bitstream.c 89.74 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vp8/common/header.h"
#include "encodemv.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/findnearmv.h"
#include "mcomp.h"
#include "vp8/common/systemdependent.h"
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "vp8/common/pragmas.h"
#include "vpx/vpx_encoder.h"
#include "vpx_mem/vpx_mem.h"
#include "bitstream.h"
#include "segmentation.h"
#include "vp8/common/seg_common.h"
#include "vp8/common/pred_common.h"
#include "vp8/common/entropy.h"
#include "vp8/encoder/encodemv.h"
#if CONFIG_NEWBESTREFMV
#include "vp8/common/mvref_common.h"
#endif
#if defined(SECTIONBITS_OUTPUT)
unsigned __int64 Sectionbits[500];
#endif
//int final_packing = 0;
#ifdef ENTROPY_STATS
int intra_mode_stats [VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES];
unsigned int tree_update_hist [BLOCK_TYPES]
                              [COEF_BANDS]
                              [PREV_COEF_CONTEXTS]
                              [ENTROPY_NODES][2];
#if CONFIG_HYBRIDTRANSFORM
unsigned int hybrid_tree_update_hist [BLOCK_TYPES]
                                     [COEF_BANDS]
                                     [PREV_COEF_CONTEXTS]
                                     [ENTROPY_NODES][2];
#endif
unsigned int tree_update_hist_8x8 [BLOCK_TYPES_8X8]
                                  [COEF_BANDS]
                                  [PREV_COEF_CONTEXTS]
                                  [ENTROPY_NODES] [2];
#if CONFIG_HYBRIDTRANSFORM8X8
unsigned int hybrid_tree_update_hist_8x8 [BLOCK_TYPES_8X8]
                                         [COEF_BANDS]
                                         [PREV_COEF_CONTEXTS]
                                         [ENTROPY_NODES] [2];
#endif
#if CONFIG_TX16X16
unsigned int tree_update_hist_16x16 [BLOCK_TYPES_16X16]
                                    [COEF_BANDS]
                                    [PREV_COEF_CONTEXTS]
                                    [ENTROPY_NODES] [2];
#if CONFIG_HYBRIDTRANSFORM16X16
unsigned int hybrid_tree_update_hist_16x16 [BLOCK_TYPES_16X16]
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
[COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES] [2]; #endif #endif extern unsigned int active_section; #endif #ifdef MODE_STATS int count_mb_seg[4] = { 0, 0, 0, 0 }; #endif #define vp8_cost_upd ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8) #define vp8_cost_upd256 ((int)(vp8_cost_one(upd) - vp8_cost_zero(upd))) #define SEARCH_NEWP static int update_bits[255]; static void compute_update_table() { int i; for (i = 0; i < 255; i++) update_bits[i] = vp8_count_term_subexp(i, SUBEXP_PARAM, 255); } static int split_index(int i, int n, int modulus) { int max1 = (n - 1 - modulus / 2) / modulus + 1; if (i % modulus == modulus / 2) i = i / modulus; else i = max1 + i - (i + modulus - modulus / 2) / modulus; return i; } static int remap_prob(int v, int m) { const int n = 256; const int modulus = MODULUS_PARAM; int i; if ((m << 1) <= n) i = recenter_nonneg(v, m) - 1; else i = recenter_nonneg(n - 1 - v, n - 1 - m) - 1; i = split_index(i, n - 1, modulus); return i; } static void write_prob_diff_update(vp8_writer *const w, vp8_prob newp, vp8_prob oldp) { int delp = remap_prob(newp, oldp); vp8_encode_term_subexp(w, delp, SUBEXP_PARAM, 255); } static int prob_diff_update_cost(vp8_prob newp, vp8_prob oldp) { int delp = remap_prob(newp, oldp); return update_bits[delp] * 256; } #if CONFIG_NEW_MVREF // Estimate the cost of each coding the vector using each reference candidate unsigned int pick_best_mv_ref( MACROBLOCK *x, int_mv target_mv, int_mv * mv_ref_list, int_mv * best_ref ) { int i; int best_index = 0; int cost, cost2; int index_cost[MAX_MV_REFS]; MACROBLOCKD *xd = &x->e_mbd; /*unsigned int distance, distance2;
