• Johann's avatar
    vp9_convolve8_neon placeholder · 59dc4e9c
    Johann authored
    Call the individually optimized horizontal and vertical functions. This
    implementation abuses the temp buffer.
    
    This will be replaced with a custom optimized function.
    
    Over 2x speedup.
    
    Change-Id: I5b908d2a73d264e9810d6022bbff73207a3055dd
    59dc4e9c
convolve_test.cc 19.88 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "test/acm_random.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "third_party/googletest/src/include/gtest/gtest.h"
extern "C" {
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_filter.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_ports/mem.h"
namespace {
typedef void (*convolve_fn_t)(const uint8_t *src, ptrdiff_t src_stride,
                              uint8_t *dst, ptrdiff_t dst_stride,
                              const int16_t *filter_x, int filter_x_stride,
                              const int16_t *filter_y, int filter_y_stride,
                              int w, int h);
struct ConvolveFunctions {
  ConvolveFunctions(convolve_fn_t h8, convolve_fn_t h8_avg,
                    convolve_fn_t v8, convolve_fn_t v8_avg,
                    convolve_fn_t hv8, convolve_fn_t hv8_avg)
      : h8_(h8), v8_(v8), hv8_(hv8), h8_avg_(h8_avg), v8_avg_(v8_avg),
        hv8_avg_(hv8_avg) {}
  convolve_fn_t h8_;
  convolve_fn_t v8_;
  convolve_fn_t hv8_;
  convolve_fn_t h8_avg_;
  convolve_fn_t v8_avg_;
  convolve_fn_t hv8_avg_;
// Reference 8-tap subpixel filter, slightly modified to fit into this test.
#define VP9_FILTER_WEIGHT 128
#define VP9_FILTER_SHIFT 7
uint8_t clip_pixel(int x) {
  return x < 0 ? 0 :
         x > 255 ? 255 :
void filter_block2d_8_c(const uint8_t *src_ptr,
                        const unsigned int src_stride,
                        const int16_t *HFilter,
                        const int16_t *VFilter,
                        uint8_t *dst_ptr,
                        unsigned int dst_stride,
                        unsigned int output_width,
                        unsigned int output_height) {
  // Between passes, we use an intermediate buffer whose height is extended to
  // have enough horizontally filtered values as input for the vertical pass.
  // This buffer is allocated to be big enough for the largest block type we
  // support.
  const int kInterp_Extend = 4;
  const unsigned int intermediate_height =
      (kInterp_Extend - 1) + output_height + kInterp_Extend;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
/* Size of intermediate_buffer is max_intermediate_height * filter_max_width, * where max_intermediate_height = (kInterp_Extend - 1) + filter_max_height * + kInterp_Extend * = 3 + 16 + 4 * = 23 * and filter_max_width = 16 */ uint8_t intermediate_buffer[71 * 64]; const int intermediate_next_stride = 1 - intermediate_height * output_width; // Horizontal pass (src -> transposed intermediate). { uint8_t *output_ptr = intermediate_buffer; const int src_next_row_stride = src_stride - output_width; unsigned int i, j; src_ptr -= (kInterp_Extend - 1) * src_stride + (kInterp_Extend - 1); for (i = 0; i < intermediate_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * HFilter[0]) + (src_ptr[1] * HFilter[1]) + (src_ptr[2] * HFilter[2]) + (src_ptr[3] * HFilter[3]) + (src_ptr[4] * HFilter[4]) + (src_ptr[5] * HFilter[5]) + (src_ptr[6] * HFilter[6]) + (src_ptr[7] * HFilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *output_ptr = clip_pixel(temp >> VP9_FILTER_SHIFT); ++src_ptr; output_ptr += intermediate_height; } src_ptr += src_next_row_stride; output_ptr += intermediate_next_stride; } } // Vertical pass (transposed intermediate -> dst). { uint8_t *src_ptr = intermediate_buffer; const int dst_next_row_stride = dst_stride - output_width; unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { // Apply filter... const int temp = (src_ptr[0] * VFilter[0]) + (src_ptr[1] * VFilter[1]) + (src_ptr[2] * VFilter[2]) + (src_ptr[3] * VFilter[3]) + (src_ptr[4] * VFilter[4]) + (src_ptr[5] * VFilter[5]) + (src_ptr[6] * VFilter[6]) + (src_ptr[7] * VFilter[7]) + (VP9_FILTER_WEIGHT >> 1); // Rounding // Normalize back to 0-255... *dst_ptr++ = clip_pixel(temp >> VP9_FILTER_SHIFT); src_ptr += intermediate_height; } src_ptr += intermediate_next_stride; dst_ptr += dst_next_row_stride; } } } void block2d_average_c(uint8_t *src, unsigned int src_stride, uint8_t *output_ptr,
