• Dmitry Kovalev's avatar
    Adding decode_sb_16x16 function. · 50e02b94
    Dmitry Kovalev authored
    Moving command code from decode_sb32 and decode_sb64 into new
    decode_sb_16x16 function.
    
    Change-Id: I57a161300af085557adec2fe600f3c10a145faf2
    50e02b94
vp9_decodframe.c 64.17 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_le16(const uint8_t *p) {
  return (p[1] << 8) | p[0];
static int read_le32(const uint8_t *p) {
  return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
// len == 0 is not allowed
static int read_is_valid(const unsigned char *start, size_t len,
                         const unsigned char *end) {
  return start + len > start && start + len <= end;
static int merge_index(int v, int n, int modulus) {
  int max1 = (n - 1 - modulus / 2) / modulus + 1;
  if (v < max1) v = v * modulus + modulus / 2;
  else {
    int w;
    v -= max1;
    w = v;
    v += (v + modulus - modulus / 2) / modulus;
    while (v % modulus == modulus / 2 ||
           w != v - (v + modulus - modulus / 2) / modulus) v++;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
} return v; } static int inv_remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; v = merge_index(v, n - 1, modulus); if ((m << 1) <= n) { return vp9_inv_recenter_nonneg(v + 1, m); } else { return n - 1 - vp9_inv_recenter_nonneg(v + 1, n - 1 - m); } } static vp9_prob read_prob_diff_update(vp9_reader *const bc, int oldp) { int delp = vp9_decode_term_subexp(bc, SUBEXP_PARAM, 255); return (vp9_prob)inv_remap_prob(delp, oldp); } void vp9_init_de_quantizer(VP9D_COMP *pbi) { int i; int q; VP9_COMMON *const pc = &pbi->common; for (q = 0; q < QINDEX_RANGE; q++) { pc->Y1dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y1dc_delta_q); pc->UVdequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uvdc_delta_q); /* all the ac values =; */ for (i = 1; i < 16; i++) { const int rc = vp9_default_zig_zag1d_4x4[i]; pc->Y1dequant[q][rc] = (int16_t)vp9_ac_yquant(q); pc->UVdequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uvac_delta_q); } } } static int get_qindex(MACROBLOCKD *mb, int segment_id, int base_qindex) { // Set the Q baseline allowing for any segment level adjustment if (vp9_segfeature_active(mb, segment_id, SEG_LVL_ALT_Q)) { if (mb->mb_segment_abs_delta == SEGMENT_ABSDATA) return vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q); // Abs Value else return clamp(base_qindex + vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q), 0, MAXQ); // Delta Value } else { return base_qindex; } } static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *mb) { int i; VP9_COMMON *const pc = &pbi->common; const int segment_id = mb->mode_info_context->mbmi.segment_id; const int qindex = get_qindex(mb, segment_id, pc->base_qindex); mb->q_index = qindex; for (i = 0; i < 16; i++) mb->block[i].dequant = pc->Y1dequant[qindex]; for (i = 16; i < 24; i++) mb->block[i].dequant = pc->UVdequant[qindex]; if (mb->lossless) { assert(qindex == 0); mb->inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
mb->inv_txm4x4 = vp9_short_iwalsh4x4; mb->itxm_add = vp9_dequant_idct_add_lossless_c; mb->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c; mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c; } else { mb->inv_txm4x4_1 = vp9_short_idct4x4_1; mb->inv_txm4x4 = vp9_short_idct4x4; mb->itxm_add = vp9_dequant_idct_add; mb->itxm_add_y_block = vp9_dequant_idct_add_y_block; mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block; } } #if CONFIG_CODE_NONZEROCOUNT static void propagate_nzcs(VP9_COMMON *cm, MACROBLOCKD *xd) { MODE_INFO *m = xd->mode_info_context; BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type; const int mis = cm->mode_info_stride; int n; if (sb_type == BLOCK_SIZE_SB64X64) { for (n = 0; n < 16; ++n) { int i = n >> 2; int j = n & 3; if (i == 0 && j == 0) continue; vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs, 384 * sizeof(m->mbmi.nzcs[0])); } } else if (sb_type == BLOCK_SIZE_SB32X32) { for (n = 0; n < 4; ++n) { int i = n >> 1; int j = n & 1; if (i == 0 && j == 0) continue; vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs, 384 * sizeof(m->mbmi.nzcs[0])); } } } #endif /* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it * to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. */ static void skip_recon_mb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col) { MODE_INFO *m = xd->mode_info_context; BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type; if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (sb_type == BLOCK_SIZE_SB64X64) { vp9_build_intra_predictors_sb64uv_s(xd); vp9_build_intra_predictors_sb64y_s(xd); } else if (sb_type == BLOCK_SIZE_SB32X32) { vp9_build_intra_predictors_sbuv_s(xd); vp9_build_intra_predictors_sby_s(xd); } else { vp9_build_intra_predictors_mbuv_s(xd); vp9_build_intra_predictors_mby_s(xd); } } else { if (sb_type == BLOCK_SIZE_SB64X64) { vp9_build_inter64x64_predictors_sb(xd, mb_row, mb_col); } else if (sb_type == BLOCK_SIZE_SB32X32) { vp9_build_inter32x32_predictors_sb(xd, mb_row, mb_col); } else { vp9_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride,
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
mb_row, mb_col); } } #if CONFIG_CODE_NONZEROCOUNT vpx_memset(m->mbmi.nzcs, 0, 384 * sizeof(m->mbmi.nzcs[0])); propagate_nzcs(&pbi->common, xd); #endif } static void decode_16x16(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { const TX_TYPE tx_type = get_tx_type_16x16(xd, 0); #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 16x16\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_16x16_c(tx_type, xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } else { vp9_dequant_idct_add_16x16(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, 16, xd->dst.y_stride, xd->eobs[0]); } vp9_dequant_idct_add_uv_block_8x8( xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } static void decode_8x8(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { // First do Y // if the first one is DCT_DCT assume all the rest are as well TX_TYPE tx_type = get_tx_type_8x8(xd, 0); #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 8x8\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } } #endif if (tx_type != DCT_DCT || xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = xd->block[idx].qcoeff; int16_t *dq = xd->block[0].dequant; uint8_t *pre = xd->block[ib].predictor; uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
