• Paul Wilkins's avatar
    Explicit MV reference experiment. · ba30e774
    Paul Wilkins authored
    Coding and costing of mv reference signal.
    
    Issues in updating MV ref with COMPANDED_MVREF_THRESH
    to be resolved. Ideally the MV precision should be defined based
    on absolute MV magnitude not as now the MV ref magnitude.
    
    Update to mv counts moved into bitstream.c because otherwise
    if the motion reference is changed at the last minute the encoder
    and decoder get out of step in terms of the counts used to update
    entropy probs.
    
    Code working on a few test clips but no results yet re benefit vs
    signaling cost and no tuning of red loop to test lower cost alternatives
    based on the available reference values.
    
    Patch 3. Added check to make sure we don't pick a reference
    that would give rise to an uncodeable / out of range residual.
    
    Patch 6-7: Attempt to rebase. OK to submit but best to leave flag off for now.
    
    Patch 9. Remove print no longer needed.
    
    Change-Id: I1938c2ffe41afe6d3cf6ccc0cb2c5d404809a712
    ba30e774
onyx_if.c 142.20 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vpx_config.h"
#include "vp8/common/onyxc_int.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "psnr.h"
#include "vpx_scale/vpxscale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#include "vp8/common/g_common.h"
#include "vpx_scale/yv12extend.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/swapyv12buffer.h"
#include "vpx_ports/vpx_timer.h"
#include "temporal_filter.h"
#include "vp8/common/seg_common.h"
#include "mbgraph.h"
#include "vp8/common/pred_common.h"
#include "vp8/encoder/rdopt.h"
#include "bitstream.h"
#include "ratectrl.h"
#if CONFIG_NEWBESTREFMV
#include "vp8/common/mvref_common.h"
#endif
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#define RTCD(x) &cpi->common.rtcd.x
#else
#define IF_RTCD(x) NULL
#define RTCD(x) NULL
#endif
extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val);
extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi);
extern void vp8_dmachine_specific_config(VP8_COMP *cpi);
extern void vp8_cmachine_specific_config(VP8_COMP *cpi);
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
extern unsigned int vp8_get_processor_freq(); extern void print_tree_update_probs(); extern void vp8cx_create_encoder_threads(VP8_COMP *cpi); extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi); #if HAVE_ARMV7 extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc); extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc); #endif int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest); extern void vp8_temporal_filter_prepare_c(VP8_COMP *cpi, int distance); static void set_default_lf_deltas(VP8_COMP *cpi); extern const int vp8_gf_interval_table[101]; #define DEFAULT_INTERP_FILTER EIGHTTAP /* SWITCHABLE for better performance */ #define SEARCH_BEST_FILTER 0 /* to search exhaustively for best filter */ #define RESET_FOREACH_FILTER 0 /* whether to reset the encoder state before trying each new filter */ #define SHARP_FILTER_QTHRESH 0 /* Q threshold for 8-tap sharp filter */ #define ALTREF_HIGH_PRECISION_MV 1 /* whether to use high precision mv for altref computation */ #define HIGH_PRECISION_MV_QTHRESH 200 /* Q threshold for use of high precision mv. Choose a very high value for now so that HIGH_PRECISION is always chosen */ #if CONFIG_INTERNAL_STATS #include "math.h" extern double vp8_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, int lumamask, double *weight); extern double vp8_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, double *ssim_y, double *ssim_u, double *ssim_v); #endif // #define OUTPUT_YUV_REC #ifdef OUTPUT_YUV_SRC FILE *yuv_file; #endif #ifdef OUTPUT_YUV_REC FILE *yuv_rec_file; #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif #if 0 extern int skip_true_count; extern int skip_false_count; #endif #ifdef ENTROPY_STATS extern int intra_mode_stats[VP8_BINTRAMODES][VP8_BINTRAMODES][VP8_BINTRAMODES]; #endif
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