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
unsigned int output_stride, unsigned int output_width, unsigned int output_height) { unsigned int i, j; for (i = 0; i < output_height; ++i) { for (j = 0; j < output_width; ++j) { output_ptr[j] = (output_ptr[j] + src[i * src_stride + j] + 1) >> 1; } output_ptr += output_stride; } } void filter_average_block2d_8_c(const uint8_t *src_ptr, const unsigned int src_stride, const int16_t *HFilter, const int16_t *VFilter, uint8_t *dst_ptr, unsigned int dst_stride, unsigned int output_width, unsigned int output_height) { uint8_t tmp[64 * 64]; assert(output_width <= 64); assert(output_height <= 64); filter_block2d_8_c(src_ptr, src_stride, HFilter, VFilter, tmp, 64, output_width, output_height); block2d_average_c(tmp, 64, dst_ptr, dst_stride, output_width, output_height); } class ConvolveTest : public PARAMS(int, int, const ConvolveFunctions*) { public: static void SetUpTestCase() { // Force input_ to be unaligned, output to be 16 byte aligned. input_ = reinterpret_cast<uint8_t*>( vpx_memalign(kDataAlignment, kInputBufferSize + 1)) + 1; output_ = reinterpret_cast<uint8_t*>( vpx_memalign(kDataAlignment, kOutputBufferSize)); } static void TearDownTestCase() { vpx_free(input_ - 1); input_ = NULL; vpx_free(output_); output_ = NULL; } protected: static const int kDataAlignment = 16; static const int kOuterBlockSize = 128; static const int kInputStride = kOuterBlockSize; static const int kOutputStride = kOuterBlockSize; static const int kMaxDimension = 64; static const int kInputBufferSize = kOuterBlockSize * kOuterBlockSize; static const int kOutputBufferSize = kOuterBlockSize * kOuterBlockSize; int Width() const { return GET_PARAM(0); } int Height() const { return GET_PARAM(1); } int BorderLeft() const { const int center = (kOuterBlockSize - Width()) / 2; return (center + (kDataAlignment - 1)) & ~(kDataAlignment - 1); } int BorderTop() const { return (kOuterBlockSize - Height()) / 2; } bool IsIndexInBorder(int i) { return (i < BorderTop() * kOuterBlockSize || i >= (BorderTop() + Height()) * kOuterBlockSize || i % kOuterBlockSize < BorderLeft() || i % kOuterBlockSize >= (BorderLeft() + Width())); }
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
virtual void SetUp() { UUT_ = GET_PARAM(2); /* Set up guard blocks for an inner block centered in the outer block */ for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) output_[i] = 255; else output_[i] = 0; } ::libvpx_test::ACMRandom prng; for (int i = 0; i < kInputBufferSize; ++i) input_[i] = prng.Rand8Extremes(); } void CheckGuardBlocks() { for (int i = 0; i < kOutputBufferSize; ++i) { if (IsIndexInBorder(i)) EXPECT_EQ(255, output_[i]); } } uint8_t* input() const { return input_ + BorderTop() * kOuterBlockSize + BorderLeft(); } uint8_t* output() const { return output_ + BorderTop() * kOuterBlockSize + BorderLeft(); } const ConvolveFunctions* UUT_; static uint8_t* input_; static uint8_t* output_; }; uint8_t* ConvolveTest::input_ = NULL; uint8_t* ConvolveTest::output_ = NULL; TEST_P(ConvolveTest, GuardBlocks) { CheckGuardBlocks(); } TEST_P(ConvolveTest, CopyHoriz) { uint8_t* const in = input(); uint8_t* const out = output(); DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; REGISTER_STATE_CHECK( UUT_->h8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) << "(" << x << "," << y << ")"; } TEST_P(ConvolveTest, CopyVert) { uint8_t* const in = input(); uint8_t* const out = output(); DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, Width(), Height())); CheckGuardBlocks();
