vp9_bitstream.c 48.68 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_treecoder.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_pragmas.h"
#include "vp9/encoder/vp9_mcomp.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_bitstream.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_subexp.h"
#include "vp9/encoder/vp9_write_bit_buffer.h"
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
#ifdef ENTROPY_STATS
int intra_mode_stats[VP9_INTRA_MODES]
                    [VP9_INTRA_MODES]
                    [VP9_INTRA_MODES];
vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES];
extern unsigned int active_section;
#endif
#ifdef MODE_STATS
int64_t tx_count_32x32p_stats[TX_SIZE_CONTEXTS][TX_SIZES];
int64_t tx_count_16x16p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 1];
int64_t tx_count_8x8p_stats[TX_SIZE_CONTEXTS][TX_SIZES - 2];
int64_t switchable_interp_stats[VP9_SWITCHABLE_FILTERS+1]
                               [VP9_SWITCHABLE_FILTERS];
void init_tx_count_stats() {
  vp9_zero(tx_count_32x32p_stats);
  vp9_zero(tx_count_16x16p_stats);
  vp9_zero(tx_count_8x8p_stats);
void init_switchable_interp_stats() {
  vp9_zero(switchable_interp_stats);
static void update_tx_count_stats(VP9_COMMON *cm) {
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES; j++) { tx_count_32x32p_stats[i][j] += cm->fc.tx_count_32x32p[i][j]; } } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES - 1; j++) { tx_count_16x16p_stats[i][j] += cm->fc.tx_count_16x16p[i][j]; } } for (i = 0; i < TX_SIZE_CONTEXTS; i++) { for (j = 0; j < TX_SIZES - 2; j++) { tx_count_8x8p_stats[i][j] += cm->fc.tx_count_8x8p[i][j]; } } } static void update_switchable_interp_stats(VP9_COMMON *cm) { int i, j; for (i = 0; i < VP9_SWITCHABLE_FILTERS+1; ++i) for (j = 0; j < VP9_SWITCHABLE_FILTERS; ++j) { switchable_interp_stats[i][j] += cm->fc.switchable_interp_count[i][j]; } } void write_tx_count_stats() { int i, j; FILE *fp = fopen("tx_count.bin", "wb"); fwrite(tx_count_32x32p_stats, sizeof(tx_count_32x32p_stats), 1, fp); fwrite(tx_count_16x16p_stats, sizeof(tx_count_16x16p_stats), 1, fp); fwrite(tx_count_8x8p_stats, sizeof(tx_count_8x8p_stats), 1, fp); fclose(fp); printf( "vp9_default_tx_count_32x32p[TX_SIZE_CONTEXTS][TX_SIZES] = {\n"); for (i = 0; i < TX_SIZE_CONTEXTS; i++) { printf(" { "); for (j = 0; j < TX_SIZES; j++) { printf("%"PRId64", ", tx_count_32x32p_stats[i][j]); } printf("},\n"); } printf("};\n"); printf( "vp9_default_tx_count_16x16p[TX_SIZE_CONTEXTS][TX_SIZES-1] = {\n"); for (i = 0; i < TX_SIZE_CONTEXTS; i++) { printf(" { "); for (j = 0; j < TX_SIZES - 1; j++) { printf("%"PRId64", ", tx_count_16x16p_stats[i][j]); } printf("},\n"); } printf("};\n"); printf( "vp9_default_tx_count_8x8p[TX_SIZE_CONTEXTS][TX_SIZES-2] = {\n"); for (i = 0; i < TX_SIZE_CONTEXTS; i++) { printf(" { "); for (j = 0; j < TX_SIZES - 2; j++) { printf("%"PRId64", ", tx_count_8x8p_stats[i][j]); } printf("},\n"); } printf("};\n"); } void write_switchable_interp_stats() { int i, j; FILE *fp = fopen("switchable_interp.bin", "wb"); fwrite(switchable_interp_stats, sizeof(switchable_interp_stats), 1, fp);
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