#ifdef NMV_STATS extern void init_nmvstats(); extern void print_nmvstats(); #endif #ifdef SPEEDSTATS unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int tot_pm = 0; unsigned int cnt_pm = 0; unsigned int tot_ef = 0; unsigned int cnt_ef = 0; #endif #if defined(SECTIONBITS_OUTPUT) extern unsigned __int64 Sectionbits[500]; #endif #ifdef MODE_STATS extern INT64 Sectionbits[500]; extern unsigned int y_modes[VP8_YMODES]; extern unsigned int i8x8_modes[VP8_I8X8_MODES]; extern unsigned int uv_modes[VP8_UV_MODES]; extern unsigned int uv_modes_y[VP8_YMODES][VP8_UV_MODES]; extern unsigned int b_modes[B_MODE_COUNT]; extern unsigned int inter_y_modes[MB_MODE_COUNT]; extern unsigned int inter_uv_modes[VP8_UV_MODES]; extern unsigned int inter_b_modes[B_MODE_COUNT]; #endif extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch); extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch); extern void vp8cx_init_quantizer(VP8_COMP *cpi); int vp8cx_base_skip_false_prob[QINDEX_RANGE][3]; // Tables relating active max Q to active min Q static int kf_low_motion_minq[QINDEX_RANGE]; static int kf_high_motion_minq[QINDEX_RANGE]; static int gf_low_motion_minq[QINDEX_RANGE]; static int gf_high_motion_minq[QINDEX_RANGE]; static int inter_minq[QINDEX_RANGE]; // Functions to compute the active minq lookup table entries based on a // formulaic approach to facilitate easier adjustment of the Q tables. // The formulae were derived from computing a 3rd order polynomial best // fit to the original data (after plotting real maxq vs minq (not q index)) int calculate_minq_index(double maxq, double x3, double x2, double x, double c) { int i; double minqtarget; double thisq; minqtarget = ((x3 * maxq * maxq * maxq) + (x2 * maxq * maxq) + (x * maxq) + c); if (minqtarget > maxq) minqtarget = maxq; for (i = 0; i < QINDEX_RANGE; i++) { thisq = vp8_convert_qindex_to_q(i); if (minqtarget <= vp8_convert_qindex_to_q(i)) return i; } return QINDEX_RANGE - 1; } void init_minq_luts() {
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
int i; double maxq; for (i = 0; i < QINDEX_RANGE; i++) { maxq = vp8_convert_qindex_to_q(i); kf_low_motion_minq[i] = calculate_minq_index(maxq, 0.0000003, -0.000015, 0.074, 0.0); kf_high_motion_minq[i] = calculate_minq_index(maxq, 0.0000004, -0.000125, 0.14, 0.0); gf_low_motion_minq[i] = calculate_minq_index(maxq, 0.0000015, -0.0009, 0.33, 0.0); gf_high_motion_minq[i] = calculate_minq_index(maxq, 0.0000021, -0.00125, 0.45, 0.0); inter_minq[i] = calculate_minq_index(maxq, 0.00000271, -0.00113, 0.697, 0.0); } } void init_base_skip_probs() { int i; double q; int skip_prob, t; for (i = 0; i < QINDEX_RANGE; i++) { q = vp8_convert_qindex_to_q(i); // Exponential decay caluclation of baseline skip prob with clamping // Based on crude best fit of old table. t = (int)(564.25 * pow(2.71828, (-0.012 * q))); skip_prob = t; if (skip_prob < 1) skip_prob = 1; else if (skip_prob > 255) skip_prob = 255; vp8cx_base_skip_false_prob[i][1] = skip_prob; skip_prob = t * 0.75; if (skip_prob < 1) skip_prob = 1; else if (skip_prob > 255) skip_prob = 255; vp8cx_base_skip_false_prob[i][2] = skip_prob; skip_prob = t * 1.25; if (skip_prob < 1) skip_prob = 1; else if (skip_prob > 255) skip_prob = 255; vp8cx_base_skip_false_prob[i][0] = skip_prob; } }
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
void update_base_skip_probs(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; if (cm->frame_type != KEY_FRAME) { update_skip_probs(cpi); if (cm->refresh_alt_ref_frame) { int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->last_skip_false_probs[2][k] = cm->mbskip_pred_probs[k]; cpi->last_skip_probs_q[2] = cm->base_qindex; } else if (cpi->common.refresh_golden_frame) { int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->last_skip_false_probs[1][k] = cm->mbskip_pred_probs[k]; cpi->last_skip_probs_q[1] = cm->base_qindex; } else { int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->last_skip_false_probs[0][k] = cm->mbskip_pred_probs[k]; cpi->last_skip_probs_q[0] = cm->base_qindex; // update