int stride = xd->dst.y_stride; BLOCKD *b = &xd->block[ib]; if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); } tx_type = get_tx_type_8x8(xd, ib); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_8x8_c(tx_type, q, dq, pre, dst, 16, stride, xd->eobs[idx]); } else { vp9_dequant_idct_add_8x8_c(q, dq, pre, dst, 16, stride, xd->eobs[idx]); } } } else { vp9_dequant_idct_add_y_block_8x8(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd); } // Now do UV if (xd->mode_info_context->mbmi.mode == I8X8_PRED) { int i; for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]); } } else if (xd->mode_info_context->mbmi.mode == SPLITMV) { xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else { vp9_dequant_idct_add_uv_block_8x8 (xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif } static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, BOOL_DECODER* const bc) { TX_TYPE tx_type; int i, eobtotal = 0; MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
#if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("predictor\n"); for (i = 0; i < 384; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif if (mode == I8X8_PRED) { for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; const int iblock[4] = {0, 1, 4, 5}; int j; BLOCKD *b = &xd->block[ib]; int i8x8mode = b->bmi.as_mode.first; vp9_intra8x8_predict(xd, b, i8x8mode, b->predictor); for (j = 0; j < 4; j++) { b = &xd->block[ib + iblock[j]]; tx_type = get_tx_type_4x4(xd, ib + iblock[j]); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[ib + iblock[j]]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[ib + iblock[j]]); } } b = &xd->block[16 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[16 + i]); b = &xd->block[20 + i]; vp9_intra_uv4x4_predict(xd, b, i8x8mode, b->predictor); xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride, xd->eobs[20 + i]); } } else if (mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; int b_mode = xd->mode_info_context->bmi[i].as_mode.first; #if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context = vp9_find_bpred_context(xd, b); #endif if (!xd->mode_info_context->mbmi.mb_skip_coeff) eobtotal += vp9_decode_coefs_4x4(pbi, xd, bc, PLANE_TYPE_Y_WITH_DC, i); vp9_intra4x4_predict(xd, b, b_mode, b->predictor); tx_type = get_tx_type_4x4(xd, i); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } } if (!xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_decode_mb_tokens_4x4_uv(pbi, xd, bc); } vp9_build_intra_predictors_mbuv(xd); xd->itxm_add_uv_block(xd->qcoeff + 16 * 16,
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) { xd->itxm_add_y_block(xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd); xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } else { #if 0 // def DEC_DEBUG if (dec_debug) { int i; printf("\n"); printf("qcoeff 4x4\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->qcoeff[i]); if (i % 16 == 15) printf("\n"); } printf("\n"); printf("predictor\n"); for (i = 0; i < 400; i++) { printf("%3d ", xd->predictor[i]); if (i % 16 == 15) printf("\n"); } } #endif for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; tx_type = get_tx_type_4x4(xd, i); if (tx_type != DCT_DCT) { vp9_ht_dequant_idct_add_c(tx_type, b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } else { xd->itxm_add(b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->eobs[i]); } } xd->itxm_add_uv_block(xd->qcoeff + 16 * 16, xd->block[16].dequant, xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); } } static INLINE void decode_sb_16x16(MACROBLOCKD *mb, int y_size) { const int y_count = y_size * y_size; const int uv_size = y_size / 2; const int uv_count = uv_size * uv_size; const int u_qcoeff_offset = (16 * 16) * y_count; const int v_qcoeff_offset = u_qcoeff_offset + (16 * 16) * uv_count; const int u_eob_offset = 16 * y_count; const int v_eob_offset = u_eob_offset + 16 * uv_count;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
int n; for (n = 0; n < y_count; n++) { const int x_idx = n % y_size; const int y_idx = n / y_size; const int y_offset = (y_idx * 16) * mb->dst.y_stride + (x_idx * 16); const TX_TYPE tx_type = get_tx_type_16x16(mb, (y_idx * (4 * y_size) + x_idx) * 4); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_16x16(mb->qcoeff + n * 16 * 16, mb->block[0].dequant , mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n * 16]); } else { vp9_ht_dequant_idct_add_16x16_c(tx_type, mb->qcoeff + n * 16 * 16, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n * 16]); } } for (n = 0; n < uv_count; n++) { const int x_idx = n % uv_size; const int y_idx = n / uv_size; const int uv_offset = (y_idx * 16) * mb->dst.uv_stride + (x_idx * 16); vp9_dequant_idct_add_16x16(mb->qcoeff + u_qcoeff_offset + n * 16 * 16, mb->block[16].dequant, mb->dst.u_buffer + uv_offset, mb->dst.u_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[u_eob_offset + n * 16]); vp9_dequant_idct_add_16x16(mb->qcoeff + v_qcoeff_offset + n * 16 * 16, mb->block[20].dequant, mb->dst.v_buffer + uv_offset, mb->dst.v_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[v_eob_offset + n * 16]); } } static INLINE void decode_sb_8x8(MACROBLOCKD *mb, int y_size) { const int y_count = y_size * y_size; const int uv_size = y_size / 2; const int uv_count = uv_size * uv_size; const int u_qcoeff_offset = 64 * y_count; const int v_qcoeff_offset = u_qcoeff_offset + 64 * uv_count; const int u_eob_offset = 4 * y_count; const int v_eob_offset = u_eob_offset + 4 * uv_count; int n; // luma for (n = 0; n < y_count; n++) { const int x_idx = n % y_size; const int y_idx = n / y_size; const int y_offset = (y_idx * 8) * mb->dst.y_stride + (x_idx * 8); const TX_TYPE tx_type = get_tx_type_8x8(mb, (y_idx * (2 * y_size) + x_idx) * 2); if (tx_type == DCT_DCT) { vp9_dequant_idct_add_8x8_c(mb->qcoeff + n * 8 * 8, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n * 4]);