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) << "(" << x << "," << y << ")"; } TEST_P(ConvolveTest, Copy2D) { uint8_t* const in = input(); uint8_t* const out = output(); DECLARE_ALIGNED(256, const int16_t, filter8[8]) = {0, 0, 0, 128, 0, 0, 0, 0}; REGISTER_STATE_CHECK( UUT_->hv8_(in, kInputStride, out, kOutputStride, filter8, 16, filter8, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(out[y * kOutputStride + x], in[y * kInputStride + x]) << "(" << x << "," << y << ")"; } const int16_t (*kTestFilterList[])[8] = { vp9_bilinear_filters, vp9_sub_pel_filters_8, vp9_sub_pel_filters_8s, vp9_sub_pel_filters_8lp }; const int kNumFilterBanks = sizeof(kTestFilterList) / sizeof(kTestFilterList[0]); const int kNumFilters = 16; TEST(ConvolveTest, FiltersWontSaturateWhenAddedPairwise) { for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const int16_t (*filters)[8] = kTestFilterList[filter_bank]; for (int i = 0; i < kNumFilters; i++) { const int p0 = filters[i][0] + filters[i][1]; const int p1 = filters[i][2] + filters[i][3]; const int p2 = filters[i][4] + filters[i][5]; const int p3 = filters[i][6] + filters[i][7]; EXPECT_LE(p0, 128); EXPECT_LE(p1, 128); EXPECT_LE(p2, 128); EXPECT_LE(p3, 128); EXPECT_LE(p0 + p3, 128); EXPECT_LE(p0 + p3 + p1, 128); EXPECT_LE(p0 + p3 + p1 + p2, 128); EXPECT_EQ(p0 + p1 + p2 + p3, 128); } } } const int16_t kInvalidFilter[8] = { 0 }; TEST_P(ConvolveTest, MatchesReferenceSubpixelFilter) { uint8_t* const in = input(); uint8_t* const out = output(); uint8_t ref[kOutputStride * kMaxDimension]; for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const int16_t (*filters)[8] = kTestFilterList[filter_bank]; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { filter_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height());
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
if (filters == vp9_sub_pel_filters_8lp || (filter_x && filter_y)) REGISTER_STATE_CHECK( UUT_->hv8_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); else if (filter_y) REGISTER_STATE_CHECK( UUT_->v8_(in, kInputStride, out, kOutputStride, kInvalidFilter, 16, filters[filter_y], 16, Width(), Height())); else REGISTER_STATE_CHECK( UUT_->h8_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, kInvalidFilter, 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x]) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } TEST_P(ConvolveTest, MatchesReferenceAveragingSubpixelFilter) { uint8_t* const in = input(); uint8_t* const out = output(); uint8_t ref[kOutputStride * kMaxDimension]; // Populate ref and out with some random data ::libvpx_test::ACMRandom prng; for (int y = 0; y < Height(); ++y) { for (int x = 0; x < Width(); ++x) { const uint8_t r = prng.Rand8Extremes(); out[y * kOutputStride + x] = r; ref[y * kOutputStride + x] = r; } } const int kNumFilterBanks = sizeof(kTestFilterList) / sizeof(kTestFilterList[0]); for (int filter_bank = 0; filter_bank < kNumFilterBanks; ++filter_bank) { const int16_t (*filters)[8] = kTestFilterList[filter_bank]; const int kNumFilters = 16; for (int filter_x = 0; filter_x < kNumFilters; ++filter_x) { for (int filter_y = 0; filter_y < kNumFilters; ++filter_y) { filter_average_block2d_8_c(in, kInputStride, filters[filter_x], filters[filter_y], ref, kOutputStride, Width(), Height()); if (filters == vp9_sub_pel_filters_8lp || (filter_x && filter_y)) REGISTER_STATE_CHECK( UUT_->hv8_avg_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); else if (filter_y) REGISTER_STATE_CHECK( UUT_->v8_avg_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height()));
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