fclose(fp); printf( "vp9_default_switchable_filter_count[VP9_SWITCHABLE_FILTERS+1]" "[VP9_SWITCHABLE_FILTERS] = {\n"); for (i = 0; i < VP9_SWITCHABLE_FILTERS+1; i++) { printf(" { "); for (j = 0; j < VP9_SWITCHABLE_FILTERS; j++) { printf("%"PRId64", ", switchable_interp_stats[i][j]); } printf("},\n"); } printf("};\n"); } #endif static INLINE void write_be32(uint8_t *p, int value) { p[0] = value >> 24; p[1] = value >> 16; p[2] = value >> 8; p[3] = value; } void vp9_encode_unsigned_max(struct vp9_write_bit_buffer *wb, int data, int max) { vp9_wb_write_literal(wb, data, get_unsigned_bits(max)); } static void update_mode( vp9_writer *w, int n, const struct vp9_token tok[/* n */], vp9_tree tree, vp9_prob Pnew[/* n-1 */], vp9_prob Pcur[/* n-1 */], unsigned int bct[/* n-1 */] [2], const unsigned int num_events[/* n */] ) { int i = 0; vp9_tree_probs_from_distribution(tree, Pnew, bct, num_events, 0); n--; for (i = 0; i < n; ++i) { vp9_cond_prob_diff_update(w, &Pcur[i], VP9_MODE_UPDATE_PROB, bct[i]); } } static void update_mbintra_mode_probs(VP9_COMP* const cpi, vp9_writer* const bc) { VP9_COMMON *const cm = &cpi->common; int j; vp9_prob pnew[VP9_INTRA_MODES - 1]; unsigned int bct[VP9_INTRA_MODES - 1][2]; for (j = 0; j < BLOCK_SIZE_GROUPS; j++) update_mode(bc, VP9_INTRA_MODES, vp9_intra_mode_encodings, vp9_intra_mode_tree, pnew, cm->fc.y_mode_prob[j], bct, (unsigned int *)cpi->y_mode_count[j]); } static void write_selected_tx_size(const VP9_COMP *cpi, TX_SIZE tx_size, BLOCK_SIZE_TYPE bsize, vp9_writer *w) { const MACROBLOCKD *const xd = &cpi->mb.e_mbd; const vp9_prob *tx_probs = get_tx_probs2(xd, &cpi->common.fc.tx_probs); vp9_write(w, tx_size != TX_4X4, tx_probs[0]); if (bsize >= BLOCK_SIZE_MB16X16 && tx_size != TX_4X4) { vp9_write(w, tx_size != TX_8X8, tx_probs[1]); if (bsize >= BLOCK_SIZE_SB32X32 && tx_size != TX_8X8)
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
vp9_write(w, tx_size != TX_16X16, tx_probs[2]); } } static int write_skip_coeff(const VP9_COMP *cpi, int segment_id, MODE_INFO *m, vp9_writer *w) { const MACROBLOCKD *const xd = &cpi->mb.e_mbd; if (vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_SKIP)) { return 1; } else { const int skip_coeff = m->mbmi.mb_skip_coeff; vp9_write(w, skip_coeff, vp9_get_pred_prob_mbskip(&cpi->common, xd)); return skip_coeff; } } void vp9_update_skip_probs(VP9_COMP *cpi, vp9_writer *w) { VP9_COMMON *cm = &cpi->common; int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) vp9_cond_prob_diff_update(w, &cm->fc.mbskip_probs[k], VP9_MODE_UPDATE_PROB, cm->counts.mbskip[k]); } static void write_intra_mode(vp9_writer *bc, int m, const vp9_prob *p) { write_token(bc, vp9_intra_mode_tree, p, vp9_intra_mode_encodings + m); } static void update_switchable_interp_probs(VP9_COMP *const cpi, vp9_writer* const bc) { VP9_COMMON *const pc = &cpi->common; unsigned int branch_ct[VP9_SWITCHABLE_FILTERS + 1] [VP9_SWITCHABLE_FILTERS - 1][2]; vp9_prob new_prob[VP9_SWITCHABLE_FILTERS + 1][VP9_SWITCHABLE_FILTERS - 1]; int i, j; for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { vp9_tree_probs_from_distribution( vp9_switchable_interp_tree, new_prob[j], branch_ct[j], pc->counts.switchable_interp[j], 