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
} else { vp9_ht_dequant_idct_add_8x8_c(tx_type, mb->qcoeff + n * 8 * 8, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n * 4]); } } // chroma for (n = 0; n < uv_count; n++) { const int x_idx = n % uv_size; const int y_idx = n / uv_size; const int uv_offset = (y_idx * 8) * mb->dst.uv_stride + (x_idx * 8); vp9_dequant_idct_add_8x8_c(mb->qcoeff + u_qcoeff_offset + n * 8 * 8, mb->block[16].dequant, mb->dst.u_buffer + uv_offset, mb->dst.u_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[u_eob_offset + n * 4]); vp9_dequant_idct_add_8x8_c(mb->qcoeff + v_qcoeff_offset + n * 8 * 8, mb->block[20].dequant, mb->dst.v_buffer + uv_offset, mb->dst.v_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[v_eob_offset + n * 4]); } } static void decode_sb_4x4(MACROBLOCKD *mb, int y_size) { const int y_count = y_size * y_size; const int uv_size = y_size / 2; const int uv_count = uv_size * uv_size; const int u_qcoeff_offset = y_count * 4 * 4; const int v_qcoeff_offset = u_qcoeff_offset + uv_count * 4 * 4; const int u_eob_offset = y_count; const int v_eob_offset = u_eob_offset + uv_count; int n; for (n = 0; n < y_count; n++) { const int x_idx = n % y_size; const int y_idx = n / y_size; const int y_offset = (y_idx * 4) * mb->dst.y_stride + (x_idx * 4); const TX_TYPE tx_type = get_tx_type_4x4(mb, y_idx * (2 * y_size) + x_idx); if (tx_type == DCT_DCT) { mb->itxm_add(mb->qcoeff + n * 4 * 4, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n]); } else { vp9_ht_dequant_idct_add_c(tx_type, mb->qcoeff + n * 4 * 4, mb->block[0].dequant, mb->dst.y_buffer + y_offset, mb->dst.y_buffer + y_offset, mb->dst.y_stride, mb->dst.y_stride, mb->eobs[n]); } } for (n = 0; n < uv_count; n++) { const int x_idx = n % uv_size; const int y_idx = n / uv_size; const int uv_offset = (y_idx * 4) * mb->dst.uv_stride + (x_idx * 4);
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
mb->itxm_add(mb->qcoeff + u_qcoeff_offset + n * 4 * 4, mb->block[16].dequant, mb->dst.u_buffer + uv_offset, mb->dst.u_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[u_eob_offset + n]); mb->itxm_add(mb->qcoeff + v_qcoeff_offset + n * 4 * 4, mb->block[20].dequant, mb->dst.v_buffer + uv_offset, mb->dst.v_buffer + uv_offset, mb->dst.uv_stride, mb->dst.uv_stride, mb->eobs[v_eob_offset + n]); } } static void decode_sb64(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int n, eobtotal; VP9_COMMON *const pc = &pbi->common; MODE_INFO *mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(mi->mbmi.sb_type == BLOCK_SIZE_SB64X64); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (mi->mbmi.mb_skip_coeff) { vp9_reset_sb64_tokens_context(xd); // Special case: Force the loopfilter to skip when eobtotal and // mb_skip_coeff are zero. skip_recon_mb(pbi, xd, mb_row, mb_col); return; } // do prediction if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sb64y_s(xd); vp9_build_intra_predictors_sb64uv_s(xd); } else { vp9_build_inter64x64_predictors_sb(xd, mb_row, mb_col); } // dequantization and idct eobtotal = vp9_decode_sb64_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter for (n = 0; n < 16; n++) { const int x_idx = n & 3, y_idx = n >> 2; if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows) mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff; } } else { switch (xd->mode_info_context->mbmi.txfm_size) { case TX_32X32: for (n = 0; n < 4; n++) { const int x_idx = n & 1, y_idx = n >> 1; const int y_offset = x_idx * 32 + y_idx * xd->dst.y_stride * 32; vp9_dequant_idct_add_32x32(xd->qcoeff + n * 1024, xd->block[0].dequant, xd->dst.y_buffer + y_offset, xd->dst.y_buffer + y_offset, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[n * 64]); } vp9_dequant_idct_add_32x32(xd->qcoeff + 4096,
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
xd->block[16].dequant, xd->dst.u_buffer, xd->dst.u_buffer, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[256]); vp9_dequant_idct_add_32x32(xd->qcoeff + 4096 + 1024, xd->block[20].dequant, xd->dst.v_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->dst.uv_stride, xd->eobs[320]); break; case TX_16X16: decode_sb_16x16(xd, 4); break; case TX_8X8: decode_sb_8x8(xd, 8); break; case TX_4X4: decode_sb_4x4(xd, 16); break; default: assert(0); } } #if CONFIG_CODE_NONZEROCOUNT propagate_nzcs(&pbi->common, xd); #endif } static void decode_sb32(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int eobtotal; VP9_COMMON *const pc = &pbi->common; MODE_INFO *mi = xd->mode_info_context; const int mis = pc->mode_info_stride; assert(mi->mbmi.sb_type == BLOCK_SIZE_SB32X32); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (mi->mbmi.mb_skip_coeff) { vp9_reset_sb_tokens_context(xd); // Special case: Force the loopfilter to skip when eobtotal and // mb_skip_coeff are zero. skip_recon_mb(pbi, xd, mb_row, mb_col); return; } // do prediction if (mi->mbmi.ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sby_s(xd); vp9_build_intra_predictors_sbuv_s(xd); } else { vp9_build_inter32x32_predictors_sb(xd, mb_row, mb_col); } // dequantization and idct eobtotal = vp9_decode_sb_tokens(pbi, xd, bc); if (eobtotal == 0) { // skip loopfilter mi->mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) mi[1].mbmi.mb_skip_coeff = 1; if (mb_row + 1 < pc->mb_rows) { mi[mis].mbmi.mb_skip_coeff = 1; if (mb_col + 1 < pc->mb_cols) mi[mis + 1].mbmi.mb_skip_coeff = 1; } } else { switch (xd->mode_info_context->mbmi.txfm_size) {
