vp9_decodframe.c 45.21 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <assert.h>
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_dsubexp.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/decoder/vp9_read_bit_buffer.h"
#include "vp9/decoder/vp9_thread.h"
#include "vp9/decoder/vp9_treereader.h"
typedef struct TileWorkerData {
  VP9_COMMON *cm;
  vp9_reader bit_reader;
  DECLARE_ALIGNED(16, MACROBLOCKD, xd);
} TileWorkerData;
static int read_be32(const uint8_t *p) {
  return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3];
static int is_compound_prediction_allowed(const VP9_COMMON *cm) {
  int i;
  for (i = 1; i < ALLOWED_REFS_PER_FRAME; ++i)
    if  (cm->ref_frame_sign_bias[i + 1] != cm->ref_frame_sign_bias[1])
      return 1;
  return 0;
static void setup_compound_prediction(VP9_COMMON *cm) {
  if (cm->ref_frame_sign_bias[LAST_FRAME] ==
          cm->ref_frame_sign_bias[GOLDEN_FRAME]) {
    cm->comp_fixed_ref = ALTREF_FRAME;
    cm->comp_var_ref[0] = LAST_FRAME;
    cm->comp_var_ref[1] = GOLDEN_FRAME;
  } else if (cm->ref_frame_sign_bias[LAST_FRAME] ==
                 cm->ref_frame_sign_bias[ALTREF_FRAME]) {
    cm->comp_fixed_ref = GOLDEN_FRAME;
    cm->comp_var_ref[0] = LAST_FRAME;
    cm->comp_var_ref[1] = ALTREF_FRAME;
  } else {
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
cm->comp_fixed_ref = LAST_FRAME; cm->comp_var_ref[0] = GOLDEN_FRAME; cm->comp_var_ref[1] = ALTREF_FRAME; } } // len == 0 is not allowed static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return start + len > start && start + len <= end; } static int decode_unsigned_max(struct vp9_read_bit_buffer *rb, int max) { const int data = vp9_rb_read_literal(rb, get_unsigned_bits(max)); return data > max ? max : data; } static TX_MODE read_tx_mode(vp9_reader *r) { TX_MODE tx_mode = vp9_read_literal(r, 2); if (tx_mode == ALLOW_32X32) tx_mode += vp9_read_bit(r); return tx_mode; } static void read_tx_probs(struct tx_probs *tx_probs, vp9_reader *r) { int i, j; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 3; ++j) vp9_diff_update_prob(r, &tx_probs->p8x8[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 2; ++j) vp9_diff_update_prob(r, &tx_probs->p16x16[i][j]); for (i = 0; i < TX_SIZE_CONTEXTS; ++i) for (j = 0; j < TX_SIZES - 1; ++j) vp9_diff_update_prob(r, &tx_probs->p32x32[i][j]); } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTERS + 1; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { COMPPREDMODE_TYPE mode = vp9_read_bit(r); if (mode) mode += vp9_read_bit(r); return mode; } static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) { int i; const int compound_allowed = is_compound_prediction_allowed(cm); cm->comp_pred_mode = compound_allowed ? read_comp_pred_mode(r) : SINGLE_PREDICTION_ONLY; if (compound_allowed) setup_compound_prediction(cm); if (cm->comp_pred_mode == HYBRID_PREDICTION)
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]); if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) { vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]); vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]); } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]); } static void update_mv(vp9_reader *r, vp9_prob *p) { if (vp9_read(r, NMV_UPDATE_PROB)) *p = (vp9_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(vp9_reader *r, nmv_context *mvc, int allow_hp) { int i, j, k; for (j = 0; j < MV_JOINTS - 1; ++j) update_mv(r, &mvc->joints[j]); for (i = 0; i < 2; ++i) { nmv_component *const comp = &mvc->comps[i]; update_mv(r, &comp->sign); for (j = 0; j < MV_CLASSES - 1; ++j) update_mv(r, &comp->classes[j]); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_mv(r, &comp->class0[j]); for (j = 0; j < MV_OFFSET_BITS; ++j) update_mv(r, &comp->bits[j]); } for (i = 0; i < 2; ++i) { nmv_component *const comp = &mvc->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) for (k = 0; k < 3; ++k) update_mv(r, &comp->class0_fp[j][k]); for (j = 0; j < 3; ++j) update_mv(r, &comp->fp[j]); } if (allow_hp) { for (i = 0; i < 2; ++i) { update_mv(r, &mvc->comps[i].class0_hp); update_mv(r, &mvc->comps[i].hp); } } } static void setup_plane_dequants(VP9_COMMON *cm, MACROBLOCKD *xd, int q_index) { int i; xd->plane[0].dequant = cm->y_dequant[q_index]; for (i = 1; i < MAX_MB_PLANE; i++) xd->plane[i].dequant = cm->uv_dequant[q_index]; } // Allocate storage for each tile column. // TODO(jzern): when max_threads <= 1 the same storage could be used for each // tile.