the baseline table for the current q for (k = 0; k < MBSKIP_CONTEXTS; ++k) cpi->base_skip_false_prob[cm->base_qindex][k] = cm->mbskip_pred_probs[k]; } } } void vp8_initialize() { static int init_done = 0; if (!init_done) { vp8_scale_machine_specific_config(); vp8_initialize_common(); // vp8_dmachine_specific_config(); vp8_tokenize_initialize(); vp8_init_quant_tables(); vp8_init_me_luts(); init_minq_luts(); init_base_skip_probs(); init_done = 1; } } #ifdef PACKET_TESTING extern FILE *vpxlogc; #endif static void setup_features(VP8_COMP *cpi) { MACROBLOCKD *xd = &cpi->mb.e_mbd; // Set up default state for MB feature flags xd->segmentation_enabled = 0; // Default segmentation disabled xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); clearall_segfeatures(xd); xd->mode_ref_lf_delta_enabled = 0; xd->mode_ref_lf_delta_update = 0; vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); vpx_memset(xd->last_ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->last_mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
set_default_lf_deltas(cpi); } static void dealloc_compressor_data(VP8_COMP *cpi) { vpx_free(cpi->tplist); cpi->tplist = NULL; // Delete last frame MV storage buffers vpx_free(cpi->lfmv); cpi->lfmv = 0; vpx_free(cpi->lf_ref_frame_sign_bias); cpi->lf_ref_frame_sign_bias = 0; vpx_free(cpi->lf_ref_frame); cpi->lf_ref_frame = 0; // Delete sementation map vpx_free(cpi->segmentation_map); cpi->segmentation_map = 0; vpx_free(cpi->common.last_frame_seg_map); cpi->common.last_frame_seg_map = 0; vpx_free(cpi->coding_context.last_frame_seg_map_copy); cpi->coding_context.last_frame_seg_map_copy = 0; vpx_free(cpi->active_map); cpi->active_map = 0; vp8_de_alloc_frame_buffers(&cpi->common); vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf); vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); #if VP8_TEMPORAL_ALT_REF vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer); #endif vp8_lookahead_destroy(cpi->lookahead); vpx_free(cpi->tok); cpi->tok = 0; // Structure used to monitor GF usage vpx_free(cpi->gf_active_flags); cpi->gf_active_flags = 0; // Activity mask based per mb zbin adjustments vpx_free(cpi->mb_activity_map); cpi->mb_activity_map = 0; vpx_free(cpi->mb_norm_activity_map); cpi->mb_norm_activity_map = 0; vpx_free(cpi->mb.pip); cpi->mb.pip = 0; vpx_free(cpi->twopass.total_stats); cpi->twopass.total_stats = 0; vpx_free(cpi->twopass.total_left_stats); cpi->twopass.total_left_stats = 0; vpx_free(cpi->twopass.this_frame_stats); cpi->twopass.this_frame_stats = 0; } // Computes a q delta (in "q index" terms) to get from a starting q value // to a target value // target q value static int compute_qdelta(VP8_COMP *cpi, double qstart, double qtarget) { int i;
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
int start_index = cpi->worst_quality; int target_index = cpi->worst_quality; // Convert the average q value to an index. for (i = cpi->best_quality; i < cpi->worst_quality; i++) { start_index = i; if (vp8_convert_qindex_to_q(i) >= qstart) break; } // Convert the q target to an index for (i = cpi->best_quality; i < cpi->worst_quality; i++) { target_index = i; if (vp8_convert_qindex_to_q(i) >= qtarget) break; } return target_index - start_index; } static void init_seg_features(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; int high_q = (int)(cpi->avg_q > 48.0); int qi_delta; // Disable and clear down for KF if (cm->frame_type == KEY_FRAME) { // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; cpi->static_mb_pct = 0; // Disable segmentation vp8_disable_segmentation((VP8_PTR)cpi); // Clear down the segment features. clearall_segfeatures(xd); } // If this is an alt ref frame else if (cm->refresh_alt_ref_frame) { // Clear down the global segmentation map vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; cpi->static_mb_pct = 0; // Disable segmentation and individual segment features by default vp8_disable_segmentation((VP8_PTR)cpi); clearall_segfeatures(xd); // Scan frames from current to arf frame. // This function re-enables segmentation if appropriate. vp8_update_mbgraph_stats(cpi); // If segmentation was enabled set those features needed for the // arf itself. if (xd->segmentation_enabled) { xd->update_mb_segmentation_map = 1; xd->update_mb_segmentation_data = 1; qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 0.875)); set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta - 2)); set_segdata(xd, 1, SEG_LVL_ALT_LF, -2); enable_segfeature(xd, 1, SEG_LVL_ALT_Q); enable_segfeature(xd, 1, SEG_LVL_ALT_LF);