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
case TX_32X32: vp9_dequant_idct_add_32x32(xd->qcoeff, xd->block[0].dequant, xd->dst.y_buffer, xd->dst.y_buffer, xd->dst.y_stride, xd->dst.y_stride, xd->eobs[0]); vp9_dequant_idct_add_uv_block_16x16_c(xd->qcoeff + 1024, xd->block[16].dequant, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd); break; case TX_16X16: decode_sb_16x16(xd, 2); break; case TX_8X8: decode_sb_8x8(xd, 4); break; case TX_4X4: decode_sb_4x4(xd, 8); break; default: assert(0); } } #if CONFIG_CODE_NONZEROCOUNT propagate_nzcs(&pbi->common, xd); #endif } static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col, BOOL_DECODER* const bc) { int eobtotal = 0; const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; const int tx_size = xd->mode_info_context->mbmi.txfm_size; assert(!xd->mode_info_context->mbmi.sb_type); // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp9_reset_mb_tokens_context(xd); } else if (!bool_error(bc)) { if (mode != B_PRED) eobtotal = vp9_decode_mb_tokens(pbi, xd, bc); } //mode = xd->mode_info_context->mbmi.mode; if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, &pbi->common); if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV && mode != I8X8_PRED && !bool_error(bc)) { // Special case: Force the loopfilter to skip when eobtotal and // mb_skip_coeff are zero. xd->mode_info_context->mbmi.mb_skip_coeff = 1; skip_recon_mb(pbi, xd, mb_row, mb_col); return; } #if 0 // def DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size); #endif // moved to be performed before detokenization
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
// if (xd->segmentation_enabled) // mb_init_dequantizer(pbi, xd); // do prediction if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (mode != I8X8_PRED) { vp9_build_intra_predictors_mbuv(xd); if (mode != B_PRED) vp9_build_intra_predictors_mby(xd); } } else { #if 0 // def DEC_DEBUG if (dec_debug) printf("Decoding mb: %d %d interp %d\n", xd->mode_info_context->mbmi.mode, tx_size, xd->mode_info_context->mbmi.interp_filter); #endif vp9_build_inter_predictors_mb(xd, mb_row, mb_col); } if (tx_size == TX_16X16) { decode_16x16(pbi, xd, bc); } else if (tx_size == TX_8X8) { decode_8x8(pbi, xd, bc); } else { decode_4x4(pbi, xd, bc); } #ifdef DEC_DEBUG if (dec_debug) { int i, j; printf("\n"); printf("predictor y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->predictor[i * 16 + j]); printf("\n"); } printf("\n"); printf("final y\n"); for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]); printf("\n"); } printf("\n"); printf("final u\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } printf("\n"); printf("final v\n"); for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]); printf("\n"); } fflush(stdout); } #endif } static int get_delta_q(vp9_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp9_read_bit(bc)) { ret_val = vp9_read_literal(bc, 4);
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
if (vp9_read_bit(bc)) ret_val = -ret_val; } // Trigger a quantizer update if the delta-q value has changed if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include <stdio.h> FILE *vpxlog = 0; #endif static void set_offsets(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int mis = cm->mode_info_stride; const int idx = mis * mb_row + mb_col; const int dst_fb_idx = cm->new_fb_idx; const int recon_y_stride = cm->yv12_fb[dst_fb_idx].y_stride; const int recon_uv_stride = cm->yv12_fb[dst_fb_idx].uv_stride; const int recon_yoffset = mb_row * 16 * recon_y_stride + 16 * mb_col; const int recon_uvoffset = mb_row * 8 * recon_uv_stride + 8 * mb_col; xd->mode_info_context = cm->mi + idx; xd->mode_info_context->mbmi.sb_type = block_size >> 5; xd->prev_mode_info_context = cm->prev_mi + idx; xd->above_context = cm->above_context + mb_col; xd->left_context = cm->left_context + (mb_row & 3); // Distance of Mb to the various image edges. // These are specified to 8th pel as they are always compared to // values that are in 1/8th pel units block_size >>= 4; // in mb units set_mb_row(cm, xd, mb_row, block_size); set_mb_col(cm, xd, mb_col, block_size); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; } static void set_refs(VP9D_COMP *pbi, int block_size, int mb_row, int mb_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; if (mbmi->ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1]; const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx]; xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; setup_pred_block(&xd->pre, cfg, mb_row, mb_col, &xd->scale_factor[0], &xd->scale_factor_uv[0]); xd->corrupted |= cfg->corrupted; if (mbmi->second_ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1]; const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx]; setup_pred_block(&xd->second_pre, second_cfg, mb_row, mb_col, &xd->scale_factor[1], &xd->scale_factor_uv[1]); xd->corrupted |= second_cfg->corrupted; }
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
