vp9_rdopt.c 122.17 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_tokenize.h"
#include "vp9/encoder/vp9_treewriter.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/encoder/vp9_modecosts.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_quantize.h"
#include "vp9/encoder/vp9_variance.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_ratectrl.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9_rtcd.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_common.h"
#define INVALID_MV 0x80008000
/* Factor to weigh the rate for switchable interp filters */
#define SWITCHABLE_INTERP_RATE_FACTOR 1
const MODE_DEFINITION vp9_mode_order[MAX_MODES] = {
  {ZEROMV,    LAST_FRAME,   NONE},
  {DC_PRED,   INTRA_FRAME,  NONE},
  {NEARESTMV, LAST_FRAME,   NONE},
  {NEARMV,    LAST_FRAME,   NONE},
  {ZEROMV,    GOLDEN_FRAME, NONE},
  {NEARESTMV, GOLDEN_FRAME, NONE},
  {ZEROMV,    ALTREF_FRAME, NONE},
  {NEARESTMV, ALTREF_FRAME, NONE},
  {NEARMV,    GOLDEN_FRAME, NONE},
  {NEARMV,    ALTREF_FRAME, NONE},
  {V_PRED,    INTRA_FRAME,  NONE},
  {H_PRED,    INTRA_FRAME,  NONE},
  {D45_PRED,  INTRA_FRAME,  NONE},
  {D135_PRED, INTRA_FRAME,  NONE},
  {D117_PRED, INTRA_FRAME,  NONE},
  {D153_PRED, INTRA_FRAME,  NONE},
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
{D27_PRED, INTRA_FRAME, NONE}, {D63_PRED, INTRA_FRAME, NONE}, {TM_PRED, INTRA_FRAME, NONE}, {NEWMV, LAST_FRAME, NONE}, {NEWMV, GOLDEN_FRAME, NONE}, {NEWMV, ALTREF_FRAME, NONE}, {SPLITMV, LAST_FRAME, NONE}, {SPLITMV, GOLDEN_FRAME, NONE}, {SPLITMV, ALTREF_FRAME, NONE}, {I4X4_PRED, INTRA_FRAME, NONE}, /* compound prediction modes */ {ZEROMV, LAST_FRAME, GOLDEN_FRAME}, {NEARESTMV, LAST_FRAME, GOLDEN_FRAME}, {NEARMV, LAST_FRAME, GOLDEN_FRAME}, {ZEROMV, ALTREF_FRAME, LAST_FRAME}, {NEARESTMV, ALTREF_FRAME, LAST_FRAME}, {NEARMV, ALTREF_FRAME, LAST_FRAME}, {ZEROMV, GOLDEN_FRAME, ALTREF_FRAME}, {NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME}, {NEARMV, GOLDEN_FRAME, ALTREF_FRAME}, {NEWMV, LAST_FRAME, GOLDEN_FRAME}, {NEWMV, ALTREF_FRAME, LAST_FRAME }, {NEWMV, GOLDEN_FRAME, ALTREF_FRAME}, {SPLITMV, LAST_FRAME, GOLDEN_FRAME}, {SPLITMV, ALTREF_FRAME, LAST_FRAME }, {SPLITMV, GOLDEN_FRAME, ALTREF_FRAME}, }; static void fill_token_costs(vp9_coeff_count *c, #if CONFIG_MODELCOEFPROB vp9_coeff_probs_model *p, #else vp9_coeff_probs *p, #endif TX_SIZE tx_size) { int i, j, k, l; for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < REF_TYPES; j++) for (k = 0; k < COEF_BANDS; k++) for (l = 0; l < PREV_COEF_CONTEXTS; l++) { #if CONFIG_MODELCOEFPROB vp9_prob probs[ENTROPY_NODES]; vp9_model_to_full_probs(p[i][j][k][l], i, j, probs); vp9_cost_tokens_skip((int *)c[i][j][k][l], probs, vp9_coef_tree); #else vp9_cost_tokens_skip((int *)c[i][j][k][l], p[i][j][k][l], vp9_coef_tree); #endif } } static int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; // 3* dc_qlookup[Q]*dc_qlookup[Q]; /* values are now correlated to quantizer */
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
static int sad_per_bit16lut[QINDEX_RANGE]; static int sad_per_bit4lut[QINDEX_RANGE]; void vp9_init_me_luts() { int i; // Initialize the sad lut tables using a formulaic calculation for now // This is to make it easier to resolve the impact of experimental changes // to the quantizer tables. for (i = 0; i < QINDEX_RANGE; i++) { sad_per_bit16lut[i] = (int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107); sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742); } } static int compute_rd_mult(int qindex) { const int q = vp9_dc_quant(qindex, 0); return (11 * q * q) >> 2; } void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) { cpi->mb.sadperbit16 = sad_per_bit16lut[qindex]; cpi->mb.sadperbit4 = sad_per_bit4lut[qindex]; } void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) { int q, i; vp9_clear_system_state(); // __asm emms; // Further tests required to see if optimum is different // for key frames, golden frames and arf frames. // if (cpi->common.refresh_golden_frame || // cpi->common.refresh_alt_ref_frame) qindex = clamp(qindex, 0, MAXQ); cpi->RDMULT = compute_rd_mult(qindex); if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { if (cpi->twopass.next_iiratio > 31) cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; else cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4; } cpi->mb.errorperbit = cpi->RDMULT >> 6; cpi->mb.errorperbit += (cpi->mb.errorperbit == 0); vp9_set_speed_features(cpi); q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25); q <<= 2; if (q < 8) q = 8; if (cpi->RDMULT > 1000) { cpi->RDDIV = 1; cpi->RDMULT /= 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < INT_MAX) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } else { cpi->RDDIV = 100;