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
distance = mv_distance(&target_mv, &mv_ref_list[0]); for (i = 1; i < MAX_MV_REFS; ++i ) { distance2 = mv_distance(&target_mv, &mv_ref_list[i]); if (distance2 < distance) { distance = distance2; best_index = i; } }*/ // For now estimate the cost of selecting a given ref index // as index * 1 bits (but here 1 bit is scaled to 256) for (i = 0; i < MAX_MV_REFS; ++i ) { index_cost[i] = i << 8; } index_cost[0] = vp8_cost_zero(205); index_cost[1] = vp8_cost_zero(40); index_cost[2] = vp8_cost_zero(8); index_cost[3] = vp8_cost_zero(2); cost = index_cost[0] + vp8_mv_bit_cost(&target_mv, &mv_ref_list[0], XMVCOST, 96, xd->allow_high_precision_mv); //for (i = 1; i < MAX_MV_REFS; ++i ) { for (i = 1; i < 4; ++i ) { cost2 = index_cost[i] + vp8_mv_bit_cost(&target_mv, &mv_ref_list[i], XMVCOST, 96, xd->allow_high_precision_mv); if (cost2 < cost) { cost = cost2; best_index = i; } } (*best_ref).as_int = mv_ref_list[best_index].as_int; return best_index; } #endif static void update_mode( vp8_writer *const w, int n, vp8_token tok [/* n */], vp8_tree tree, vp8_prob Pnew [/* n-1 */], vp8_prob Pcur [/* n-1 */], unsigned int bct [/* n-1 */] [2], const unsigned int num_events[/* n */] ) { unsigned int new_b = 0, old_b = 0; int i = 0; vp8_tree_probs_from_distribution( n--, tok, tree, Pnew, bct, num_events, 256, 1 ); do { new_b += vp8_cost_branch(bct[i], Pnew[i]);
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
old_b += vp8_cost_branch(bct[i], Pcur[i]); } while (++i < n); if (new_b + (n << 8) < old_b) { int i = 0; vp8_write_bit(w, 1); do { const vp8_prob p = Pnew[i]; vp8_write_literal(w, Pcur[i] = p ? p : 1, 8); } while (++i < n); } else vp8_write_bit(w, 0); } static void update_mbintra_mode_probs(VP8_COMP *cpi) { VP8_COMMON *const cm = & cpi->common; vp8_writer *const w = & cpi->bc; { vp8_prob Pnew [VP8_YMODES - 1]; unsigned int bct [VP8_YMODES - 1] [2]; update_mode( w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew, cm->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count ); } } void update_skip_probs(VP8_COMP *cpi) { VP8_COMMON *const pc = & cpi->common; int prob_skip_false[3] = {0, 0, 0}; int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) { if ((cpi->skip_false_count[k] + cpi->skip_true_count[k])) { prob_skip_false[k] = cpi->skip_false_count[k] * 256 / (cpi->skip_false_count[k] + cpi->skip_true_count[k]); if (prob_skip_false[k] <= 1) prob_skip_false[k] = 1; if (prob_skip_false[k] > 255) prob_skip_false[k] = 255; } else prob_skip_false[k] = 128; pc->mbskip_pred_probs[k] = prob_skip_false[k]; } } #if CONFIG_SWITCHABLE_INTERP void update_switchable_interp_probs(VP8_COMP *cpi) { VP8_COMMON *const pc = & cpi->common; vp8_writer *const w = & cpi->bc; unsigned int branch_ct[32][2]; int i, j; for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) { //for (j = 0; j <= 0; ++j) { /* if (!cpi->dummy_packing) #if VP8_SWITCHABLE_FILTERS == 3 printf("HELLO %d %d %d\n", cpi->switchable_interp_count[j][0], cpi->switchable_interp_count[j][1], cpi->switchable_interp_count[j][2]); #else
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