} } /* Decode a row of Superblocks (2x2 region of MBs) */ static void decode_sb_row(VP9D_COMP *pbi, VP9_COMMON *pc, int mb_row, MACROBLOCKD *xd, BOOL_DECODER* const bc) { int mb_col; // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); for (mb_col = pc->cur_tile_mb_col_start; mb_col < pc->cur_tile_mb_col_end; mb_col += 4) { if (vp9_read(bc, pc->prob_sb64_coded)) { #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 11 && pc->show_frame && mb_row == 8 && mb_col == 0); if (dec_debug) printf("Debug Decode SB64\n"); #endif set_offsets(pbi, 64, mb_row, mb_col); vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc); set_refs(pbi, 64, mb_row, mb_col); decode_sb64(pbi, xd, mb_row, mb_col, bc); xd->corrupted |= bool_error(bc); } else { int j; for (j = 0; j < 4; j++) { const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2; if (mb_row + y_idx_sb >= pc->mb_rows || mb_col + x_idx_sb >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } xd->sb_index = j; if (vp9_read(bc, pc->prob_sb32_coded)) { #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 11 && pc->show_frame && mb_row + y_idx_sb == 8 && mb_col + x_idx_sb == 0); if (dec_debug) printf("Debug Decode SB32\n"); #endif set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb); decode_sb32(pbi, xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc); xd->corrupted |= bool_error(bc); } else { int i; // Process the 4 MBs within the SB in the order: // top-left, top-right, bottom-left, bottom-right for (i = 0; i < 4; i++) { const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1); if (mb_row + y_idx >= pc->mb_rows || mb_col + x_idx >= pc->mb_cols) { // MB lies outside frame, skip on to next continue; } #ifdef DEC_DEBUG dec_debug = (pc->current_video_frame == 11 && pc->show_frame && mb_row + y_idx == 8 && mb_col + x_idx == 0); if (dec_debug)
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
printf("Debug Decode MB\n"); #endif set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx); xd->mb_index = i; vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx); decode_mb(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc); /* check if the boolean decoder has suffered an error */ xd->corrupted |= bool_error(bc); } } } } } } static void setup_token_decoder(VP9D_COMP *pbi, const unsigned char *cx_data, BOOL_DECODER* const bool_decoder) { VP9_COMMON *pc = &pbi->common; const uint8_t *user_data_end = pbi->source + pbi->source_sz; const uint8_t *partition = cx_data; ptrdiff_t bytes_left = user_data_end - partition; ptrdiff_t partition_size = bytes_left; // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(partition, partition_size, user_data_end)) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); } if (vp9_start_decode(bool_decoder, partition, (unsigned int)partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP9D_COMP *pbi) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { vp9_setup_past_independence(pc, xd); // All buffers are implicitly updated on key frames. pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; } else if (pc->error_resilient_mode) { vp9_setup_past_independence(pc, xd); } xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; xd->corrupted = 0; xd->fullpixel_mask = pc->full_pixel ? 0xfffffff8 : 0xffffffff; } #if CONFIG_CODE_NONZEROCOUNT static void read_nzc_probs_common(VP9_COMMON *cm, BOOL_DECODER* const bc, TX_SIZE tx_size) { int c, r, b, t; int tokens, nodes;
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
vp9_prob *nzc_probs; vp9_prob upd; if (!get_nzc_used(tx_size)) return; if (!vp9_read_bit(bc)) return; if (tx_size == TX_32X32) { tokens = NZC32X32_TOKENS; nzc_probs = cm->fc.nzc_probs_32x32[0][0][0]; upd = NZC_UPDATE_PROB_32X32; } else if (tx_size == TX_16X16) { tokens = NZC16X16_TOKENS; nzc_probs = cm->fc.nzc_probs_16x16[0][0][0]; upd = NZC_UPDATE_PROB_16X16; } else if (tx_size == TX_8X8) { tokens = NZC8X8_TOKENS; nzc_probs = cm->fc.nzc_probs_8x8[0][0][0]; upd = NZC_UPDATE_PROB_8X8; } else { tokens = NZC4X4_TOKENS; nzc_probs = cm->fc.nzc_probs_4x4[0][0][0]; upd = NZC_UPDATE_PROB_4X4; } nodes = tokens - 1; for (c = 0; c < MAX_NZC_CONTEXTS; ++c) { for (r = 0; r < REF_TYPES; ++r) { for (b = 0; b < BLOCK_TYPES; ++b) { int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b; int offset_nodes = offset * nodes; for (t = 0; t < nodes; ++t) { vp9_prob *p = &nzc_probs[offset_nodes + t]; if (vp9_read(bc, upd)) { *p = read_prob_diff_update(bc, *p); } } } } } } static void read_nzc_pcat_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) { int c, t, b; vp9_prob upd = NZC_UPDATE_PROB_PCAT; if (!(get_nzc_used(TX_4X4) || get_nzc_used(TX_8X8) || get_nzc_used(TX_16X16) || get_nzc_used(TX_32X32))) return; if (!vp9_read_bit(bc)) { return; } for (c = 0; c < MAX_NZC_CONTEXTS; ++c) { for (t = 0; t < NZC_TOKENS_EXTRA; ++t) { int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA]; for (b = 0; b < bits; ++b) { vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b]; if (vp9_read(bc, upd)) { *p = read_prob_diff_update(bc, *p); } } } } } static void read_nzc_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) { read_nzc_probs_common(cm, bc, TX_4X4); if (cm->txfm_mode != ONLY_4X4) read_nzc_probs_common(cm, bc, TX_8X8); if (cm->txfm_mode > ALLOW_8X8) read_nzc_probs_common(cm, bc, TX_16X16); if (cm->txfm_mode > ALLOW_16X16)
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
read_nzc_probs_common(cm, bc, TX_32X32); #ifdef NZC_PCAT_UPDATE read_nzc_pcat_probs(cm, bc); #endif } #endif // CONFIG_CODE_NONZEROCOUNT static void read_coef_probs_common(BOOL_DECODER* const bc, vp9_coeff_probs *coef_probs, TX_SIZE tx_size) { #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES; #else const int entropy_nodes_update = ENTROPY_NODES; #endif int i, j, k, l, m; if (vp9_read_bit(bc)) { for (i = 0; i < BLOCK_TYPES; i++) { for (j = 0; j < REF_TYPES; j++) { for (k = 0; k < COEF_BANDS; k++) { for (l = 0; l < PREV_COEF_CONTEXTS; l++) { #if CONFIG_CODE_NONZEROCOUNT const int mstart = get_nzc_used(tx_size); #else const int mstart = 0; #endif if (l >= 3 && k == 0) continue; for (m = mstart; m < entropy_nodes_update; m++) { vp9_prob *const p = coef_probs[i][j][k][l] + m; if (vp9_read(bc, vp9_coef_update_prob[m])) { *p = read_prob_diff_update(bc, *p); #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE if (m == UNCONSTRAINED_NODES - 1) vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j); #endif } } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) { VP9_COMMON *const pc = &pbi->common; read_coef_probs_common(bc, pc->fc.coef_probs_4x4, TX_4X4); if (pbi->common.txfm_mode != ONLY_4X4) read_coef_probs_common(bc, pc->fc.coef_probs_8x8, TX_8X8); if (pbi->common.txfm_mode > ALLOW_8X8) read_coef_probs_common(bc, pc->fc.coef_probs_16x16, TX_16X16); if (pbi->common.txfm_mode > ALLOW_16X16) read_coef_probs_common(bc, pc->fc.coef_probs_32x32, TX_32X32); } static void update_frame_size(VP9D_COMP *pbi) { VP9_COMMON *cm = &pbi->common; const int width = multiple16(cm->width); const int height = multiple16(cm->height);