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } fill_token_costs(cpi->mb.token_costs[TX_4X4], cpi->common.fc.coef_probs_4x4, TX_4X4); fill_token_costs(cpi->mb.token_costs[TX_8X8], cpi->common.fc.coef_probs_8x8, TX_8X8); fill_token_costs(cpi->mb.token_costs[TX_16X16], cpi->common.fc.coef_probs_16x16, TX_16X16); fill_token_costs(cpi->mb.token_costs[TX_32X32], cpi->common.fc.coef_probs_32x32, TX_32X32); for (i = 0; i < NUM_PARTITION_CONTEXTS; i++) vp9_cost_tokens(cpi->mb.partition_cost[i], cpi->common.fc.partition_prob[i], vp9_partition_tree); /*rough estimate for costing*/ cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4; vp9_init_mode_costs(cpi); if (cpi->common.frame_type != KEY_FRAME) { vp9_build_nmv_cost_table( cpi->mb.nmvjointcost, cpi->mb.e_mbd.allow_high_precision_mv ? cpi->mb.nmvcost_hp : cpi->mb.nmvcost, &cpi->common.fc.nmvc, cpi->mb.e_mbd.allow_high_precision_mv, 1, 1); } } int vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, int block_size) { int i, error = 0; for (i = 0; i < block_size; i++) { int this_diff = coeff[i] - dqcoeff[i]; error += this_diff * this_diff; } return error; } static INLINE int cost_coeffs(VP9_COMMON *const cm, MACROBLOCK *mb, int plane, int block, PLANE_TYPE type, ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L, TX_SIZE tx_size, int y_blocks) { MACROBLOCKD *const xd = &mb->e_mbd; MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; int pt; int c = 0; int cost = 0, pad; const int *scan, *nb; const int eob = xd->plane[plane].eobs[block]; const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16); const int ref = mbmi->ref_frame != INTRA_FRAME; unsigned int (*token_costs)[PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] = mb->token_costs[tx_size][type][ref]; ENTROPY_CONTEXT above_ec, left_ec; TX_TYPE tx_type = DCT_DCT;
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
const int segment_id = xd->mode_info_context->mbmi.segment_id; #if CONFIG_MODELCOEFPROB vp9_prob coef_probs[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]; #else vp9_prob (*coef_probs)[PREV_COEF_CONTEXTS][ENTROPY_NODES]; #endif int seg_eob, default_eob; uint8_t token_cache[1024]; const uint8_t * band_translate; // Check for consistency of tx_size with mode info assert((!type && !plane) || (type && plane)); if (type == PLANE_TYPE_Y_WITH_DC) { assert(xd->mode_info_context->mbmi.txfm_size == tx_size); } else { TX_SIZE tx_size_uv = get_uv_tx_size(xd); assert(tx_size == tx_size_uv); } switch (tx_size) { case TX_4X4: { tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type_4x4(xd, block) : DCT_DCT; above_ec = A[0] != 0; left_ec = L[0] != 0; #if CONFIG_MODELCOEFPROB vp9_model_to_full_probs_sb(cm->fc.coef_probs_4x4[type][ref], type, ref, coef_probs); #else coef_probs = cm->fc.coef_probs_4x4[type][ref]; #endif seg_eob = 16; scan = get_scan_4x4(tx_type); band_translate = vp9_coefband_trans_4x4; break; } case TX_8X8: { const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int sz = 1 + b_width_log2(sb_type); const int x = block & ((1 << sz) - 1), y = block - x; TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type_8x8(xd, y + (x >> 1)) : DCT_DCT; above_ec = (A[0] + A[1]) != 0; left_ec = (L[0] + L[1]) != 0; scan = get_scan_8x8(tx_type); #if CONFIG_MODELCOEFPROB vp9_model_to_full_probs_sb(cm->fc.coef_probs_8x8[type][ref], type, ref, coef_probs); #else coef_probs = cm->fc.coef_probs_8x8[type][ref]; #endif seg_eob = 64; band_translate = vp9_coefband_trans_8x8plus; break; } case TX_16X16: { const BLOCK_SIZE_TYPE sb_type = xd->mode_info_context->mbmi.sb_type; const int sz = 2 + b_width_log2(sb_type); const int x = block & ((1 << sz) - 1), y = block - x; TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type_16x16(xd, y + (x >> 2)) : DCT_DCT; scan = get_scan_16x16(tx_type); #if CONFIG_MODELCOEFPROB vp9_model_to_full_probs_sb(cm->fc.coef_probs_16x16[type][ref], type, ref, coef_probs); #else coef_probs = cm->fc.coef_probs_16x16[type][ref]; #endif seg_eob = 256;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
above_ec = (A[0] + A[1] + A[2] + A[3]) != 0; left_ec = (L[0] + L[1] + L[2] + L[3]) != 0; band_translate = vp9_coefband_trans_8x8plus; break; } case TX_32X32: scan = vp9_default_zig_zag1d_32x32; #if CONFIG_MODELCOEFPROB vp9_model_to_full_probs_sb(cm->fc.coef_probs_32x32[type][ref], type, ref, coef_probs); #else coef_probs = cm->fc.coef_probs_32x32[type][ref]; #endif seg_eob = 1024; above_ec = (A[0] + A[1] + A[2] + A[3] + A[4] + A[5] + A[6] + A[7]) != 0; left_ec = (L[0] + L[1] + L[2] + L[3] + L[4] + L[5] + L[6] + L[7]) != 0; band_translate = vp9_coefband_trans_8x8plus; break; default: abort(); break; } assert(eob <= seg_eob); pt = combine_entropy_contexts(above_ec, left_ec); nb = vp9_get_coef_neighbors_handle(scan, &pad); default_eob = seg_eob; if (vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) seg_eob = 0; /* sanity check to ensure that we do not have spurious non-zero q values */ if (eob < seg_eob) assert(qcoeff_ptr[scan[eob]] == 0); { for (c = 0; c < eob; c++) { int v = qcoeff_ptr[scan[c]]; int t = vp9_dct_value_tokens_ptr[v].token; int band = get_coef_band(band_translate, c); if (c) pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob); cost += token_costs[band][pt][t] + vp9_dct_value_cost_ptr[v]; if (!c || token_cache[scan[c - 1]]) cost += vp9_cost_bit(coef_probs[band][pt][0], 1); token_cache[scan[c]] = t; } if (c < seg_eob) { if (c) pt = vp9_get_coef_context(scan, nb, pad, token_cache, c, default_eob); cost += mb->token_costs[tx_size][type][ref] [get_coef_band(band_translate, c)] [pt][DCT_EOB_TOKEN]; } } // is eob first coefficient; for (pt = 0; pt < (1 << tx_size); pt++) { A[pt] = L[pt] = c > 0; } return cost; } static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, int (*r)[2], int *rate, int *d, int *distortion, int *s, int *skip,
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
int64_t txfm_cache[NB_TXFM_MODES], TX_SIZE max_txfm_size) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; vp9_prob skip_prob = vp9_get_pred_prob(cm, xd, PRED_MBSKIP); int64_t rd[TX_SIZE_MAX_SB][2]; int n, m; int s0, s1; for (n = TX_4X4; n <= max_txfm_size; n++) { r[n][1] = r[n][0]; for (m = 0; m <= n - (n == max_txfm_size); m++) { if (m == n) r[n][1] += vp9_cost_zero(cm->prob_tx[m]); else r[n][1] += vp9_cost_one(cm->prob_tx[m]); } } assert(skip_prob > 0); s0 = vp9_cost_bit(skip_prob, 0); s1 = vp9_cost_bit(skip_prob, 1); for (n = TX_4X4; n <= max_txfm_size; n++) { if (s[n]) { rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); } else { rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); } } if (max_txfm_size == TX_32X32 && (cm->txfm_mode == ALLOW_32X32 || (cm->txfm_mode == TX_MODE_SELECT && rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && rd[TX_32X32][1] < rd[TX_4X4][1]))) { mbmi->txfm_size = TX_32X32; } else if (max_txfm_size >= TX_16X16 && (cm->txfm_mode == ALLOW_16X16 || cm->txfm_mode == ALLOW_32X32 || (cm->txfm_mode == TX_MODE_SELECT && rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]))) { mbmi->txfm_size = TX_16X16; } else if (cm->txfm_mode == ALLOW_8X8 || cm->txfm_mode == ALLOW_16X16 || cm->txfm_mode == ALLOW_32X32 || (cm->txfm_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) { mbmi->txfm_size = TX_8X8; } else { mbmi->txfm_size = TX_4X4; } *distortion = d[mbmi->txfm_size]; *rate = r[mbmi->txfm_size][cm->txfm_mode == TX_MODE_SELECT]; *skip = s[mbmi->txfm_size]; txfm_cache[ONLY_4X4] = rd[TX_4X4][0]; txfm_cache[ALLOW_8X8] = rd[TX_8X8][0]; txfm_cache[ALLOW_16X16] = rd[MIN(max_txfm_size, TX_16X16)][0]; txfm_cache[ALLOW_32X32] = rd[MIN(max_txfm_size, TX_32X32)][0]; if (max_txfm_size == TX_32X32 && rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && rd[TX_32X32][1] < rd[TX_4X4][1]) txfm_cache[TX_MODE_SELECT] = rd[TX_32X32][1]; else if (max_txfm_size >= TX_16X16 && rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]) txfm_cache[TX_MODE_SELECT] = rd[TX_16X16][1];
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
else txfm_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ? rd[TX_4X4][1] : rd[TX_8X8][1]; } static int block_error(int16_t *coeff, int16_t *dqcoeff, int block_size, int shift) { int i; int64_t error = 0; for (i = 0; i < block_size; i++) { int this_diff = coeff[i] - dqcoeff[i]; error += (unsigned)this_diff * this_diff; } error >>= shift; return error > INT_MAX ? INT_MAX : (int)error; } static int block_error_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int shift) { const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); return block_error(x->plane[0].coeff, x->e_mbd.plane[0].dqcoeff, 16 << (bwl + bhl), shift); } static int block_error_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int shift) { const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); int64_t sum = 0; int plane; for (plane = 1; plane < MAX_MB_PLANE; plane++) { const int subsampling = x->e_mbd.plane[plane].subsampling_x + x->e_mbd.plane[plane].subsampling_y; sum += block_error(x->plane[plane].coeff, x->e_mbd.plane[plane].dqcoeff, 16 << (bwl + bhl - subsampling), 0); } sum >>= shift; return sum > INT_MAX ? INT_MAX : (int)sum; } static int rdcost_plane(VP9_COMMON *const cm, MACROBLOCK *x, int plane, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; const int bwl = b_width_log2(bsize) - xd->plane[plane].subsampling_x; const int bhl = b_height_log2(bsize) - xd->plane[plane].subsampling_y; const int bw = 1 << bwl, bh = 1 << bhl; ENTROPY_CONTEXT t_above[16], t_left[16]; int block, cost; vpx_memcpy(&t_above, xd->plane[plane].above_context, sizeof(ENTROPY_CONTEXT) * bw); vpx_memcpy(&t_left, xd->plane[plane].left_context, sizeof(ENTROPY_CONTEXT) * bh); cost = 0; for (block = 0; block < bw * bh; block += 1 << (tx_size * 2)) { int x_idx, y_idx; txfrm_block_to_raster_xy(xd, bsize, plane, block, tx_size * 2, &x_idx, &y_idx); cost += cost_coeffs(cm, x, plane, block, xd->plane[plane].plane_type, t_above + x_idx, t_left + y_idx, tx_size, bw * bh); } return cost; } static int rdcost_uv(VP9_COMMON *const cm, MACROBLOCK *x,