0); } for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j) { for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) { vp9_cond_prob_diff_update(bc, &pc->fc.switchable_interp_prob[j][i], VP9_MODE_UPDATE_PROB, branch_ct[j][i]); } } #ifdef MODE_STATS if (!cpi->dummy_packing) update_switchable_interp_stats(pc); #endif } static void update_inter_mode_probs(VP9_COMMON *pc, vp9_writer* const bc) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; i++) { for (j = 0; j < VP9_INTER_MODES - 1; j++) { vp9_cond_prob_diff_update(bc, &pc->fc.inter_mode_probs[i][j], VP9_MODE_UPDATE_PROB, pc->counts.inter_mode[i][j]); } } } static void pack_mb_tokens(vp9_writer* const bc, TOKENEXTRA **tp, const TOKENEXTRA *const stop) { TOKENEXTRA *p = *tp;
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
while (p < stop) { const int t = p->token; const struct vp9_token *const a = vp9_coef_encodings + t; const vp9_extra_bit *const b = vp9_extra_bits + t; int i = 0; const vp9_prob *pp; int v = a->value; int n = a->len; vp9_prob probs[ENTROPY_NODES]; if (t == EOSB_TOKEN) { ++p; break; } if (t >= TWO_TOKEN) { vp9_model_to_full_probs(p->context_tree, probs); pp = probs; } else { pp = p->context_tree; } assert(pp != 0); /* skip one or two nodes */ if (p->skip_eob_node) { n -= p->skip_eob_node; i = 2 * p->skip_eob_node; } do { const int bb = (v >> --n) & 1; vp9_write(bc, bb, pp[i >> 1]); i = vp9_coef_tree[i + bb]; } while (n); if (b->base_val) { const int e = p->extra, l = b->len; if (l) { const unsigned char *pb = b->prob; int v = e >> 1; int n = l; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; vp9_write(bc, bb, pb[i >> 1]); i = b->tree[i + bb]; } while (n); } vp9_write_bit(bc, e & 1); } ++p; } *tp = p; } static void write_sb_mv_ref(vp9_writer *w, MB_PREDICTION_MODE mode, const vp9_prob *p) { assert(is_inter_mode(mode)); write_token(w, vp9_inter_mode_tree, p, &vp9_inter_mode_encodings[mode - NEARESTMV]); } static void write_segment_id(vp9_writer *w, const struct segmentation *seg, int segment_id) { if (seg->enabled && seg->update_map)
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
treed_write(w, vp9_segment_tree, seg->tree_probs, segment_id, 3); } // This function encodes the reference frame static void encode_ref_frame(VP9_COMP *cpi, vp9_writer *bc) { VP9_COMMON *const pc = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mi = &xd->mode_info_context->mbmi; const int segment_id = mi->segment_id; int seg_ref_active = vp9_segfeature_active(&xd->seg, segment_id, SEG_LVL_REF_FRAME); // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (!seg_ref_active) { // does the feature use compound prediction or not // (if not specified at the frame/segment level) if (pc->comp_pred_mode == HYBRID_PREDICTION) { vp9_write(bc, mi->ref_frame[1] > INTRA_FRAME, vp9_get_pred_prob_comp_inter_inter(pc, xd)); } else { assert((mi->ref_frame[1] <= INTRA_FRAME) == (pc->comp_pred_mode == SINGLE_PREDICTION_ONLY)); } if (mi->ref_frame[1] > INTRA_FRAME) { vp9_write(bc, mi->ref_frame[0] == GOLDEN_FRAME, vp9_get_pred_prob_comp_ref_p(pc, xd)); } else { vp9_write(bc, mi->ref_frame[0] != LAST_FRAME, vp9_get_pred_prob_single_ref_p1(pc, xd)); if (mi->ref_frame[0] != LAST_FRAME) vp9_write(bc, mi->ref_frame[0] != GOLDEN_FRAME, vp9_get_pred_prob_single_ref_p2(pc, xd)); } } else { assert(mi->ref_frame[1] <= INTRA_FRAME); assert(vp9_get_segdata(&xd->seg, segment_id, SEG_LVL_REF_FRAME) == mi->ref_frame[0]); } // if using the prediction mdoel we have nothing further to do because // the reference frame is fully coded by the segment } static void pack_inter_mode_mvs(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, int mi_row, int mi_col) { VP9_COMMON *const pc = &cpi->common; const nmv_context *nmvc = &pc->fc.nmvc; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; struct segmentation *seg = &xd->seg; MB_MODE_INFO *const mi = &m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame[0]; const MB_PREDICTION_MODE mode = mi->mode; const int segment_id = mi->segment_id; int skip_coeff; const BLOCK_SIZE_TYPE bsize = mi->sb_type; x->partition_info = x->pi + (m - pc->mi); #ifdef ENTROPY_STATS active_section = 9; #endif if (seg->update_map) { if (seg->temporal_update) { const int pred_flag = mi->seg_id_predicted; vp9_prob pred_prob = vp9_get_pred_prob_seg_id(xd); vp9_write(bc, pred_flag, pred_prob);
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
if (!pred_flag) write_segment_id(bc, seg, segment_id); } else { write_segment_id(bc, seg, segment_id); } } skip_coeff = write_skip_coeff(cpi, segment_id, m, bc); if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) vp9_write(bc, rf != INTRA_FRAME, vp9_get_pred_prob_intra_inter(pc, xd)); if (bsize >= BLOCK_SIZE_SB8X8 && pc->tx_mode == TX_MODE_SELECT && !(rf != INTRA_FRAME && (skip_coeff || vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)))) { write_selected_tx_size(cpi, mi->txfm_size, bsize, bc); } if (rf == INTRA_FRAME) { #ifdef ENTROPY_STATS active_section = 6; #endif if (bsize >= BLOCK_SIZE_SB8X8) { write_intra_mode(bc, mode, pc->fc.y_mode_prob[size_group_lookup[bsize]]); } else { int idx, idy; int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { const MB_PREDICTION_MODE bm = m->bmi[idy * 2 + idx].as_mode; write_intra_mode(bc, bm, pc->fc.y_mode_prob[0]); } } write_intra_mode(bc, mi->uv_mode, pc->fc.uv_mode_prob[mode]); } else { vp9_prob *mv_ref_p; encode_ref_frame(cpi, bc); mv_ref_p = cpi->common.fc.inter_mode_probs[mi->mb_mode_context[rf]]; #ifdef ENTROPY_STATS active_section = 3; #endif // If segment skip is not enabled code the mode. if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { if (bsize >= BLOCK_SIZE_SB8X8) { write_sb_mv_ref(bc, mode, mv_ref_p); vp9_accum_mv_refs(&cpi->common, mode, mi->mb_mode_context[rf]); } } if (cpi->common.mcomp_filter_type == SWITCHABLE) { write_token(bc, vp9_switchable_interp_tree, vp9_get_pred_probs_switchable_interp(&cpi->common, xd), vp9_switchable_interp_encodings + vp9_switchable_interp_map[mi->interp_filter]); } else { assert(mi->interp_filter == cpi->common.mcomp_filter_type); } if (bsize < BLOCK_SIZE_SB8X8) { int j; MB_PREDICTION_MODE blockmode; int_mv blockmv; int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { j = idy * 2 + idx; blockmode = x->partition_info->bmi[j].mode; blockmv = m->bmi[j].as_mv[0]; write_sb_mv_ref(bc, blockmode, mv_ref_p); vp9_accum_mv_refs(&cpi->common, blockmode, mi->mb_mode_context[rf]); if (blockmode == NEWMV) { #ifdef