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
cm->mb_rows = height >> 4; cm->mb_cols = width >> 4; cm->MBs = cm->mb_rows * cm->mb_cols; cm->mode_info_stride = cm->mb_cols + 1; memset(cm->mip, 0, (cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO)); vp9_update_mode_info_border(cm, cm->mip); cm->mi = cm->mip + cm->mode_info_stride + 1; cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1; vp9_update_mode_info_in_image(cm, cm->mi); } static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) { int i, j; xd->segmentation_enabled = vp9_read_bit(r); if (xd->segmentation_enabled) { // Read whether or not the segmentation map is being explicitly updated // this frame. xd->update_mb_segmentation_map = vp9_read_bit(r); // If so what method will be used. if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled. Read the probs used to // decode the segment id for each macro block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255; // Read the prediction probs needed to decode the segment id pc->temporal_update = vp9_read_bit(r); for (i = 0; i < PREDICTION_PROBS; i++) { pc->segment_pred_probs[i] = pc->temporal_update ? (vp9_read_bit(r) ? vp9_read_prob(r) : 255) : 255; } if (pc->temporal_update) { const vp9_prob *p = xd->mb_segment_tree_probs; vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs; const int c0 = p[0] * p[1]; const int c1 = p[0] * (256 - p[1]); const int c2 = (256 - p[0]) * p[2]; const int c3 = (256 - p[0]) * (256 - p[2]); p_mod[0] = get_binary_prob(c1, c2 + c3); p_mod[1] = get_binary_prob(c0, c2 + c3); p_mod[2] = get_binary_prob(c0 + c1, c3); p_mod[3] = get_binary_prob(c0 + c1, c2); } } xd->update_mb_segmentation_data = vp9_read_bit(r); if (xd->update_mb_segmentation_data) { xd->mb_segment_abs_delta = vp9_read_bit(r); vp9_clearall_segfeatures(xd); // For each segmentation... for (i = 0; i < MAX_MB_SEGMENTS; i++) { // For each of the segments features... for (j = 0; j < SEG_LVL_MAX; j++) { int data; // Is the feature enabled if (vp9_read_bit(r)) { // Update the feature data and mask vp9_enable_segfeature(xd, i, j); data = vp9_decode_unsigned_max(r, vp9_seg_feature_data_max(j)); // Is the segment data signed.
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
if (vp9_is_segfeature_signed(j) && vp9_read_bit(r)) { data = -data; } } else { data = 0; } vp9_set_segdata(xd, i, j, data); } } } } } static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) { int i; pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(r); pc->filter_level = vp9_read_literal(r, 6); pc->sharpness_level = vp9_read_literal(r, 3); #if CONFIG_LOOP_DERING if (vp9_read_bit(r)) pc->dering_enabled = 1 + vp9_read_literal(r, 4); else pc->dering_enabled = 0; #endif // Read in loop filter deltas applied at the MB level based on mode or ref // frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = vp9_read_bit(r); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated xd->mode_ref_lf_delta_update = vp9_read_bit(r); if (xd->mode_ref_lf_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_read_bit(r)) { // sign = vp9_read_bit(r); xd->ref_lf_deltas[i] = vp9_read_literal(r, 6); if (vp9_read_bit(r)) xd->ref_lf_deltas[i] = -xd->ref_lf_deltas[i]; // Apply sign } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_read_bit(r)) { // sign = vp9_read_bit(r); xd->mode_lf_deltas[i] = vp9_read_literal(r, 6); if (vp9_read_bit(r)) xd->mode_lf_deltas[i] = -xd->mode_lf_deltas[i]; // Apply sign } } } } } static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active, const uint8_t *data, const uint8_t *data_end) { VP9_COMMON *const pc = &pbi->common; const int width = pc->width; const int height = pc->height;
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
// If error concealment is enabled we should only parse the new size // if we have enough data. Otherwise we will end up with the wrong size. if (scaling_active && data + 4 < data_end) { pc->display_width = read_le16(data + 0); pc->display_height = read_le16(data + 2); data += 4; } if (data + 4 < data_end) { pc->width = read_le16(data + 0); pc->height = read_le16(data + 2); data += 4; } if (!scaling_active) { pc->display_width = pc->width; pc->display_height = pc->height; } if (width != pc->width || height != pc->height) { if (pc->width <= 0) { pc->width = width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->height <= 0) { pc->height = height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (!pbi->initial_width || !pbi->initial_height) { if (vp9_alloc_frame_buffers(pc, pc->width, pc->height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); pbi->initial_width = pc->width; pbi->initial_height = pc->height; } if (pc->width > pbi->initial_width) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame width too large"); } if (pc->height > pbi->initial_height) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame height too large"); } update_frame_size(pbi); } return data; } static void update_frame_context(VP9D_COMP *pbi, vp9_reader *r) { FRAME_CONTEXT *const fc = &pbi->common.fc; vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4); vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8); vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16); vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32); vp9_copy(fc->pre_ymode_prob, fc->ymode_prob); vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob); vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob); vp9_copy(fc->pre_bmode_prob, fc->bmode_prob); vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob); vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob); vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob);
