mbmi.mode; if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, &pbi->common); if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && mode != I8X8_PRED && !bool_error(bc)) { /* Special case: Force the loopfilter to skip when eobtotal and * mb_skip_coeff are zero. * */ xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd); return; } #ifdef DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size); #endif // moved to be performed before detokenization // if (xd->segmentation_enabled) // mb_init_dequantizer(pbi, xd); /* do prediction */ if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (mode != I8X8_PRED) { vp9_build_intra_predictors_mbuv(xd); if (mode != B_PRED) { vp9_build_intra_predictors_mby(xd); } } } else { #ifdef DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d interp %d\n", xd->mode_info_context->mbmi.mode, tx_size,
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
xd->mode_info_context->mbmi.interp_filter); #endif vp9_build_inter_predictors_mb(xd); } if (tx_size == TX_16X16) { decode_16x16(pbi, xd, bc); } else if (tx_size == TX_8X8) { decode_8x8(pbi, xd, bc); } else { decode_4x4(pbi, xd, bc); } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("\n"); printf("final y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]); printf("\n"); } printf("\n"); printf("final u\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } printf("\n"); printf("final v\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } fflush(stdout); } #endif } static int get_delta_q(vp9_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp9_read_bit(bc)) { ret_val = vp9_read_literal(bc, 4); if (vp9_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include <stdio.h> FILE *vpxlog = 0; #endif static void set_offsets(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; const int idx = mis * mb_row + mb_col;
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
const int dst_fb_idx = cm->new_fb_idx; const int recon_y_stride = cm->yv12_fb[dst_fb_idx].y_stride; const int recon_uv_stride = cm->yv12_fb[dst_fb_idx].uv_stride; const int recon_yoffset = mb_row * 16 * recon_y_stride + 16 * mb_col; const int recon_uvoffset = mb_row * 8 * recon_uv_stride + 8 * mb_col; xd->mode_info_context = cm->mi + idx; xd->mode_info_context->mbmi.sb_type = block_size >> 5; xd->prev_mode_info_context = cm->prev_mi + idx; xd->above_context = cm->above_context + mb_col; xd->left_context = cm->left_context + (mb_row & 3); /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to * values that are in 1/8th pel units */ block_size >>= 4; // in mb units xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - block_size - mb_row) * 16) << 3; xd->mb_to_right_edge = ((cm->mb_cols - block_size - mb_col) * 16) << 3; xd->up_available = (mb_row != 0); xd->left_available = (mb_col > cm->cur_tile_mb_col_start); xd->right_available = (mb_col + block_size < cm->cur_tile_mb_col_end); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; } static void set_refs(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; if (mbmi->ref_frame > INTRA_FRAME) { int ref_fb_idx, ref_yoffset, ref_uvoffset, ref_y_stride, ref_uv_stride; /* Select the appropriate reference frame for this MB */ ref_fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1]; ref_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; ref_yoffset = mb_row * 16 * ref_y_stride + 16 * mb_col; xd->pre.y_buffer = cm->yv12_fb[ref_fb_idx].y_buffer + ref_yoffset; ref_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; ref_uvoffset = mb_row * 8 * ref_uv_stride + 8 * mb_col; xd->pre.u_buffer = cm->yv12_fb[ref_fb_idx].u_buffer + ref_uvoffset; xd->pre.v_buffer = cm->yv12_fb[ref_fb_idx].v_buffer + ref_uvoffset; /* propagate errors from reference frames */ xd->corrupted |= cm->yv12_fb[ref_fb_idx].corrupted; if (mbmi->second_ref_frame > INTRA_FRAME) { int second_ref_fb_idx; /* Select the appropriate reference frame for this MB */ second_ref_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1]; xd->second_pre.y_buffer = cm->yv12_fb[second_ref_fb_idx].y_buffer + ref_yoffset; xd->second_pre.u_buffer = cm->yv12_fb[second_ref_fb_idx].u_buffer + ref_uvoffset; xd->second_pre.v_buffer = cm->yv12_fb[second_ref_fb_idx].v_buffer + ref_uvoffset; /* propagate errors from reference frames */ xd->corrupted |= cm->yv12_fb[second_ref_fb_idx].corrupted;
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