ENTROPY_STATS active_section = 11; #endif vp9_encode_mv(cpi, bc, &blockmv.as_mv, &mi->best_mv.as_mv, nmvc, xd->allow_high_precision_mv); if (mi->ref_frame[1] > INTRA_FRAME) vp9_encode_mv(cpi, bc, &m->bmi[j].as_mv[1].as_mv, &mi->best_second_mv.as_mv, nmvc, xd->allow_high_precision_mv); } } } } else if (mode == NEWMV) { #ifdef ENTROPY_STATS active_section = 5; #endif vp9_encode_mv(cpi, bc, &mi->mv[0].as_mv, &mi->best_mv.as_mv, nmvc, xd->allow_high_precision_mv); if (mi->ref_frame[1] > INTRA_FRAME) vp9_encode_mv(cpi, bc, &mi->mv[1].as_mv, &mi->best_second_mv.as_mv, nmvc, xd->allow_high_precision_mv); } } } static void write_mb_modes_kf(const VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, int mi_row, int mi_col) { const VP9_COMMON *const c = &cpi->common; const MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int ym = m->mbmi.mode; const int mis = c->mode_info_stride; const int segment_id = m->mbmi.segment_id; if (xd->seg.update_map) write_segment_id(bc, &xd->seg, m->mbmi.segment_id); write_skip_coeff(cpi, segment_id, m, bc); if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8 && c->tx_mode == TX_MODE_SELECT) write_selected_tx_size(cpi, m->mbmi.txfm_size, m->mbmi.sb_type, bc); if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) { const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis); const MB_PREDICTION_MODE L = xd->left_available ? left_block_mode(m, 0) : DC_PRED; write_intra_mode(bc, ym, vp9_kf_y_mode_prob[A][L]); } else { int idx, idy; int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[m->mbmi.sb_type]; int num_4x4_blocks_high = num_4x4_blocks_high_lookup[m->mbmi.sb_type]; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { int i = idy * 2 + idx; const MB_PREDICTION_MODE A = above_block_mode(m, i, mis); const MB_PREDICTION_MODE L = (xd->left_available || idx) ? left_block_mode(m, i) : DC_PRED;
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
const int bm = m->bmi[i].as_mode; #ifdef ENTROPY_STATS ++intra_mode_stats[A][L][bm]; #endif write_intra_mode(bc, bm, vp9_kf_y_mode_prob[A][L]); } } } write_intra_mode(bc, m->mbmi.uv_mode, vp9_kf_uv_mode_prob[ym]); } static void write_modes_b(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; if (m->mbmi.sb_type < BLOCK_SIZE_SB8X8) if (xd->ab_index > 0) return; xd->mode_info_context = m; set_mi_row_col(&cpi->common, xd, mi_row, 1 << mi_height_log2(m->mbmi.sb_type), mi_col, 1 << mi_width_log2(m->mbmi.sb_type)); if ((cm->frame_type == KEY_FRAME) || cm->intra_only) { write_mb_modes_kf(cpi, m, bc, mi_row, mi_col); #ifdef ENTROPY_STATS active_section = 8; #endif } else { pack_inter_mode_mvs(cpi, m, bc, mi_row, mi_col); #ifdef ENTROPY_STATS active_section = 1; #endif } assert(*tok < tok_end); pack_mb_tokens(bc, tok, tok_end); } static void write_modes_sb(VP9_COMP *cpi, MODE_INFO *m, vp9_writer *bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; const int mis = cm->mode_info_stride; int bsl = b_width_log2(bsize); int bs = (1 << bsl) / 4; // mode_info step for subsize int n; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE_TYPE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = partition_lookup[bsl][m->mbmi.sb_type]; if (bsize < BLOCK_SIZE_SB8X8) if (xd->ab_index > 0) return; if (bsize >= BLOCK_SIZE_SB8X8) { int pl; const int idx = check_bsize_coverage(cm, xd, mi_row, mi_col, bsize); set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); // encode the partition information if (idx == 0)