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) { int cost = 0, plane; for (plane = 1; plane < MAX_MB_PLANE; plane++) { cost += rdcost_plane(cm, x, plane, bsize, tx_size); } return cost; } static void super_block_yrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x, int *rate, int *distortion, int *skippable, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; xd->mode_info_context->mbmi.txfm_size = tx_size; vp9_xform_quant_sby(cm, x, bsize); *distortion = block_error_sby(x, bsize, tx_size == TX_32X32 ? 0 : 2); *rate = rdcost_plane(cm, x, 0, bsize, tx_size); *skippable = vp9_sby_is_skippable(xd, bsize); } static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int *skip, BLOCK_SIZE_TYPE bs, int64_t txfm_cache[NB_TXFM_MODES]) { VP9_COMMON *const cm = &cpi->common; int r[TX_SIZE_MAX_SB][2], d[TX_SIZE_MAX_SB], s[TX_SIZE_MAX_SB]; vp9_subtract_sby(x, bs); if (bs >= BLOCK_SIZE_SB32X32) super_block_yrd_for_txfm(cm, x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32], bs, TX_32X32); if (bs >= BLOCK_SIZE_MB16X16) super_block_yrd_for_txfm(cm, x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16], bs, TX_16X16); super_block_yrd_for_txfm(cm, x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], bs, TX_8X8); super_block_yrd_for_txfm(cm, x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], bs, TX_4X4); choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache, TX_32X32 - (bs < BLOCK_SIZE_SB32X32) - (bs < BLOCK_SIZE_MB16X16)); } static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib, B_PREDICTION_MODE *best_mode, int *bmode_costs, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int *bestdistortion) { B_PREDICTION_MODE mode; MACROBLOCKD *xd = &x->e_mbd; int64_t best_rd = INT64_MAX; int rate = 0; int distortion; VP9_COMMON *const cm = &cpi->common; const int src_stride = x->plane[0].src.stride; uint8_t* const src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, ib, x->plane[0].src.buf, src_stride); int16_t* const src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, ib, x->plane[0].src_diff); int16_t* const coeff = BLOCK_OFFSET(x->plane[0].coeff, ib, 16);
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
uint8_t* const dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, ib, xd->plane[0].dst.buf, xd->plane[0].dst.stride); ENTROPY_CONTEXT ta = *a, tempa = *a; ENTROPY_CONTEXT tl = *l, templ = *l; TX_TYPE tx_type = DCT_DCT; TX_TYPE best_tx_type = DCT_DCT; /* * The predictor buffer is a 2d buffer with a stride of 16. Create * a temp buffer that meets the stride requirements, but we are only * interested in the left 4x4 block * */ DECLARE_ALIGNED_ARRAY(16, int16_t, best_dqcoeff, 16); assert(ib < 4); xd->mode_info_context->mbmi.txfm_size = TX_4X4; for (mode = B_DC_PRED; mode < LEFT4X4; mode++) { int64_t this_rd; int ratey; xd->mode_info_context->bmi[ib].as_mode.first = mode; rate = bmode_costs[mode]; vp9_intra4x4_predict(xd, ib, BLOCK_SIZE_SB8X8, mode, dst, xd->plane[0].dst.stride); vp9_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, xd->plane[0].dst.stride); xd->mode_info_context->bmi[ib].as_mode.first = mode; tx_type = get_tx_type_4x4(xd, ib); if (tx_type != DCT_DCT) { vp9_short_fht4x4(src_diff, coeff, 8, tx_type); x->quantize_b_4x4(x, ib, tx_type, 16); } else { x->fwd_txm4x4(src_diff, coeff, 16); x->quantize_b_4x4(x, ib, tx_type, 16); } tempa = ta; templ = tl; ratey = cost_coeffs(cm, x, 0, ib, PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4, 16); rate += ratey; distortion = vp9_block_error(coeff, BLOCK_OFFSET(xd->plane[0].dqcoeff, ib, 16), 16) >> 2; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; best_tx_type = tx_type; *a = tempa; *l = templ; vpx_memcpy(best_dqcoeff, BLOCK_OFFSET(xd->plane[0].dqcoeff, ib, 16), 32); } } xd->mode_info_context->bmi[ib].as_mode.first = (B_PREDICTION_MODE)(*best_mode);
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
vp9_intra4x4_predict(xd, ib, BLOCK_SIZE_SB8X8, *best_mode, dst, xd->plane[0].dst.stride); // inverse transform if (best_tx_type != DCT_DCT) { vp9_short_iht4x4_add(best_dqcoeff, dst, xd->plane[0].dst.stride, best_tx_type); } else { xd->inv_txm4x4_add(best_dqcoeff, dst, xd->plane[0].dst.stride); } return best_rd; } static int64_t rd_pick_intra4x4mby_modes(VP9_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion, int64_t best_rd) { int i; MACROBLOCKD *const xd = &mb->e_mbd; #if CONFIG_AB4X4 int cost = 0; #else int cost = mb->mbmode_cost[xd->frame_type][I4X4_PRED]; #endif int distortion = 0; int tot_rate_y = 0; int64_t total_rd = 0; ENTROPY_CONTEXT t_above[2], t_left[2]; int *bmode_costs; vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above)); vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left)); xd->mode_info_context->mbmi.mode = I4X4_PRED; bmode_costs = mb->inter_bmode_costs; for (i = 0; i < 4; i++) { const int x_idx = i & 1, y_idx = i >> 1; MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d); if (xd->frame_type == KEY_FRAME) { const B_PREDICTION_MODE A = above_block_mode(mic, i, mis); const B_PREDICTION_MODE L = left_block_mode(mic, i); bmode_costs = mb->bmode_costs[A][L]; } total_rd += rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs, t_above + x_idx, t_left + y_idx, &r, &ry, &d); cost += r; distortion += d; tot_rate_y += ry; mic->bmi[i].as_mode.first = best_mode; if (total_rd >= best_rd) break; } if (total_rd >= best_rd) return INT64_MAX; *Rate = cost; *rate_y = tot_rate_y;