printf("HELLO %d %d\n", cpi->switchable_interp_count[j][0], cpi->switchable_interp_count[j][1]); #endif */ vp8_tree_probs_from_distribution( VP8_SWITCHABLE_FILTERS, vp8_switchable_interp_encodings, vp8_switchable_interp_tree, pc->fc.switchable_interp_prob[j], branch_ct, cpi->switchable_interp_count[j], 256, 1 ); for (i = 0; i < VP8_SWITCHABLE_FILTERS - 1; ++i) { if (pc->fc.switchable_interp_prob[j][i] < 1) pc->fc.switchable_interp_prob[j][i] = 1; vp8_write_literal(w, pc->fc.switchable_interp_prob[j][i], 8); /* if (!cpi->dummy_packing) #if VP8_SWITCHABLE_FILTERS == 3 printf("Probs %d %d [%d]\n", pc->fc.switchable_interp_prob[j][0], pc->fc.switchable_interp_prob[j][1], pc->frame_type); #else printf("Probs %d [%d]\n", pc->fc.switchable_interp_prob[j][0], pc->frame_type); #endif */ } } /* if (!cpi->dummy_packing) #if VP8_SWITCHABLE_FILTERS == 3 printf("Probs %d %d [%d]\n", pc->fc.switchable_interp_prob[0], pc->fc.switchable_interp_prob[1], pc->frame_type); #else printf("Probs %d [%d]\n", pc->fc.switchable_interp_prob[0], pc->frame_type); #endif */ } #endif // This function updates the reference frame prediction stats static void update_refpred_stats(VP8_COMP *cpi) { VP8_COMMON *const cm = & cpi->common; int i; int tot_count; vp8_prob new_pred_probs[PREDICTION_PROBS]; int old_cost, new_cost; // Set the prediction probability structures to defaults if (cm->frame_type == KEY_FRAME) { // Set the prediction probabilities to defaults cm->ref_pred_probs[0] = 120; cm->ref_pred_probs[1] = 80; cm->ref_pred_probs[2] = 40; vpx_memset(cpi->ref_pred_probs_update, 0, sizeof(cpi->ref_pred_probs_update)); } else { // From the prediction counts set the probabilities for each context for (i = 0; i < PREDICTION_PROBS; i++) { tot_count = cpi->ref_pred_count[i][0] + cpi->ref_pred_count[i][1]; if (tot_count) { new_pred_probs[i] = (cpi->ref_pred_count[i][0] * 255 + (tot_count >> 1)) / tot_count; // Clamp to minimum allowed value new_pred_probs[i] += !new_pred_probs[i]; } else new_pred_probs[i] = 128; // Decide whether or not to update the reference frame probs.
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
// Returned costs are in 1/256 bit units. old_cost = (cpi->ref_pred_count[i][0] * vp8_cost_zero(cm->ref_pred_probs[i])) + (cpi->ref_pred_count[i][1] * vp8_cost_one(cm->ref_pred_probs[i])); new_cost = (cpi->ref_pred_count[i][0] * vp8_cost_zero(new_pred_probs[i])) + (cpi->ref_pred_count[i][1] * vp8_cost_one(new_pred_probs[i])); // Cost saving must be >= 8 bits (2048 in these units) if ((old_cost - new_cost) >= 2048) { cpi->ref_pred_probs_update[i] = 1; cm->ref_pred_probs[i] = new_pred_probs[i]; } else cpi->ref_pred_probs_update[i] = 0; } } } static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m); } static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m); } #if CONFIG_SUPERBLOCKS static void sb_kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_sb_kf_ymode_encodings + m); } #endif static void write_i8x8_mode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_i8x8_mode_tree, p, vp8_i8x8_mode_encodings + m); } static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m); } static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m); } static void write_split(vp8_writer *bc, int x, const vp8_prob *p) { vp8_write_token( bc, vp8_mbsplit_tree, p, vp8_mbsplit_encodings + x ); } static int prob_update_savings(const unsigned int *ct, const vp8_prob oldp, const vp8_prob newp, const vp8_prob upd) { const int old_b = vp8_cost_branch256(ct, oldp); const int new_b = vp8_cost_branch256(ct, newp); const int update_b = 2048 + vp8_cost_upd256; return (old_b - new_b - update_b); } static int prob_diff_update_savings(const unsigned int *ct, const vp8_prob oldp, const vp8_prob newp, const vp8_prob upd) { const int old_b = vp8_cost_branch256(ct, oldp); const int new_b = vp8_cost_branch256(ct, newp); const int update_b = (newp == oldp ? 0 : prob_diff_update_cost(newp, oldp) + vp8_cost_upd256); return (old_b - new_b - update_b);
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