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
write_token(bc, vp9_partition_tree, cm->fc.partition_prob[cm->frame_type][pl], vp9_partition_encodings + partition); else if (idx > 0) vp9_write(bc, partition == PARTITION_SPLIT, cm->fc.partition_prob[cm->frame_type][pl][idx]); } subsize = get_subsize(bsize, partition); *(get_sb_index(xd, subsize)) = 0; switch (partition) { case PARTITION_NONE: write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); break; case PARTITION_HORZ: write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); *(get_sb_index(xd, subsize)) = 1; if ((mi_row + bs) < cm->mi_rows) write_modes_b(cpi, m + bs * mis, bc, tok, tok_end, mi_row + bs, mi_col); break; case PARTITION_VERT: write_modes_b(cpi, m, bc, tok, tok_end, mi_row, mi_col); *(get_sb_index(xd, subsize)) = 1; if ((mi_col + bs) < cm->mi_cols) write_modes_b(cpi, m + bs, bc, tok, tok_end, mi_row, mi_col + bs); break; case PARTITION_SPLIT: for (n = 0; n < 4; n++) { int j = n >> 1, i = n & 0x01; *(get_sb_index(xd, subsize)) = n; write_modes_sb(cpi, m + j * bs * mis + i * bs, bc, tok, tok_end, mi_row + j * bs, mi_col + i * bs, subsize); } break; default: assert(0); } // update partition context if (bsize >= BLOCK_SIZE_SB8X8 && (bsize == BLOCK_SIZE_SB8X8 || partition != PARTITION_SPLIT)) { set_partition_seg_context(cm, xd, mi_row, mi_col); update_partition_context(xd, subsize, bsize); } } static void write_modes(VP9_COMP *cpi, vp9_writer* const bc, TOKENEXTRA **tok, TOKENEXTRA *tok_end) { VP9_COMMON *const c = &cpi->common; const int mis = c->mode_info_stride; MODE_INFO *m, *m_ptr = c->mi; int mi_row, mi_col; m_ptr += c->cur_tile_mi_col_start + c->cur_tile_mi_row_start * mis; for (mi_row = c->cur_tile_mi_row_start; mi_row < c->cur_tile_mi_row_end; mi_row += 8, m_ptr += 8 * mis) { m = m_ptr; vp9_zero(c->left_seg_context); for (mi_col = c->cur_tile_mi_col_start; mi_col < c->cur_tile_mi_col_end; mi_col += MI_BLOCK_SIZE, m += MI_BLOCK_SIZE) write_modes_sb(cpi, m, bc, tok, tok_end, mi_row, mi_col, BLOCK_SIZE_SB64X64); } } /* This function is used for debugging probability trees. */ static void print_prob_tree(vp9_coeff_probs *coef_probs, int block_types) { /* print coef probability tree */
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
int i, j, k, l, m; FILE *f = fopen("enc_tree_probs.txt", "a"); fprintf(f, "{\n"); for (i = 0; i < block_types; i++) { fprintf(f, " {\n"); for (j = 0; j < REF_TYPES; ++j) { fprintf(f, " {\n"); for (k = 0; k < COEF_BANDS; k++) { fprintf(f, " {\n"); for (l = 0; l < PREV_COEF_CONTEXTS; l++) { fprintf(f, " {"); for (m = 0; m < ENTROPY_NODES; m++) { fprintf(f, "%3u, ", (unsigned int)(coef_probs[i][j][k][l][m])); } } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, " }\n"); } fprintf(f, "}\n"); fclose(f); } static void build_tree_distribution(VP9_COMP *cpi, TX_SIZE tx_size) { vp9_coeff_probs_model *coef_probs = cpi->frame_coef_probs[tx_size]; vp9_coeff_count *coef_counts = cpi->coef_counts[tx_size]; unsigned int (*eob_branch_ct)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS] = cpi->common.counts.eob_branch[tx_size]; vp9_coeff_stats *coef_branch_ct = cpi->frame_branch_ct[tx_size]; vp9_prob full_probs[ENTROPY_NODES]; int i, j, k, l; for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { if (l >= 3 && k == 0) continue; vp9_tree_probs_from_distribution(vp9_coef_tree, full_probs, coef_branch_ct[i][j][k][l], coef_counts[i][j][k][l], 0); vpx_memcpy(coef_probs[i][j][k][l], full_probs, sizeof(vp9_prob) * UNCONSTRAINED_NODES); coef_branch_ct[i][j][k][l][0][1] = eob_branch_ct[i][j][k][l] - coef_branch_ct[i][j][k][l][0][0]; coef_probs[i][j][k][l][0] = get_binary_prob(coef_branch_ct[i][j][k][l][0][0], coef_branch_ct[i][j][k][l][0][1]); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) { int t; for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) context_counters[tx_size][i][j][k][l][t] += coef_counts[i][j][k][l][t]; context_counters[tx_size][i][j][k][l][MAX_ENTROPY_TOKENS] += eob_branch_ct[i][j][k][l]; } #endif } } } } } static void build_coeff_contexts(VP9_COMP *cpi) { TX_SIZE t;
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
for (t = TX_4X4; t <= TX_32X32; t++) build_tree_distribution(cpi, t); } static void update_coef_probs_common(vp9_writer* const bc, VP9_COMP *cpi, TX_SIZE tx_size) { vp9_coeff_probs_model *new_frame_coef_probs = cpi->frame_coef_probs[tx_size]; vp9_coeff_probs_model *old_frame_coef_probs = cpi->common.fc.coef_probs[tx_size]; vp9_coeff_stats *frame_branch_ct = cpi->frame_branch_ct[tx_size]; int i, j, k, l, t; int update[2] = {0, 0}; int savings; const int entropy_nodes_update = UNCONSTRAINED_NODES; const int tstart = 0; /* dry run to see if there is any udpate at all needed */ savings = 0; for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { // int prev_coef_savings[ENTROPY_NODES] = {0}; for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { for (t = tstart; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; const vp9_prob oldp = old_frame_coef_probs[i][j][k][l][t]; const vp9_prob upd = VP9_COEF_UPDATE_PROB; int s; int u = 0; if (l >= 3 && k == 0) continue; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], oldp, &newp, upd); if (s > 0 && newp != oldp) u = 1; if (u) savings += s - (int)(vp9_cost_zero(upd)); else savings -= (int)(vp9_cost_zero(upd)); update[u]++; } } } } } // printf("Update %d %d, savings %d\n", update[0], update[1], savings); /* Is coef updated at all */ if (update[1] == 0 || savings < 0) { vp9_write_bit(bc, 0); return; } vp9_write_bit(bc, 1); for (i = 0; i < BLOCK_TYPES; ++i) { for (j = 0; j < REF_TYPES; ++j) { for (k = 0; k < COEF_BANDS; ++k) { // int prev_coef_savings[ENTROPY_NODES] = {0}; for (l = 0; l < PREV_COEF_CONTEXTS; ++l) { // calc probs and branch cts for this frame only for (t = tstart; t < entropy_nodes_update; ++t) { vp9_prob newp = new_frame_coef_probs[i][j][k][l][t]; vp9_prob *oldp = old_frame_coef_probs[i][j][k][l] + t; const vp9_prob upd = VP9_COEF_UPDATE_PROB;
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