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
*Distortion = distortion; return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); } static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion, int *skippable, BLOCK_SIZE_TYPE bsize, int64_t txfm_cache[NB_TXFM_MODES]) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); int this_rate, this_rate_tokenonly; int this_distortion, s; int64_t best_rd = INT64_MAX, this_rd; TX_SIZE UNINITIALIZED_IS_SAFE(best_tx); int i; #if CONFIG_AB4X4 if (bsize < BLOCK_SIZE_SB8X8) { x->e_mbd.mode_info_context->mbmi.txfm_size = TX_4X4; return best_rd; } #endif for (i = 0; i < NB_TXFM_MODES; i++) txfm_cache[i] = INT64_MAX; /* Y Search for 32x32 intra prediction mode */ for (mode = DC_PRED; mode <= TM_PRED; mode++) { int64_t local_txfm_cache[NB_TXFM_MODES]; x->e_mbd.mode_info_context->mbmi.mode = mode; vp9_build_intra_predictors_sby_s(&x->e_mbd, bsize); super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, bsize, local_txfm_cache); this_rate = this_rate_tokenonly + x->mbmode_cost[x->e_mbd.frame_type][mode]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; best_tx = x->e_mbd.mode_info_context->mbmi.txfm_size; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } for (i = 0; i < NB_TXFM_MODES; i++) { int64_t adj_rd = this_rd + local_txfm_cache[i] - local_txfm_cache[cpi->common.txfm_mode]; if (adj_rd < txfm_cache[i]) { txfm_cache[i] = adj_rd; } } } x->e_mbd.mode_info_context->mbmi.mode = mode_selected; x->e_mbd.mode_info_context->mbmi.txfm_size = best_tx; return best_rd; } static void super_block_uvrd_for_txfm(VP9_COMMON *const cm, MACROBLOCK *x, int *rate, int *distortion, int *skippable, BLOCK_SIZE_TYPE bsize, TX_SIZE uv_tx_size) { MACROBLOCKD *const xd = &x->e_mbd;
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
vp9_xform_quant_sbuv(cm, x, bsize); *distortion = block_error_sbuv(x, bsize, uv_tx_size == TX_32X32 ? 0 : 2); *rate = rdcost_uv(cm, x, bsize, uv_tx_size); *skippable = vp9_sbuv_is_skippable(xd, bsize); } static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x, int *rate, int *distortion, int *skippable, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; vp9_subtract_sbuv(x, bsize); if (mbmi->txfm_size >= TX_32X32 && bsize >= BLOCK_SIZE_SB64X64) { super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, TX_32X32); } else if (mbmi->txfm_size >= TX_16X16 && bsize >= BLOCK_SIZE_SB32X32) { super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, TX_16X16); } else if (mbmi->txfm_size >= TX_8X8 && bsize >= BLOCK_SIZE_MB16X16) { super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, TX_8X8); } else { super_block_uvrd_for_txfm(cm, x, rate, distortion, skippable, bsize, TX_4X4); } } static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion, int *skippable, BLOCK_SIZE_TYPE bsize) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); int64_t best_rd = INT64_MAX, this_rd; int this_rate_tokenonly, this_rate; int this_distortion, s; for (mode = DC_PRED; mode <= TM_PRED; mode++) { x->e_mbd.mode_info_context->mbmi.uv_mode = mode; vp9_build_intra_predictors_sbuv_s(&x->e_mbd, bsize); super_block_uvrd(&cpi->common, x, &this_rate_tokenonly, &this_distortion, &s, bsize); this_rate = this_rate_tokenonly + x->intra_uv_mode_cost[x->e_mbd.frame_type][mode]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected; return best_rd; } int vp9_cost_mv_ref(VP9_COMP *cpi, MB_PREDICTION_MODE m, const int mode_context) { MACROBLOCKD *xd = &cpi->mb.e_mbd; int segment_id = xd->mode_info_context->mbmi.segment_id;
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