} static int prob_diff_update_savings_search(const unsigned int *ct, const vp8_prob oldp, vp8_prob *bestp, const vp8_prob upd) { const int old_b = vp8_cost_branch256(ct, oldp); int new_b, update_b, savings, bestsavings, step; vp8_prob newp, bestnewp; bestsavings = 0; bestnewp = oldp; step = (*bestp > oldp ? -1 : 1); for (newp = *bestp; newp != oldp; newp += step) { new_b = vp8_cost_branch256(ct, newp); update_b = prob_diff_update_cost(newp, oldp) + vp8_cost_upd256; savings = old_b - new_b - update_b; if (savings > bestsavings) { bestsavings = savings; bestnewp = newp; } } *bestp = bestnewp; return bestsavings; } static void pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount) { const TOKENEXTRA *const stop = p + xcount; unsigned int split; unsigned int shift; int count = w->count; unsigned int range = w->range; unsigned int lowvalue = w->lowvalue; while (p < stop) { const int t = p->Token; vp8_token *const a = vp8_coef_encodings + t; const vp8_extra_bit_struct *const b = vp8_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; /* skip one or two nodes */ if (p->skip_eob_node) { n -= p->skip_eob_node; i = 2 * p->skip_eob_node; } do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i >> 1]) >> 8); i = vp8_coef_tree[i + bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = vp8_norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8; } lowvalue <<= shift; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *pp = b->prob; int v = e >> 1; int n = L; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i >> 1]) >> 8); i = b->tree[i + bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = vp8_norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8; } lowvalue <<= shift; } while (n); }
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
{ split = (range + 1) >> 1; if (e & 1) { lowvalue += split; range = range - split; } else { range = split; } range <<= 1; if ((lowvalue & 0x80000000)) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } lowvalue <<= 1; if (!++count) { count = -8; w->buffer[w->pos++] = (lowvalue >> 24); lowvalue &= 0xffffff; } } } ++p; } w->count = count; w->lowvalue = lowvalue; w->range = range; } static void write_partition_size(unsigned char *cx_data, int size) { signed char csize; csize = size & 0xff; *cx_data = csize; csize = (size >> 8) & 0xff; *(cx_data + 1) = csize; csize = (size >> 16) & 0xff; *(cx_data + 2) = csize; } static void write_mv_ref ( vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p ) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m <= SPLITMV); #endif vp8_write_token(w, vp8_mv_ref_tree, p, vp8_mv_ref_encoding_array - NEARESTMV + m); } #if CONFIG_SUPERBLOCKS
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
static void write_sb_mv_ref(vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p) { #if CONFIG_DEBUG assert(NEARESTMV <= m && m < SPLITMV); #endif vp8_write_token(w, vp8_sb_mv_ref_tree, p, vp8_sb_mv_ref_encoding_array - NEARESTMV + m); } #endif static void write_sub_mv_ref ( vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p ) { #if CONFIG_DEBUG assert(LEFT4X4 <= m && m <= NEW4X4); #endif vp8_write_token(w, vp8_sub_mv_ref_tree, p, vp8_sub_mv_ref_encoding_array - LEFT4X4 + m); } #if CONFIG_NEWMVENTROPY static void write_nmv (vp8_writer *w, const MV *mv, const int_mv *ref, const nmv_context *nmvc, int usehp) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_nmv(w, &e, &ref->as_mv, nmvc); vp8_encode_nmv_fp(w, &e, &ref->as_mv, nmvc, usehp); } #else static void write_mv ( vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc ) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_motion_vector(w, &e, mvc); } static void write_mv_hp ( vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT_HP *mvc ) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_motion_vector_hp(w, &e, mvc); } #endif /* CONFIG_NEWMVENTROPY */ // This function writes the current macro block's segnment id to the bitstream // It should only be called if a segment map update is indicated. static void write_mb_segid(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *xd) { // Encode the MB segment id. if (xd->segmentation_enabled && xd->update_mb_segmentation_map) { switch (mi->segment_id) { case 0: vp8_write(w, 0, xd->mb_segment_tree_probs[0]); vp8_write(w, 0, xd->mb_segment_tree_probs[1]); break; case 1: vp8_write(w, 0, xd->mb_segment_tree_probs[0]); vp8_write(w, 1, xd->mb_segment_tree_probs[1]);