int s; int u = 0; if (l >= 3 && k == 0) continue; if (t == PIVOT_NODE) s = vp9_prob_diff_update_savings_search_model( frame_branch_ct[i][j][k][l][0], old_frame_coef_probs[i][j][k][l], &newp, upd, i, j); else s = vp9_prob_diff_update_savings_search( frame_branch_ct[i][j][k][l][t], *oldp, &newp, upd); if (s > 0 && newp != *oldp) u = 1; vp9_write(bc, u, upd); #ifdef ENTROPY_STATS if (!cpi->dummy_packing) ++tree_update_hist[tx_size][i][j][k][l][t][u]; #endif if (u) { /* send/use new probability */ vp9_write_prob_diff_update(bc, newp, *oldp); *oldp = newp; } } } } } } } static void update_coef_probs(VP9_COMP* const cpi, vp9_writer* const bc) { const TX_MODE tx_mode = cpi->common.tx_mode; vp9_clear_system_state(); // Build the cofficient contexts based on counts collected in encode loop build_coeff_contexts(cpi); update_coef_probs_common(bc, cpi, TX_4X4); // do not do this if not even allowed if (tx_mode > ONLY_4X4) update_coef_probs_common(bc, cpi, TX_8X8); if (tx_mode > ALLOW_8X8) update_coef_probs_common(bc, cpi, TX_16X16); if (tx_mode > ALLOW_16X16) update_coef_probs_common(bc, cpi, TX_32X32); } static void encode_loopfilter(struct loopfilter *lf, struct vp9_write_bit_buffer *wb) { int i; // Encode the loop filter level and type vp9_wb_write_literal(wb, lf->filter_level, 6); vp9_wb_write_literal(wb, lf->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or // ref frame (if they are enabled). vp9_wb_write_bit(wb, lf->mode_ref_delta_enabled); if (lf->mode_ref_delta_enabled) { // Do the deltas need to be updated vp9_wb_write_bit(wb, lf->mode_ref_delta_update); if (lf->mode_ref_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
const int delta = lf->ref_deltas[i]; // Frame level data if (delta != lf->last_ref_deltas[i]) { lf->last_ref_deltas[i] = delta; vp9_wb_write_bit(wb, 1); assert(delta != 0); vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); vp9_wb_write_bit(wb, delta < 0); } else { vp9_wb_write_bit(wb, 0); } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { const int delta = lf->mode_deltas[i]; if (delta != lf->last_mode_deltas[i]) { lf->last_mode_deltas[i] = delta; vp9_wb_write_bit(wb, 1); assert(delta != 0); vp9_wb_write_literal(wb, abs(delta) & 0x3F, 6); vp9_wb_write_bit(wb, delta < 0); } else { vp9_wb_write_bit(wb, 0); } } } } } static void write_delta_q(struct vp9_write_bit_buffer *wb, int delta_q) { if (delta_q != 0) { vp9_wb_write_bit(wb, 1); vp9_wb_write_literal(wb, abs(delta_q), 4); vp9_wb_write_bit(wb, delta_q < 0); } else { vp9_wb_write_bit(wb, 0); } } static void encode_quantization(VP9_COMMON *cm, struct vp9_write_bit_buffer *wb) { vp9_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); write_delta_q(wb, cm->y_dc_delta_q); write_delta_q(wb, cm->uv_dc_delta_q); write_delta_q(wb, cm->uv_ac_delta_q); } static void encode_segmentation(VP9_COMP *cpi, struct vp9_write_bit_buffer *wb) { int i, j; struct segmentation *seg = &cpi->mb.e_mbd.seg; vp9_wb_write_bit(wb, seg->enabled); if (!seg->enabled) return; // Segmentation map vp9_wb_write_bit(wb, seg->update_map); if (seg->update_map) { // Select the coding strategy (temporal or spatial) vp9_choose_segmap_coding_method(cpi); // Write out probabilities used to decode unpredicted macro-block segments for (i = 0; i < SEG_TREE_PROBS; i++) { const int prob = seg->tree_probs[i];