// Dont account for mode here if segment skip is enabled. if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) { VP9_COMMON *pc = &cpi->common; vp9_prob p [VP9_MVREFS - 1]; assert(NEARESTMV <= m && m <= SPLITMV); vp9_mv_ref_probs(pc, p, mode_context); return cost_token(vp9_mv_ref_tree, p, vp9_mv_ref_encoding_array - NEARESTMV + m); } else return 0; } void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) { x->e_mbd.mode_info_context->mbmi.mode = mb; x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int; } static int labels2mode(MACROBLOCK *x, int const *labelings, int which_label, B_PREDICTION_MODE this_mode, int_mv *this_mv, int_mv *this_second_mv, int_mv seg_mvs[MAX_REF_FRAMES - 1], int_mv *best_ref_mv, int_mv *second_best_ref_mv, int *mvjcost, int *mvcost[2], VP9_COMP *cpi) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->mode_info_context; MB_MODE_INFO * mbmi = &mic->mbmi; const int mis = xd->mode_info_stride; int i, cost = 0, thismvcost = 0; #if CONFIG_AB4X4 int idx, idy; int bw = 1 << b_width_log2(mbmi->sb_type); int bh = 1 << b_height_log2(mbmi->sb_type); #endif /* We have to be careful retrieving previously-encoded motion vectors. Ones from this macroblock have to be pulled from the BLOCKD array as they have not yet made it to the bmi array in our MB_MODE_INFO. */ for (i = 0; i < 4; ++i) { const int row = i >> 1, col = i & 1; B_PREDICTION_MODE m; if (labelings[i] != which_label) continue; if (col && labelings[i] == labelings[i - 1]) m = LEFT4X4; else if (row && labelings[i] == labelings[i - 2]) m = ABOVE4X4; else { // the only time we should do costing for new motion vector or mode // is when we are on a new label (jbb May 08, 2007) switch (m = this_mode) { case NEW4X4 : if (mbmi->second_ref_frame > 0) { this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int; this_second_mv->as_int = seg_mvs[mbmi->second_ref_frame - 1].as_int; } thismvcost = vp9_mv_bit_cost(this_mv, best_ref_mv, mvjcost, mvcost, 102, xd->allow_high_precision_mv); if (mbmi->second_ref_frame > 0) { thismvcost += vp9_mv_bit_cost(this_second_mv, second_best_ref_mv, mvjcost, mvcost, 102, xd->allow_high_precision_mv); }
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
break; case LEFT4X4: this_mv->as_int = col ? mic->bmi[i - 1].as_mv[0].as_int : left_block_mv(xd, mic, i); if (mbmi->second_ref_frame > 0) this_second_mv->as_int = col ? mic->bmi[i - 1].as_mv[1].as_int : left_block_second_mv(xd, mic, i); break; case ABOVE4X4: this_mv->as_int = row ? mic->bmi[i - 2].as_mv[0].as_int : above_block_mv(mic, i, mis); if (mbmi->second_ref_frame > 0) this_second_mv->as_int = row ? mic->bmi[i - 2].as_mv[1].as_int : above_block_second_mv(mic, i, mis); break; case ZERO4X4: this_mv->as_int = 0; if (mbmi->second_ref_frame > 0) this_second_mv->as_int = 0; break; default: break; } if (m == ABOVE4X4) { // replace above with left if same int_mv left_mv, left_second_mv; left_second_mv.as_int = 0; left_mv.as_int = col ? mic->bmi[i - 1].as_mv[0].as_int : left_block_mv(xd, mic, i); if (mbmi->second_ref_frame > 0) left_second_mv.as_int = col ? mic->bmi[i - 1].as_mv[1].as_int : left_block_second_mv(xd, mic, i); if (left_mv.as_int == this_mv->as_int && (mbmi->second_ref_frame <= 0 || left_second_mv.as_int == this_second_mv->as_int)) m = LEFT4X4; } cost = x->inter_bmode_costs[m]; } mic->bmi[i].as_mv[0].as_int = this_mv->as_int; if (mbmi->second_ref_frame > 0) mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int; x->partition_info->bmi[i].mode = m; x->partition_info->bmi[i].mv.as_int = this_mv->as_int; if (mbmi->second_ref_frame > 0) x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int; #if CONFIG_AB4X4 for (idy = 0; idy < bh; ++idy) { for (idx = 0; idx < bw; ++idx) { vpx_memcpy(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i])); vpx_memcpy(&x->partition_info->bmi[i + idy * 2 + idx], &x->partition_info->bmi[i], sizeof(x->partition_info->bmi[i])); } } #endif } cost += thismvcost; return cost; } static int64_t encode_inter_mb_segment(VP9_COMMON *const cm, MACROBLOCK *x, int const *labels,
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
int which_label, int *labelyrate, int *distortion, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl) { int i, k; MACROBLOCKD *xd = &x->e_mbd; BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type; int bwl = b_width_log2(bsize), bw = 1 << bwl; int bhl = b_height_log2(bsize), bh = 1 << bhl; int idx, idy; #if !CONFIG_AB4X4 bw = 1, bh = 1; #endif *labelyrate = 0; *distortion = 0; for (i = 0; i < 4; i++) { if (labels[i] == which_label) { const int src_stride = x->plane[0].src.stride; uint8_t* const src = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, x->plane[0].src.buf, src_stride); int16_t* src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, i, x->plane[0].src_diff); int16_t* coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, i); uint8_t* const pre = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride); uint8_t* const dst = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, xd->plane[0].dst.buf, xd->plane[0].dst.stride); int thisdistortion = 0; int thisrate = 0; vp9_build_inter_predictor(pre, xd->plane[0].pre[0].stride, dst, xd->plane[0].dst.stride, &xd->mode_info_context->bmi[i].as_mv[0], &xd->scale_factor[0], 4 * bw, 4 * bh, 0 /* no avg */, &xd->subpix); // TODO(debargha): Make this work properly with the // implicit-compoundinter-weight experiment when implicit // weighting for splitmv modes is turned on. if (xd->mode_info_context->mbmi.second_ref_frame > 0) { uint8_t* const second_pre = raster_block_offset_uint8(xd, BLOCK_SIZE_SB8X8, 0, i, xd->plane[0].pre[1].buf, xd->plane[0].pre[1].stride); vp9_build_inter_predictor(second_pre, xd->plane[0].pre[1].stride, dst, xd->plane[0].dst.stride, &xd->mode_info_context->bmi[i].as_mv[1], &xd->scale_factor[1], 4 * bw, 4 * bh, 1, &xd->subpix); } vp9_subtract_block(4 * bh, 4 * bw, src_diff, 8, src, src_stride, dst, xd->plane[0].dst.stride); k = i; for (idy = 0; idy < bh; ++idy) { for (idx = 0; idx < bw; ++idx) { k += (idy * 2 + idx); src_diff = raster_block_offset_int16(xd, BLOCK_SIZE_SB8X8, 0, k,