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
break; case 2: vp8_write(w, 1, xd->mb_segment_tree_probs[0]); vp8_write(w, 0, xd->mb_segment_tree_probs[2]); break; case 3: vp8_write(w, 1, xd->mb_segment_tree_probs[0]); vp8_write(w, 1, xd->mb_segment_tree_probs[2]); break; // TRAP.. This should not happen default: vp8_write(w, 0, xd->mb_segment_tree_probs[0]); vp8_write(w, 0, xd->mb_segment_tree_probs[1]); break; } } } // This function encodes the reference frame static void encode_ref_frame(vp8_writer *const w, VP8_COMMON *const cm, MACROBLOCKD *xd, int segment_id, MV_REFERENCE_FRAME rf) { int seg_ref_active; int seg_ref_count = 0; seg_ref_active = segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) + check_segref(xd, segment_id, LAST_FRAME) + check_segref(xd, segment_id, GOLDEN_FRAME) + check_segref(xd, segment_id, ALTREF_FRAME); } // If segment level coding of this signal is disabled... // or the segment allows multiple reference frame options if (!seg_ref_active || (seg_ref_count > 1)) { // Values used in prediction model coding unsigned char prediction_flag; vp8_prob pred_prob; MV_REFERENCE_FRAME pred_rf; // Get the context probability the prediction flag pred_prob = get_pred_prob(cm, xd, PRED_REF); // Get the predicted value. pred_rf = get_pred_ref(cm, xd); // Did the chosen reference frame match its predicted value. prediction_flag = (xd->mode_info_context->mbmi.ref_frame == pred_rf); set_pred_flag(xd, PRED_REF, prediction_flag); vp8_write(w, prediction_flag, pred_prob); // If not predicted correctly then code value explicitly if (!prediction_flag) { vp8_prob mod_refprobs[PREDICTION_PROBS]; vpx_memcpy(mod_refprobs, cm->mod_refprobs[pred_rf], sizeof(mod_refprobs)); // If segment coding enabled blank out options that cant occur by // setting the branch probability to 0. if (seg_ref_active) { mod_refprobs[INTRA_FRAME] *=
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
check_segref(xd, segment_id, INTRA_FRAME); mod_refprobs[LAST_FRAME] *= check_segref(xd, segment_id, LAST_FRAME); mod_refprobs[GOLDEN_FRAME] *= (check_segref(xd, segment_id, GOLDEN_FRAME) * check_segref(xd, segment_id, ALTREF_FRAME)); } if (mod_refprobs[0]) { vp8_write(w, (rf != INTRA_FRAME), mod_refprobs[0]); } // Inter coded if (rf != INTRA_FRAME) { if (mod_refprobs[1]) { vp8_write(w, (rf != LAST_FRAME), mod_refprobs[1]); } if (rf != LAST_FRAME) { if (mod_refprobs[2]) { vp8_write(w, (rf != GOLDEN_FRAME), mod_refprobs[2]); } } } } } // if using the prediction mdoel we have nothing further to do because // the reference frame is fully coded by the segment } // Update the probabilities used to encode reference frame data static void update_ref_probs(VP8_COMP *const cpi) { VP8_COMMON *const cm = & cpi->common; const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; cm->prob_intra_coded = (rf_intra + rf_inter) ? rf_intra * 255 / (rf_intra + rf_inter) : 1; if (!cm->prob_intra_coded) cm->prob_intra_coded = 1; cm->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (!cm->prob_last_coded) cm->prob_last_coded = 1; cm->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (!cm->prob_gf_coded) cm->prob_gf_coded = 1; // Compute a modified set of probabilities to use when prediction of the // reference frame fails compute_mod_refprobs(cm); } static void pack_inter_mode_mvs(VP8_COMP *const cpi) { int i; VP8_COMMON *const pc = & cpi->common; vp8_writer *const w = & cpi->bc; #if CONFIG_NEWMVENTROPY const nmv_context *nmvc = &pc->fc.nmvc; #else