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
fc->pre_nmvc = fc->nmvc; vp9_zero(fc->coef_counts_4x4); vp9_zero(fc->coef_counts_8x8); vp9_zero(fc->coef_counts_16x16); vp9_zero(fc->coef_counts_32x32); vp9_zero(fc->eob_branch_counts); vp9_zero(fc->ymode_counts); vp9_zero(fc->sb_ymode_counts); vp9_zero(fc->uv_mode_counts); vp9_zero(fc->bmode_counts); vp9_zero(fc->i8x8_mode_counts); vp9_zero(fc->sub_mv_ref_counts); vp9_zero(fc->mbsplit_counts); vp9_zero(fc->NMVcount); vp9_zero(fc->mv_ref_ct); #if CONFIG_COMP_INTERINTRA_PRED fc->pre_interintra_prob = fc->interintra_prob; vp9_zero(fc->interintra_counts); #endif #if CONFIG_CODE_NONZEROCOUNT vp9_copy(fc->pre_nzc_probs_4x4, fc->nzc_probs_4x4); vp9_copy(fc->pre_nzc_probs_8x8, fc->nzc_probs_8x8); vp9_copy(fc->pre_nzc_probs_16x16, fc->nzc_probs_16x16); vp9_copy(fc->pre_nzc_probs_32x32, fc->nzc_probs_32x32); vp9_copy(fc->pre_nzc_pcat_probs, fc->nzc_pcat_probs); vp9_zero(fc->nzc_counts_4x4); vp9_zero(fc->nzc_counts_8x8); vp9_zero(fc->nzc_counts_16x16); vp9_zero(fc->nzc_counts_32x32); vp9_zero(fc->nzc_pcat_counts); #endif read_coef_probs(pbi, r); #if CONFIG_CODE_NONZEROCOUNT read_nzc_probs(&pbi->common, r); #endif } static void decode_tiles(VP9D_COMP *pbi, const uint8_t *data, int first_partition_size, BOOL_DECODER *header_bc, BOOL_DECODER *residual_bc) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data_ptr = data + first_partition_size; int tile_row, tile_col, delta_log2_tiles; int mb_row; vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles); while (delta_log2_tiles--) { if (vp9_read_bit(header_bc)) { pc->log2_tile_columns++; } else { break; } } pc->log2_tile_rows = vp9_read_bit(header_bc); if (pc->log2_tile_rows) pc->log2_tile_rows += vp9_read_bit(header_bc); pc->tile_columns = 1 << pc->log2_tile_columns; pc->tile_rows = 1 << pc->log2_tile_rows; vpx_memset(pc->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols); if (pbi->oxcf.inv_tile_order) {
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
const int n_cols = pc->tile_columns; const uint8_t *data_ptr2[4][1 << 6]; BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak); // pre-initialize the offsets, we're going to read in inverse order data_ptr2[0][0] = data_ptr; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { if (tile_row) { const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]); data_ptr2[tile_row - 1][n_cols - 1] += 4; data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size; } for (tile_col = 1; tile_col < n_cols; tile_col++) { const int size = read_le32(data_ptr2[tile_row][tile_col - 1]); data_ptr2[tile_row][tile_col - 1] += 4; data_ptr2[tile_row][tile_col] = data_ptr2[tile_row][tile_col - 1] + size; } } for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) { vp9_get_tile_col_offsets(pc, tile_col); setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc); // Decode a row of superblocks for (mb_row = pc->cur_tile_mb_row_start; mb_row < pc->cur_tile_mb_row_end; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, residual_bc); } if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1) bc_bak = *residual_bc; } } *residual_bc = bc_bak; } else { int has_more; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) { vp9_get_tile_col_offsets(pc, tile_col); has_more = tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1; // Setup decoder setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc); // Decode a row of superblocks for (mb_row = pc->cur_tile_mb_row_start; mb_row < pc->cur_tile_mb_row_end; mb_row += 4) { decode_sb_row(pbi, pc, mb_row, xd, residual_bc); } if (has_more) { const int size = read_le32(data_ptr); data_ptr += 4 + size; } } } } } int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) { BOOL_DECODER header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common;
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data = pbi->source; const uint8_t *data_end = data + pbi->source_sz; ptrdiff_t first_partition_length_in_bytes = 0; int i, corrupt_tokens = 0; // printf("Decoding frame %d\n", pc->current_video_frame); xd->corrupted = 0; // start with no corruption of current frame pc->yv12_fb[pc->new_fb_idx].corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { int scaling_active; pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; scaling_active = (data[0] >> 5) & 1; first_partition_length_in_bytes = read_le16(data + 1); if (!read_is_valid(data, first_partition_length_in_bytes, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp9_setup_version(pc); if (pc->frame_type == KEY_FRAME) { // When error concealment is enabled we should only check the sync // code if we have enough bits available if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } data += 3; } data = setup_frame_size(pbi, scaling_active, data, data_end); } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->width == 0 || pc->height == 0) { return -1; } init_frame(pbi); // Reset the frame pointers to the current frame size vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx], pc->width, pc->height, VP9BORDERINPIXELS); if (vp9_start_decode(&header_bc, data, (unsigned int)first_partition_length_in_bytes)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc); pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc); pc->error_resilient_mode = vp9_read_bit(&header_bc); setup_segmentation(pc, xd, &header_bc); // Read common prediction model status flag probability updates for the // reference frame if (pc->frame_type == KEY_FRAME) {
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