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
x->plane[0].src_diff); coeff = BLOCK_OFFSET(x->plane[0].coeff, 16, k); x->fwd_txm4x4(src_diff, coeff, 16); x->quantize_b_4x4(x, k, DCT_DCT, 16); thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(xd->plane[0].dqcoeff, k, 16), 16); thisrate += cost_coeffs(cm, x, 0, k, PLANE_TYPE_Y_WITH_DC, ta + (k & 1), tl + (k >> 1), TX_4X4, 16); } } *distortion += thisdistortion; *labelyrate += thisrate; } } *distortion >>= 2; return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); } typedef struct { int_mv *ref_mv, *second_ref_mv; int_mv mvp; int64_t segment_rd; int r; int d; int segment_yrate; B_PREDICTION_MODE modes[4]; int_mv mvs[4], second_mvs[4]; int eobs[4]; int mvthresh; } BEST_SEG_INFO; static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) { int r = 0; r |= (mv->as_mv.row >> 3) < x->mv_row_min; r |= (mv->as_mv.row >> 3) > x->mv_row_max; r |= (mv->as_mv.col >> 3) < x->mv_col_min; r |= (mv->as_mv.col >> 3) > x->mv_col_max; return r; } static enum BlockSize get_block_size(int bw, int bh) { if (bw == 4 && bh == 4) return BLOCK_4X4; if (bw == 4 && bh == 8) return BLOCK_4X8; if (bw == 8 && bh == 4) return BLOCK_8X4; if (bw == 8 && bh == 8) return BLOCK_8X8; if (bw == 8 && bh == 16) return BLOCK_8X16; if (bw == 16 && bh == 8) return BLOCK_16X8; if (bw == 16 && bh == 16) return BLOCK_16X16; if (bw == 32 && bh == 32) return BLOCK_32X32; if (bw == 32 && bh == 16) return BLOCK_32X16;
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
if (bw == 16 && bh == 32) return BLOCK_16X32; if (bw == 64 && bh == 32) return BLOCK_64X32; if (bw == 32 && bh == 64) return BLOCK_32X64; if (bw == 64 && bh == 64) return BLOCK_64X64; assert(0); return -1; } static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi, int_mv seg_mvs[4][MAX_REF_FRAMES - 1]) { int i, j; static const int labels[4] = { 0, 1, 2, 3 }; int br = 0, bd = 0; B_PREDICTION_MODE this_mode; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; const int label_count = 4; int64_t this_segment_rd = 0, other_segment_rd; int label_mv_thresh; int rate = 0; int sbr = 0, sbd = 0; int segmentyrate = 0; int best_eobs[4] = { 0 }; BLOCK_SIZE_TYPE bsize = mbmi->sb_type; int bwl = b_width_log2(bsize), bw = 1 << bwl; int bhl = b_height_log2(bsize), bh = 1 << bhl; int idx, idy; vp9_variance_fn_ptr_t *v_fn_ptr; ENTROPY_CONTEXT t_above[4], t_left[4]; ENTROPY_CONTEXT t_above_b[4], t_left_b[4]; #if !CONFIG_AB4X4 bh = 1, bw = 1; #endif vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above)); vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left)); #if CONFIG_AB4X4 v_fn_ptr = &cpi->fn_ptr[get_block_size(4 << bwl, 4 << bhl)]; #else v_fn_ptr = &cpi->fn_ptr[BLOCK_4X4]; #endif // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * bsi->mvthresh / label_count; // Segmentation method overheads #if !CONFIG_AB4X4 rate += vp9_cost_mv_ref(cpi, SPLITMV, mbmi->mb_mode_context[mbmi->ref_frame]); this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0); br += rate; #endif other_segment_rd = this_segment_rd; for (idy = 0; idy < 2; idy += bh) {
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
for (idx = 0; idx < 2; idx += bw) { // TODO(jingning,rbultje): rewrite the rate-distortion optimization // loop for 4x4/4x8/8x4 block coding #if CONFIG_AB4X4 int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT]; int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX; B_PREDICTION_MODE mode_selected = ZERO4X4; int bestlabelyrate = 0; i = idy * 2 + idx; // search for the best motion vector on this segment for (this_mode = LEFT4X4; this_mode <= NEW4X4; ++this_mode) { int64_t this_rd; int distortion; int labelyrate; ENTROPY_CONTEXT t_above_s[4], t_left_s[4]; vpx_memcpy(t_above_s, t_above, sizeof(t_above_s)); vpx_memcpy(t_left_s, t_left, sizeof(t_left_s)); // motion search for newmv (single predictor case only) if (mbmi->second_ref_frame <= 0 && this_mode == NEW4X4) { int sseshift, n; int step_param = 0; int further_steps; int thissme, bestsme = INT_MAX; const struct buf_2d orig_src = x->plane[0].src; const struct buf_2d orig_pre = x->e_mbd.plane[0].pre[0]; /* Is the best so far sufficiently good that we cant justify doing * and new motion search. */ if (best_label_rd < label_mv_thresh) break; if (cpi->compressor_speed) { // use