} } if (mbmi->sb_type) { const int n_mbs = 1 << mbmi->sb_type; const int y_mbs = MIN(n_mbs, cm->mb_rows - mb_row); const int x_mbs = MIN(n_mbs, cm->mb_cols - mb_col); const int mis = cm->mode_info_stride; int x, y; for (y = 0; y < y_mbs; y++) { for (x = !y; x < x_mbs; x++) { mi[y * mis + x] = *mi; } } } } /* Decode a row of Superblocks (2x2 region of MBs) */ static void decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc, int mb_row, MACROBLOCKD *xd, BOOL_DECODER* const bc) { int mb_col; // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); for (mb_col = pc->cur_tile_mb_col_start; mb_col < pc->cur_tile_mb_col_end; mb_col += 4) { if (vp9_read(bc, pc->sb64_coded)) { set_offsets(pbi, 64, mb_row, mb_col); vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc); set_refs(pbi, 64, mb_row, mb_col); decode_superblock64(pbi, xd, mb_row, mb_col, bc); xd->corrupted |= bool_error(bc); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; if (mb_row + y_idx_sb >= pc->mb_rows || mb_col + x_idx_sb >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } xd->sb_index = j; if (vp9_read(bc, pc->sb32_coded)) { set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); decode_superblock32(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); xd->corrupted |= bool_error(bc); } else { int i; // Process the 4 MBs within the SB in the order: // top-left, top-right, bottom-left, bottom-right for (i = 0; i < 4; i++) { const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); if (mb_row + y_idx >= pc->mb_rows || mb_col + x_idx >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; }
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx); xd->mb_index = i; vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); update_blockd_bmi(xd); set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx); decode_macroblock(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); /* check if the boolean decoder has suffered an error */ xd->corrupted |= bool_error(bc); } } } } } } static unsigned int read_partition_size(const unsigned char *cx_size) { const unsigned int size = cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); return size; } static int read_is_valid(const unsigned char *start, size_t len, const unsigned char *end) { return (start + len > start && start + len <= end); } static void setup_token_decoder(VP9D_COMP *pbi, const unsigned char *cx_data, BOOL_DECODER* const bool_decoder) { VP9_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; const unsigned char *partition; ptrdiff_t partition_size; ptrdiff_t bytes_left; // Set up pointers to token partition partition = cx_data; bytes_left = user_data_end - partition; partition_size = bytes_left; /* Validate the calculated partition length. If the buffer * described by the partition can't be fully read, then restrict * it to the portion that can be (for EC mode) or throw an error. */ if (!read_is_valid(partition, partition_size, user_data_end)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); } if (vp9_start_decode(bool_decoder, partition, (unsigned int)partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP9D_COMP *pbi) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { vp9_setup_past_independence(pc, xd); /* All buffers are implicitly updated on key frames. */ pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; } else if (pc->error_resilient_mode) {
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
vp9_setup_past_independence(pc, xd); } if (pc->frame_type != KEY_FRAME) { if (!pc->use_bilinear_mc_filter) pc->mcomp_filter_type = EIGHTTAP; else pc->mcomp_filter_type = BILINEAR; /* To enable choice of different interpolation filters */ vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; /* init without corruption */ xd->fullpixel_mask = 0xffffffff; if (pc->full_pixel) xd->fullpixel_mask = 0xfffffff8; } static void read_coef_probs_common(BOOL_DECODER* const bc, vp9_coeff_probs *coef_probs, int block_types) { int i, j, k, l; if (vp9_read_bit(bc)) { for (i = 0; i < block_types; i++) { for (j = !i; j < COEF_BANDS; j++) { /* NB: This j loop starts from 1 on block type i == 0 */ for (k = 0; k < PREV_COEF_CONTEXTS; k++) { if (k >= 3 && ((i == 0 && j == 1) || (i > 0 && j == 0))) continue; for (l = 0; l < ENTROPY_NODES; l++) { vp9_prob *const p = coef_probs[i][j][k] + l; if (vp9_read(bc, COEF_UPDATE_PROB)) { *p = read_prob_diff_update(bc, *p); } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) { VP9_COMMON *const pc = &pbi->common; read_coef_probs_common(bc, pc->fc.coef_probs_4x4, BLOCK_TYPES_4X4); read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_4x4, BLOCK_TYPES_4X4); if (pbi->common.txfm_mode != ONLY_4X4) { read_coef_probs_common(bc, pc->fc.coef_probs_8x8, BLOCK_TYPES_8X8); read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_8x8, BLOCK_TYPES_8X8); } if (pbi->common.txfm_mode > ALLOW_8X8) { read_coef_probs_common(bc, pc->fc.coef_probs_16x16, BLOCK_TYPES_16X16); read_coef_probs_common(bc, pc->fc.hybrid_coef_probs_16x16, BLOCK_TYPES_16X16); } if (pbi->common.txfm_mode > ALLOW_16X16) { read_coef_probs_common(bc, pc->fc.coef_probs_32x32, BLOCK_TYPES_32X32); } }