else REGISTER_STATE_CHECK( UUT_->h8_avg_(in, kInputStride, out, kOutputStride, filters[filter_x], 16, filters[filter_y], 16, Width(), Height())); CheckGuardBlocks(); for (int y = 0; y < Height(); ++y) for (int x = 0; x < Width(); ++x) ASSERT_EQ(ref[y * kOutputStride + x], out[y * kOutputStride + x]) << "mismatch at (" << x << "," << y << "), " << "filters (" << filter_bank << "," << filter_x << "," << filter_y << ")"; } } } } DECLARE_ALIGNED(256, const int16_t, kChangeFilters[16][8]) = { { 0, 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 128}, { 0, 0, 0, 128}, { 0, 0, 128}, { 0, 128}, { 128}, { 0, 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 0, 128}, { 0, 0, 0, 0, 128}, { 0, 0, 0, 128}, { 0, 0, 128}, { 0, 128}, { 128} }; TEST_P(ConvolveTest, ChangeFilterWorks) { uint8_t* const in = input(); uint8_t* const out = output(); const int kPixelSelected = 4; REGISTER_STATE_CHECK(UUT_->h8_(in, kInputStride, out, kOutputStride, kChangeFilters[8], 17, kChangeFilters[4], 16, Width(), Height())); for (int x = 0; x < Width(); ++x) { const int kQ4StepAdjust = x >> 4; const int kFilterPeriodAdjust = (x >> 3) << 3; const int ref_x = kQ4StepAdjust + kFilterPeriodAdjust + kPixelSelected; ASSERT_EQ(in[ref_x], out[x]) << "x == " << x; } REGISTER_STATE_CHECK(UUT_->v8_(in, kInputStride, out, kOutputStride, kChangeFilters[4], 16, kChangeFilters[8], 17, Width(), Height())); for (int y = 0; y < Height(); ++y) { const int kQ4StepAdjust = y >> 4; const int kFilterPeriodAdjust = (y >> 3) << 3; const int ref_y = kQ4StepAdjust + kFilterPeriodAdjust + kPixelSelected; ASSERT_EQ(in[ref_y * kInputStride], out[y * kInputStride]) << "y == " << y; } REGISTER_STATE_CHECK(UUT_->hv8_(in, kInputStride, out, kOutputStride, kChangeFilters[8], 17, kChangeFilters[8], 17, Width(), Height())); for (int y = 0; y < Height(); ++y) {
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
const int kQ4StepAdjustY = y >> 4; const int kFilterPeriodAdjustY = (y >> 3) << 3; const int ref_y = kQ4StepAdjustY + kFilterPeriodAdjustY + kPixelSelected; for (int x = 0; x < Width(); ++x) { const int kQ4StepAdjustX = x >> 4; const int kFilterPeriodAdjustX = (x >> 3) << 3; const int ref_x = kQ4StepAdjustX + kFilterPeriodAdjustX + kPixelSelected; ASSERT_EQ(in[ref_y * kInputStride + ref_x], out[y * kOutputStride + x]) << "x == " << x << ", y == " << y; } } } using std::tr1::make_tuple; const ConvolveFunctions convolve8_c( vp9_convolve8_horiz_c, vp9_convolve8_avg_horiz_c, vp9_convolve8_vert_c, vp9_convolve8_avg_vert_c, vp9_convolve8_c, vp9_convolve8_avg_c); INSTANTIATE_TEST_CASE_P(C, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_c), make_tuple(8, 4, &convolve8_c), make_tuple(4, 8, &convolve8_c), make_tuple(8, 8, &convolve8_c), make_tuple(16, 8, &convolve8_c), make_tuple(8, 16, &convolve8_c), make_tuple(16, 16, &convolve8_c), make_tuple(32, 16, &convolve8_c), make_tuple(16, 32, &convolve8_c), make_tuple(32, 32, &convolve8_c), make_tuple(64, 32, &convolve8_c), make_tuple(32, 64, &convolve8_c), make_tuple(64, 64, &convolve8_c))); #if HAVE_SSSE3 const ConvolveFunctions convolve8_ssse3( vp9_convolve8_horiz_ssse3, vp9_convolve8_avg_horiz_c, vp9_convolve8_vert_ssse3, vp9_convolve8_avg_vert_c, vp9_convolve8_ssse3, vp9_convolve8_avg_c); INSTANTIATE_TEST_CASE_P(SSSE3, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_ssse3), make_tuple(8, 4, &convolve8_ssse3), make_tuple(4, 8, &convolve8_ssse3), make_tuple(8, 8, &convolve8_ssse3), make_tuple(16, 8, &convolve8_ssse3), make_tuple(8, 16, &convolve8_ssse3), make_tuple(16, 16, &convolve8_ssse3), make_tuple(32, 16, &convolve8_ssse3), make_tuple(16, 32, &convolve8_ssse3), make_tuple(32, 32, &convolve8_ssse3), make_tuple(64, 32, &convolve8_ssse3), make_tuple(32, 64, &convolve8_ssse3), make_tuple(64, 64, &convolve8_ssse3))); #endif #if HAVE_NEON const ConvolveFunctions convolve8_neon( vp9_convolve8_horiz_neon, vp9_convolve8_avg_horiz_neon, vp9_convolve8_vert_neon, vp9_convolve8_avg_vert_neon, vp9_convolve8_neon, vp9_convolve8_avg_neon); INSTANTIATE_TEST_CASE_P(NEON, ConvolveTest, ::testing::Values( make_tuple(4, 4, &convolve8_neon), make_tuple(8, 4, &convolve8_neon), make_tuple(4, 8, &convolve8_neon), make_tuple(8, 8, &convolve8_neon),
561562563564565566567568569570571572
make_tuple(16, 8, &convolve8_neon), make_tuple(8, 16, &convolve8_neon), make_tuple(16, 16, &convolve8_neon), make_tuple(32, 16, &convolve8_neon), make_tuple(16, 32, &convolve8_neon), make_tuple(32, 32, &convolve8_neon), make_tuple(64, 32, &convolve8_neon), make_tuple(32, 64, &convolve8_neon), make_tuple(64, 64, &convolve8_neon))); #endif } // namespace