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
// Where relevant assume segment data is delta data xd->mb_segment_abs_delta = SEGMENT_DELTADATA; } } // All other frames if segmentation has been enabled else if (xd->segmentation_enabled) { /* int i; // clears prior frame seg lev refs for (i = 0; i < MAX_MB_SEGMENTS; i++) { // only do it if the force drop the background stuff is off if(!segfeature_active(xd, i, SEG_LVL_MODE)) { disable_segfeature(xd,i,SEG_LVL_REF_FRAME); set_segdata( xd,i, SEG_LVL_REF_FRAME, 0xffffff); } } */ // First normal frame in a valid gf or alt ref group if (cpi->common.frames_since_golden == 0) { // Set up segment features for normal frames in an af group if (cpi->source_alt_ref_active) { xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 1; xd->mb_segment_abs_delta = SEGMENT_DELTADATA; qi_delta = compute_qdelta(cpi, cpi->avg_q, (cpi->avg_q * 1.125)); set_segdata(xd, 1, SEG_LVL_ALT_Q, (qi_delta + 2)); set_segdata(xd, 1, SEG_LVL_ALT_Q, 0); enable_segfeature(xd, 1, SEG_LVL_ALT_Q); set_segdata(xd, 1, SEG_LVL_ALT_LF, -2); enable_segfeature(xd, 1, SEG_LVL_ALT_LF); // Segment coding disabled for compred testing if (high_q || (cpi->static_mb_pct == 100)) { // set_segref(xd, 1, LAST_FRAME); set_segref(xd, 1, ALTREF_FRAME); enable_segfeature(xd, 1, SEG_LVL_REF_FRAME); set_segdata(xd, 1, SEG_LVL_MODE, ZEROMV); enable_segfeature(xd, 1, SEG_LVL_MODE); // EOB segment coding not fixed for 8x8 yet set_segdata(xd, 1, SEG_LVL_EOB, 0); enable_segfeature(xd, 1, SEG_LVL_EOB); } } // Disable segmentation and clear down features if alt ref // is not active for this group else { vp8_disable_segmentation((VP8_PTR)cpi); vpx_memset(cpi->segmentation_map, 0, (cm->mb_rows * cm->mb_cols)); xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; clearall_segfeatures(xd); } } // Special case where we are coding over the top of a previous
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
// alt ref frame // Segment coding disabled for compred testing else if (cpi->is_src_frame_alt_ref) { // Enable mode and ref frame features for segment 0 as well enable_segfeature(xd, 0, SEG_LVL_REF_FRAME); enable_segfeature(xd, 0, SEG_LVL_MODE); enable_segfeature(xd, 1, SEG_LVL_REF_FRAME); enable_segfeature(xd, 1, SEG_LVL_MODE); // All mbs should use ALTREF_FRAME, ZEROMV exclusively clear_segref(xd, 0); set_segref(xd, 0, ALTREF_FRAME); clear_segref(xd, 1); set_segref(xd, 1, ALTREF_FRAME); set_segdata(xd, 0, SEG_LVL_MODE, ZEROMV); set_segdata(xd, 1, SEG_LVL_MODE, ZEROMV); // Skip all MBs if high Q if (high_q) { enable_segfeature(xd, 0, SEG_LVL_EOB); set_segdata(xd, 0, SEG_LVL_EOB, 0); enable_segfeature(xd, 1, SEG_LVL_EOB); set_segdata(xd, 1, SEG_LVL_EOB, 0); } // Enable data udpate xd->update_mb_segmentation_data = 1; } // All other frames. else { // No updates.. leave things as they are. xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; } } } // DEBUG: Print out the segment id of each MB in the current frame. static void print_seg_map(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int row, col; int map_index = 0; FILE *statsfile; statsfile = fopen("segmap.stt", "a"); fprintf(statsfile, "%10d\n", cm->current_video_frame); for (row = 0; row < cpi->common.mb_rows; row++) { for (col = 0; col < cpi->common.mb_cols; col++) { fprintf(statsfile, "%10d", cpi->segmentation_map[map_index]); map_index++; } fprintf(statsfile, "\n"); } fprintf(statsfile, "\n"); fclose(statsfile); } static void update_reference_segmentation_map(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int row, col, sb_rows = (cm->mb_rows + 1) >> 1, sb_cols = (cm->mb_cols + 1) >> 1; MODE_INFO *mi = cm->mi; uint8_t *segmap = cpi->segmentation_map; uint8_t *segcache = cm->last_frame_seg_map; for (row = 0; row < sb_rows; row++) { for (col = 0; col < sb_cols; col++) {