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
static void alloc_tile_storage(VP9D_COMP *pbi, int tile_cols) { VP9_COMMON *const cm = &pbi->common; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); int i, tile_col; CHECK_MEM_ERROR(cm, pbi->mi_streams, vpx_realloc(pbi->mi_streams, tile_cols * sizeof(*pbi->mi_streams))); for (tile_col = 0; tile_col < tile_cols; ++tile_col) { TileInfo tile; vp9_tile_init(&tile, cm, 0, tile_col); pbi->mi_streams[tile_col] = &cm->mi[cm->mi_rows * tile.mi_col_start]; } // 2 contexts per 'mi unit', so that we have one context per 4x4 txfm // block where mi unit size is 8x8. CHECK_MEM_ERROR(cm, pbi->above_context[0], vpx_realloc(pbi->above_context[0], sizeof(*pbi->above_context[0]) * MAX_MB_PLANE * 2 * aligned_mi_cols)); for (i = 1; i < MAX_MB_PLANE; ++i) { pbi->above_context[i] = pbi->above_context[0] + i * sizeof(*pbi->above_context[0]) * 2 * aligned_mi_cols; } // This is sized based on the entire frame. Each tile operates within its // column bounds. CHECK_MEM_ERROR(cm, pbi->above_seg_context, vpx_realloc(pbi->above_seg_context, sizeof(*pbi->above_seg_context) * aligned_mi_cols)); } static void decode_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { MACROBLOCKD* const xd = arg; struct macroblockd_plane *const pd = &xd->plane[plane]; int16_t* const qcoeff = BLOCK_OFFSET(pd->qcoeff, block); const int stride = pd->dst.stride; const int eob = pd->eobs[block]; if (eob > 0) { TX_TYPE tx_type; const int raster_block = txfrm_block_to_raster_block(plane_bsize, tx_size, block); uint8_t* const dst = raster_block_offset_uint8(plane_bsize, raster_block, pd->dst.buf, stride); switch (tx_size) { case TX_4X4: tx_type = get_tx_type_4x4(pd->plane_type, xd, raster_block); if (tx_type == DCT_DCT) xd->itxm_add(qcoeff, dst, stride, eob); else vp9_iht4x4_add(tx_type, qcoeff, dst, stride, eob); break; case TX_8X8: tx_type = get_tx_type_8x8(pd->plane_type, xd); vp9_iht8x8_add(tx_type, qcoeff, dst, stride, eob); break; case TX_16X16: tx_type = get_tx_type_16x16(pd->plane_type, xd); vp9_iht16x16_add(tx_type, qcoeff, dst, stride, eob); break; case TX_32X32: tx_type = DCT_DCT; vp9_idct32x32_add(qcoeff, dst, stride, eob); break; default:
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
assert(!"Invalid transform size"); } if (eob == 1) { vpx_memset(qcoeff, 0, 2 * sizeof(qcoeff[0])); } else { if (tx_type == DCT_DCT && tx_size <= TX_16X16 && eob <= 10) vpx_memset(qcoeff, 0, 4 * (4 << tx_size) * sizeof(qcoeff[0])); else vpx_memset(qcoeff, 0, (16 << (tx_size << 1)) * sizeof(qcoeff[0])); } } } static void decode_block_intra(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { MACROBLOCKD* const xd = arg; struct macroblockd_plane *const pd = &xd->plane[plane]; MODE_INFO *const mi = xd->mi_8x8[0]; const int raster_block = txfrm_block_to_raster_block(plane_bsize, tx_size, block); uint8_t* const dst = raster_block_offset_uint8(plane_bsize, raster_block, pd->dst.buf, pd->dst.stride); const MB_PREDICTION_MODE mode = (plane == 0) ? ((mi->mbmi.sb_type < BLOCK_8X8) ? mi->bmi[raster_block].as_mode : mi->mbmi.mode) : mi->mbmi.uv_mode; if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) extend_for_intra(xd, plane_bsize, plane, block, tx_size); vp9_predict_intra_block(xd, raster_block >> tx_size, b_width_log2(plane_bsize), tx_size, mode, dst, pd->dst.stride, dst, pd->dst.stride); if (!mi->mbmi.skip_coeff) decode_block(plane, block, plane_bsize, tx_size, arg); } static int decode_tokens(VP9_COMMON *const cm, MACROBLOCKD *const xd, BLOCK_SIZE bsize, vp9_reader *r) { MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; if (mbmi->skip_coeff) { reset_skip_context(xd, bsize); return -1; } else { if (cm->seg.enabled) setup_plane_dequants(cm, xd, vp9_get_qindex(&cm->seg, mbmi->segment_id, cm->base_qindex)); // TODO(dkovalev) if (!vp9_reader_has_error(r)) return vp9_decode_tokens(cm, xd, &cm->seg, r, bsize); } } static void set_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int bh = num_8x8_blocks_high_lookup[bsize]; const int bw = num_8x8_blocks_wide_lookup[bsize]; const int offset = mi_row * cm->mode_info_stride + mi_col; xd->mode_info_stride = cm->mode_info_stride; xd->mi_8x8 = cm->mi_grid_visible + offset; xd->prev_mi_8x8 = cm->prev_mi_grid_visible + offset; // we are using the mode info context stream here xd->mi_8x8[0] = xd->mi_stream;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
xd->mi_8x8[0]->mbmi.sb_type = bsize; ++xd->mi_stream; // Special case: if prev_mi is NULL, the previous mode info context // cannot be used. xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL; set_skip_context(xd, xd->above_context, xd->left_context, mi_row, mi_col); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col); } static void set_ref(VP9_COMMON *const cm, MACROBLOCKD *const xd, int idx, int mi_row, int mi_col) { MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; const int ref = mbmi->ref_frame[idx] - LAST_FRAME; const YV12_BUFFER_CONFIG *cfg = get_frame_ref_buffer(cm, ref); const struct scale_factors_common *sfc = &cm->active_ref_scale_comm[ref]; if (!vp9_is_valid_scale(sfc)) vpx_internal_error(&cm->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid scale factors"); xd->scale_factor[idx].sfc = sfc; setup_pre_planes(xd, idx, cfg, mi_row, mi_col, &xd->scale_factor[idx]); xd->corrupted |= cfg->corrupted; } static void decode_modes_b(VP9_COMMON *const cm, MACROBLOCKD *const xd, const TileInfo *const tile, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE bsize, int index) { const int less8x8 = bsize < BLOCK_8X8; MB_MODE_INFO *mbmi; int eobtotal; if (less8x8) if (index > 0) return; set_offsets(cm, xd, tile, bsize, mi_row, mi_col); vp9_read_mode_info(cm, xd, tile, mi_row, mi_col, r); if (less8x8) bsize = BLOCK_8X8; // Has to be called after set_offsets mbmi = &xd->mi_8x8[0]->mbmi; eobtotal = decode_tokens(cm, xd, bsize, r); if (!is_inter_block(mbmi)) { // Intra reconstruction foreach_transformed_block(xd, bsize, decode_block_intra, xd); } else { // Inter reconstruction const int decode_blocks = (eobtotal > 0); if (!less8x8) { assert(mbmi->sb_type == bsize); if (eobtotal == 0) mbmi->skip_coeff = 1; // skip loopfilter } set_ref(cm, xd, 0, mi_row, mi_col); if (has_second_ref(mbmi)) set_ref(cm, xd, 1, mi_row, mi_col);