previous block's result as next block's MV predictor. if (i > 0) { bsi->mvp.as_int = x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int; if (i == 2) bsi->mvp.as_int = x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int; step_param = 2; } } further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; { int sadpb = x->sadperbit4; int_mv mvp_full; mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3; mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3; // find first label n = i; // adjust src pointer for this segment x->plane[0].src.buf = raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, n, x->plane[0].src.buf, x->plane[0].src.stride); assert(((intptr_t)x->e_mbd.plane[0].pre[0].buf & 0x7) == 0); x->e_mbd.plane[0].pre[0].buf = raster_block_offset_uint8(&x->e_mbd, BLOCK_SIZE_SB8X8, 0, n, x->e_mbd.plane[0].pre[0].buf, x->e_mbd.plane[0].pre[0].stride); bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param,
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
sadpb, further_steps, 0, v_fn_ptr, bsi->ref_mv, &mode_mv[NEW4X4]); sseshift = 0; // Should we do a full search (best quality only) if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) { /* Check if mvp_full is within the range. */ clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max); thissme = cpi->full_search_sad(x, &mvp_full, sadpb, 16, v_fn_ptr, x->nmvjointcost, x->mvcost, bsi->ref_mv, n); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEW4X4].as_int = x->e_mbd.mode_info_context->bmi[n].as_mv[0].as_int; } else { /* The full search result is actually worse so re-instate the * previous best vector */ x->e_mbd.mode_info_context->bmi[n].as_mv[0].as_int = mode_mv[NEW4X4].as_int; } } } if (bestsme < INT_MAX) { int distortion; unsigned int sse; cpi->find_fractional_mv_step(x, &mode_mv[NEW4X4], bsi->ref_mv, x->errorperbit, v_fn_ptr, x->nmvjointcost, x->mvcost, &distortion, &sse); // safe motion search result for use in compound prediction seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int; } // restore src pointers x->plane[0].src = orig_src; x->e_mbd.plane[0].pre[0] = orig_pre; } else if (mbmi->second_ref_frame > 0 && this_mode == NEW4X4) { /* NEW4X4 */ /* motion search not completed? Then skip newmv for this block with * comppred */ if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV || seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) { continue; } } rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], &second_mode_mv[this_mode], seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, x->mvcost, cpi); // Trap vectors that reach beyond the UMV borders if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) { continue; } if (mbmi->second_ref_frame > 0 && mv_check_bounds(x, &second_mode_mv[this_mode])) continue;
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
this_rd = encode_inter_mb_segment(&cpi->common, x, labels, i, &labelyrate, &distortion, t_above_s, t_left_s); this_rd += RDCOST(x->rdmult, x->rddiv, rate, 0); rate += labelyrate; if (this_rd < best_label_rd) { sbr = rate; sbd = distortion; bestlabelyrate = labelyrate; mode_selected = this_mode; best_label_rd = this_rd; for (j = 0; j < 4; j++) if (labels[j] == i) best_eobs[j] = x->e_mbd.plane[0].eobs[j]; vpx_memcpy(t_above_b, t_above_s, sizeof(t_above_s)); vpx_memcpy(t_left_b, t_left_s, sizeof(t_left_s)); } } /*for each 4x4 mode*/ vpx_memcpy(t_above, t_above_b, sizeof(t_above)); vpx_memcpy(t_left, t_left_b, sizeof(t_left)); labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], &second_mode_mv[mode_selected], seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, x->mvcost, cpi); #else int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT]; int64_t best_label_rd = INT64_MAX, best_other_rd = INT64_MAX; B_PREDICTION_MODE mode_selected = ZERO4X4; int bestlabelyrate = 0; i = idy * 2 + idx; // search for the best motion vector on this segment for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) { int64_t this_rd; int distortion; int labelyrate; ENTROPY_CONTEXT t_above_s[2], t_left_s[2]; vpx_memcpy(t_above_s, t_above, sizeof(t_above_s)); vpx_memcpy(t_left_s, t_left, sizeof(t_left_s)); // motion search for newmv (single predictor case only) if (mbmi->second_ref_frame <= 0 && this_mode == NEW4X4) { int sseshift, n; int step_param = 0; int further_steps; int thissme, bestsme = INT_MAX; const struct buf_2d orig_src = x->plane[0].src; const struct buf_2d orig_pre = x->e_mbd.plane[0].pre[0]; /* Is the best so far sufficiently good that we cant justify doing * and new motion search. */ if (best_label_rd < label_mv_thresh) break; if (cpi->compressor_speed) { // use previous block's result as next block's MV predictor. if (i > 0) { bsi->mvp.as_int = x->e_mbd.mode_info_context->bmi[i - 1].as_mv[0].as_int; if (i == 2) bsi->mvp.as_int = x->e_mbd.mode_info_context->bmi[i - 2].as_mv[0].as_int; step_param = 2; }