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
const MV_CONTEXT *mvc = pc->fc.mvc; const MV_CONTEXT_HP *mvc_hp = pc->fc.mvc_hp; #endif MACROBLOCK *x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; MODE_INFO *m; MODE_INFO *prev_m; const int mis = pc->mode_info_stride; int mb_row, mb_col; int row, col; // Values used in prediction model coding vp8_prob pred_prob; unsigned char prediction_flag; int row_delta[4] = { 0, +1, 0, -1}; int col_delta[4] = { +1, -1, +1, +1}; //final_packing = !cpi->dummy_packing; cpi->mb.partition_info = cpi->mb.pi; // Update the probabilities used to encode reference frame data update_ref_probs(cpi); #ifdef ENTROPY_STATS active_section = 1; #endif if (pc->mb_no_coeff_skip) { int k; update_skip_probs(cpi); for (k = 0; k < MBSKIP_CONTEXTS; ++k) vp8_write_literal(w, pc->mbskip_pred_probs[k], 8); } #if CONFIG_PRED_FILTER // Write the prediction filter mode used for this frame vp8_write_literal(w, pc->pred_filter_mode, 2); // Write prediction filter on/off probability if signaling at MB level if (pc->pred_filter_mode == 2) vp8_write_literal(w, pc->prob_pred_filter_off, 8); // printf("pred_filter_mode:%d prob_pred_filter_off:%d\n", // pc->pred_filter_mode, pc->prob_pred_filter_off); #endif #if CONFIG_SWITCHABLE_INTERP if (pc->mcomp_filter_type == SWITCHABLE) update_switchable_interp_probs(cpi); #endif vp8_write_literal(w, pc->prob_intra_coded, 8); vp8_write_literal(w, pc->prob_last_coded, 8); vp8_write_literal(w, pc->prob_gf_coded, 8); if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { vp8_write(w, 1, 128); vp8_write(w, 1, 128); for (i = 0; i < COMP_PRED_CONTEXTS; i++) { if (cpi->single_pred_count[i] + cpi->comp_pred_count[i]) { pc->prob_comppred[i] = cpi->single_pred_count[i] * 255 / (cpi->single_pred_count[i] + cpi->comp_pred_count[i]); if (pc->prob_comppred[i] < 1) pc->prob_comppred[i] = 1; } else { pc->prob_comppred[i] = 128; }
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
vp8_write_literal(w, pc->prob_comppred[i], 8); } } else if (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY) { vp8_write(w, 0, 128); } else { /* compound prediction only */ vp8_write(w, 1, 128); vp8_write(w, 0, 128); } update_mbintra_mode_probs(cpi); #if CONFIG_NEWMVENTROPY vp8_write_nmvprobs(cpi, xd->allow_high_precision_mv); #else if (xd->allow_high_precision_mv) vp8_write_mvprobs_hp(cpi); else vp8_write_mvprobs(cpi); #endif mb_row = 0; for (row = 0; row < pc->mb_rows; row += 2) { m = pc->mi + row * mis; prev_m = pc->prev_mi + row * mis; mb_col = 0; for (col = 0; col < pc->mb_cols; col += 2) { int i; // Process the 4 MBs in the order: // top-left, top-right, bottom-left, bottom-right #if CONFIG_SUPERBLOCKS vp8_write(w, m->mbmi.encoded_as_sb, pc->sb_coded); #endif for (i = 0; i < 4; i++) { MB_MODE_INFO *mi; MV_REFERENCE_FRAME rf; MB_PREDICTION_MODE mode; int segment_id; int dy = row_delta[i]; int dx = col_delta[i]; int offset_extended = dy * mis + dx; if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) { // MB lies outside frame, move on mb_row += dy; mb_col += dx; m += offset_extended; prev_m += offset_extended; cpi->mb.partition_info += offset_extended; continue; } mi = & m->mbmi; rf = mi->ref_frame; mode = mi->mode; segment_id = mi->segment_id; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV // values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; // Make sure the MacroBlockD mode info pointer is set correctly xd->mode_info_context = m; xd->prev_mode_info_context = prev_m;