// Set the prediction probabilities to defaults pc->ref_pred_probs[0] = 120; pc->ref_pred_probs[1] = 80; pc->ref_pred_probs[2] = 40; } else { for (i = 0; i < PREDICTION_PROBS; i++) { if (vp9_read_bit(&header_bc)) pc->ref_pred_probs[i] = vp9_read_prob(&header_bc); } } pc->prob_sb64_coded = vp9_read_prob(&header_bc); pc->prob_sb32_coded = vp9_read_prob(&header_bc); xd->lossless = vp9_read_bit(&header_bc); if (xd->lossless) { pc->txfm_mode = ONLY_4X4; } else { // Read the loop filter level and type pc->txfm_mode = vp9_read_literal(&header_bc, 2); if (pc->txfm_mode == ALLOW_32X32) pc->txfm_mode += vp9_read_bit(&header_bc); if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = vp9_read_prob(&header_bc); pc->prob_tx[1] = vp9_read_prob(&header_bc); pc->prob_tx[2] = vp9_read_prob(&header_bc); } } setup_loopfilter(pc, xd, &header_bc); // Dummy read for now vp9_read_literal(&header_bc, 2); // Read the default quantizers. { int q_update = 0; pc->base_qindex = vp9_read_literal(&header_bc, QINDEX_BITS); // AC 1st order Q = default pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update); if (q_update) vp9_init_de_quantizer(pbi); // MB level dequantizer setup mb_init_dequantizer(pbi, &pbi->mb); } // Determine if the golden frame or ARF buffer should be updated and how. // For all non key frames the GF and ARF refresh flags and sign bias // flags must be set explicitly. if (pc->frame_type == KEY_FRAME) { pc->active_ref_idx[0] = pc->new_fb_idx; pc->active_ref_idx[1] = pc->new_fb_idx; pc->active_ref_idx[2] = pc->new_fb_idx; } else { // Should the GF or ARF be updated from the current frame pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES); // Select active reference frames for (i = 0; i < 3; i++) { int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2); pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num]; } pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
// Is high precision mv allowed xd->allow_high_precision_mv = vp9_read_bit(&header_bc); // Read the type of subpel filter to use pc->mcomp_filter_type = vp9_read_bit(&header_bc) ? SWITCHABLE : vp9_read_literal(&header_bc, 2); #if CONFIG_COMP_INTERINTRA_PRED pc->use_interintra = vp9_read_bit(&header_bc); #endif /* Calculate scaling factors for each of the 3 available references */ for (i = 0; i < 3; ++i) { if (pc->active_ref_idx[i] >= NUM_YV12_BUFFERS) { memset(&pc->active_ref_scale[i], 0, sizeof(pc->active_ref_scale[i])); continue; } vp9_setup_scale_factors_for_frame(&pc->active_ref_scale[i], &pc->yv12_fb[pc->active_ref_idx[i]], pc->width, pc->height); } // To enable choice of different interploation filters vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } if (!pc->error_resilient_mode) { pc->refresh_entropy_probs = vp9_read_bit(&header_bc); pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc); } else { pc->refresh_entropy_probs = 0; pc->frame_parallel_decoding_mode = 1; } pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2); vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx], sizeof(pc->fc)); // Read inter mode probability context updates if (pc->frame_type != KEY_FRAME) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < 4; j++) { if (vp9_read(&header_bc, 252)) { pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc); } } } } #if CONFIG_MODELCOEFPROB && ADJUST_KF_COEF_PROBS if (pc->frame_type == KEY_FRAME) vp9_adjust_default_coef_probs(pc); #endif #if CONFIG_NEW_MVREF // If Key frame reset mv ref id probabilities to defaults if (pc->frame_type != KEY_FRAME) { // Read any mv_ref index probability updates int i, j; for (i = 0; i < MAX_REF_FRAMES; ++i) { // Skip the dummy entry for intra ref frame. if (i == INTRA_FRAME) { continue; } // Read any updates to probabilities for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) {
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) { xd->mb_mv_ref_probs[i][j] = vp9_read_prob(&header_bc); } } } } #endif if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,R:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pbi->refresh_frame_flags, pc->base_qindex); fclose(z); } update_frame_context(pbi, &header_bc); // Initialize xd pointers. Any reference should do for xd->pre, so use 0. vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc->last_frame_seg_map, vpx_calloc((pc->mb_rows * pc->mb_cols), 1)); /* set up frame new frame for intra coded blocks */ vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp9_setup_block_dptrs(xd); vp9_build_block_doffsets(xd); /* clear out the coeff buffer */ vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); /* Read the mb_no_coeff_skip flag */ pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc); vp9_decode_mode_mvs_init(pbi, &header_bc); decode_tiles(pbi, data, first_partition_length_in_bytes, &header_bc, &residual_bc); corrupt_tokens |= xd->corrupted; // keep track of the last coded dimensions pc->last_width = pc->width; pc->last_height = pc->height; // Collect information about decoder corruption. // 1. Check first boolean decoder for errors. // 2. Check the macroblock information pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc) | corrupt_tokens; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(pc);
18911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928
#if CONFIG_CODE_NONZEROCOUNT vp9_adapt_nzc_probs(pc); #endif } if (pc->frame_type != KEY_FRAME) { if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_mode_probs(pc); vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv); vp9_adapt_mode_context(&pbi->common); } } if (pc->refresh_entropy_probs) { vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = residual_bc.pos + header_bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif /* Find the end of the coded buffer */ while (residual_bc.count > CHAR_BIT && residual_bc.count < VP9_BD_VALUE_SIZE) { residual_bc.count -= CHAR_BIT; residual_bc.user_buffer--; } *p_data_end = residual_bc.user_buffer; return 0; }