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
int vp9_decode_frame(VP9D_COMP *pbi, const unsigned char **p_data_end) { BOOL_DECODER header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const unsigned char *data = (const unsigned char *)pbi->Source; const unsigned char *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes = 0; int mb_row; int i, j; int corrupt_tokens = 0; // printf("Decoding frame %d\n", pc->current_video_frame); /* start with no corruption of current frame */ xd->corrupted = 0; pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; first_partition_length_in_bytes = (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; if ((data + first_partition_length_in_bytes > data_end || data + first_partition_length_in_bytes < data)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp9_setup_version(pc); if (pc->frame_type == KEY_FRAME) { /* vet via sync code */ /* When error concealment is enabled we should only check the sync * code if we have enough bits available */ if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } data += 3; } { const int Width = pc->Width; const int Height = pc->Height; /* If error concealment is enabled we should only parse the new size * if we have enough data. Otherwise we will end up with the wrong * size. */ if (data + 4 < data_end) { pc->Width = (data[0] | (data[1] << 8)) & 0x3fff; pc->horiz_scale = data[1] >> 6; pc->Height = (data[2] | (data[3] << 8)) & 0x3fff; pc->vert_scale = data[3] >> 6; } data += 4; if (Width != pc->Width || Height != pc->Height) { if (pc->Width <= 0) { pc->Width = Width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
"Invalid frame width"); } if (pc->Height <= 0) { pc->Height = Height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (vp9_alloc_frame_buffers(pc, pc->Width, pc->Height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } } } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->Width == 0 || pc->Height == 0) { return -1; } init_frame(pbi); if (vp9_start_decode(&header_bc, data, (unsigned int)first_partition_length_in_bytes)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc); pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc); pc->error_resilient_mode = vp9_read_bit(&header_bc); /* Is segmentation enabled */ xd->segmentation_enabled = (unsigned char)vp9_read_bit(&header_bc); if (xd->segmentation_enabled) { // Read whether or not the segmentation map is being explicitly // updated this frame. xd->update_mb_segmentation_map = (unsigned char)vp9_read_bit(&header_bc); // If so what method will be used. if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled // Read the probs used to decode the segment id for each macro // block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { xd->mb_segment_tree_probs[i] = vp9_read_bit(&header_bc) ? (vp9_prob)vp9_read_literal(&header_bc, 8) : 255; } // Read the prediction probs needed to decode the segment id pc->temporal_update = (unsigned char)vp9_read_bit(&header_bc); for (i = 0; i < PREDICTION_PROBS; i++) { if (pc->temporal_update) { pc->segment_pred_probs[i] = vp9_read_bit(&header_bc) ? (vp9_prob)vp9_read_literal(&header_bc, 8) : 255; } else { pc->segment_pred_probs[i] = 255; } } if (pc->temporal_update) { int count[4]; const vp9_prob *p = xd->mb_segment_tree_probs; vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs; count[0] = p[0] * p[1]; count[1] = p[0] * (256 - p[1]); count[2] = (256 - p[0]) * p[2]; count[3] = (256 - p[0]) * (256 - p[2]);
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
p_mod[0] = get_binary_prob(count[1], count[2] + count[3]); p_mod[1] = get_binary_prob(count[0], count[2] + count[3]); p_mod[2] = get_binary_prob(count[0] + count[1], count[3]); p_mod[3] = get_binary_prob(count[0] + count[1], count[2]); } } // Is the segment data being updated xd->update_mb_segmentation_data = (unsigned char)vp9_read_bit(&header_bc); if (xd->update_mb_segmentation_data) { int data; xd->mb_segment_abs_delta = (unsigned char)vp9_read_bit(&header_bc); vp9_clearall_segfeatures(xd); // For each segmentation... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each of the segments features... for (j = 0; j < SEG_LVL_MAX; j++) { // Is the feature enabled if (vp9_read_bit(&header_bc)) { // Update the feature data and mask vp9_enable_segfeature(xd, i, j); data = vp9_decode_unsigned_max(&header_bc, vp9_seg_feature_data_max(j)); // Is the segment data signed.. if (vp9_is_segfeature_signed(j)) { if (vp9_read_bit(&header_bc)) data = -data; } } else data = 0; vp9_set_segdata(xd, i, j, data); } } } } // Read common prediction model status flag probability updates for the // reference frame if (pc->frame_type == KEY_FRAME) { // Set the prediction probabilities to defaults pc->ref_pred_probs[0] = 120; pc->ref_pred_probs[1] = 80; pc->ref_pred_probs[2] = 40; } else { for (i = 0; i < PREDICTION_PROBS; i++) { if (vp9_read_bit(&header_bc)) pc->ref_pred_probs[i] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } pc->sb64_coded = vp9_read_literal(&header_bc, 8); pc->sb32_coded = vp9_read_literal(&header_bc, 8); /* Read the loop filter level and type */ pc->txfm_mode = vp9_read_literal(&header_bc, 2); if (pc->txfm_mode == 3) pc->txfm_mode += vp9_read_bit(&header_bc); if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = vp9_read_literal(&header_bc, 8); pc->prob_tx[1] = vp9_read_literal(&header_bc, 8); pc->prob_tx[2] = vp9_read_literal(&header_bc, 8); }
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(&header_bc); pc->filter_level = vp9_read_literal(&header_bc, 6); pc->sharpness_level = vp9_read_literal(&header_bc, 3); /* Read in loop filter deltas applied at the MB level based on mode or ref frame. */ xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp9_read_bit(&header_bc); if (xd->mode_ref_lf_delta_enabled) { /* Do the deltas need to be updated */ xd->mode_ref_lf_delta_update = (unsigned char)vp9_read_bit(&header_bc); if (xd->mode_ref_lf_delta_update) { /* Send update */ for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_read_bit(&header_bc)) { /*sign = vp9_read_bit( &header_bc );*/ xd->ref_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6); if (vp9_read_bit(&header_bc)) /* Apply sign */ xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } /* Send update */ for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_read_bit(&header_bc)) { /*sign = vp9_read_bit( &header_bc );*/ xd->mode_lf_deltas[i] = (signed char)vp9_read_literal(&header_bc, 6); if (vp9_read_bit(&header_bc)) /* Apply sign */ xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } // Dummy read for now vp9_read_literal(&header_bc, 2); /* Read the default quantizers. */ { int Q, q_update; Q = vp9_read_literal(&header_bc, QINDEX_BITS); pc->base_qindex = Q; q_update = 0; /* AC 1st order Q = default */ pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(&header_bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(&header_bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update); if (q_update) vp9_init_de_quantizer(pbi); /* MB level dequantizer setup */ mb_init_dequantizer(pbi, &pbi->mb); } /* Determine if the golden frame or ARF buffer should be updated and how. * For all non key frames the GF and ARF refresh flags and sign bias * flags must be set explicitly. */ if (pc->frame_type == KEY_FRAME) { pc->active_ref_idx[0] = pc->new_fb_idx; pc->active_ref_idx[1] = pc->new_fb_idx; pc->active_ref_idx[2] = pc->new_fb_idx;
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
} else { /* Should the GF or ARF be updated from the current frame */ pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES); /* Select active reference frames */ for (i = 0; i < 3; i++) { int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2); pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num]; } pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc); /* Is high precision mv allowed */ xd->allow_high_precision_mv = (unsigned char)vp9_read_bit(&header_bc); // Read the type of subpel filter to use if (vp9_read_bit(&header_bc)) { pc->mcomp_filter_type = SWITCHABLE; } else { pc->mcomp_filter_type = vp9_read_literal(&header_bc, 2); } #if CONFIG_COMP_INTERINTRA_PRED pc->use_interintra = vp9_read_bit(&header_bc); #endif /* To enable choice of different interploation filters */ vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } if (!pc->error_resilient_mode) { pc->refresh_entropy_probs = vp9_read_bit(&header_bc); pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc); } else { pc->refresh_entropy_probs = 0; pc->frame_parallel_decoding_mode = 1; } pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2); vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx], sizeof(pc->fc)); // Read inter mode probability context updates if (pc->frame_type != KEY_FRAME) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (vp9_read(&header_bc, 252)) { pc->fc.vp9_mode_contexts[i][j] = (vp9_prob)vp9_read_literal(&header_bc, 8); } } } } #if CONFIG_NEW_MVREF // If Key frame reset mv ref id probabilities to defaults if (pc->frame_type != KEY_FRAME) { // Read any mv_ref index probability updates int i, j; for (i = 0; i < MAX_REF_FRAMES; ++i) { // Skip the dummy entry for intra ref frame. if (i == INTRA_FRAME) { continue; } // Read any updates to probabilities for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) { if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) { xd->mb_mv_ref_probs[i][j] = (vp9_prob)vp9_read_literal(&header_bc, 8);