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
MODE_INFO *miptr = mi + col * 2; uint8_t *cache = segcache + col * 2; #if CONFIG_SUPERBLOCKS if (miptr->mbmi.encoded_as_sb) { cache[0] = cache[1] = cache[cm->mb_cols] = cache[cm->mb_cols + 1] = miptr->mbmi.segment_id; } else #endif { cache[0] = miptr[0].mbmi.segment_id; if (!(cm->mb_cols & 1) || col < sb_cols - 1) cache[1] = miptr[1].mbmi.segment_id; if (!(cm->mb_rows & 1) || row < sb_rows - 1) { cache[cm->mb_cols] = miptr[cm->mode_info_stride].mbmi.segment_id; if (!(cm->mb_cols & 1) || col < sb_cols - 1) cache[1] = miptr[1].mbmi.segment_id; cache[cm->mb_cols + 1] = miptr[cm->mode_info_stride + 1].mbmi.segment_id; } } } segmap += 2 * cm->mb_cols; segcache += 2 * cm->mb_cols; mi += 2 * cm->mode_info_stride; } } static void set_default_lf_deltas(VP8_COMP *cpi) { cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); // Test of ref frame deltas cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv } void vp8_set_speed_features(VP8_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; int Mode = cpi->compressor_speed; int Speed = cpi->Speed; int i; VP8_COMMON *cm = &cpi->common; // Only modes 0 and 1 supported for now in experimental code basae if (Mode > 1) Mode = 1; // Initialise default mode frequency sampling variables for (i = 0; i < MAX_MODES; i ++) { cpi->mode_check_freq[i] = 0; cpi->mode_test_hit_counts[i] = 0; cpi->mode_chosen_counts[i] = 0; } // best quality defaults sf->RD = 1; sf->search_method = NSTEP; sf->improved_dct = 1; sf->auto_filter = 1; sf->recode_loop = 1; sf->quarter_pixel_search = 1;
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
sf->half_pixel_search = 1; sf->iterative_sub_pixel = 1; #if CONFIG_LOSSLESS sf->optimize_coefficients = 0; #else sf->optimize_coefficients = 1; #endif sf->no_skip_block4x4_search = 1; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; sf->improved_mv_pred = 1; // default thresholds to 0 for (i = 0; i < MAX_MODES; i++) sf->thresh_mult[i] = 0; switch (Mode) { case 0: // best quality mode #if CONFIG_PRED_FILTER sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROMV_FILT ] = 0; sf->thresh_mult[THR_ZEROG ] = 0; sf->thresh_mult[THR_ZEROG_FILT ] = 0; sf->thresh_mult[THR_ZEROA ] = 0; sf->thresh_mult[THR_ZEROA_FILT ] = 0; sf->thresh_mult[THR_NEARESTMV ] = 0; sf->thresh_mult[THR_NEARESTMV_FILT] = 0; sf->thresh_mult[THR_NEARESTG ] = 0; sf->thresh_mult[THR_NEARESTG_FILT ] = 0; sf->thresh_mult[THR_NEARESTA ] = 0; sf->thresh_mult[THR_NEARESTA_FILT ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEARMV_FILT ] = 0; sf->thresh_mult[THR_NEARG ] = 0; sf->thresh_mult[THR_NEARG_FILT ] = 0; sf->thresh_mult[THR_NEARA ] = 0; sf->thresh_mult[THR_NEARA_FILT ] = 0; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_D45_PRED ] = 1000; sf->thresh_mult[THR_D135_PRED] = 1000; sf->thresh_mult[THR_D117_PRED] = 1000; sf->thresh_mult[THR_D153_PRED] = 1000; sf->thresh_mult[THR_D27_PRED ] = 1000; sf->thresh_mult[THR_D63_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2000; sf->thresh_mult[THR_I8X8_PRED] = 2000; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_NEWMV ] = 1000; sf->thresh_mult[THR_NEWG ] = 1000; sf->thresh_mult[THR_NEWA ] = 1000; sf->thresh_mult[THR_NEWMV_FILT ] = 1000; sf->thresh_mult[THR_NEWG_FILT ] = 1000; sf->thresh_mult[THR_NEWA_FILT ] = 1000; #else sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROG ] = 0; sf->thresh_mult[THR_ZEROA ] = 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTG ] = 0; sf->thresh_mult[THR_NEARESTA ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEARG ] = 0; sf->thresh_mult[THR_NEARA ] = 0;
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_D45_PRED ] = 1000; sf->thresh_mult[THR_D135_PRED] = 1000; sf->thresh_mult[THR_D117_PRED] = 1000; sf->thresh_mult[THR_D153_PRED] = 1000; sf->thresh_mult[THR_D27_PRED ] = 1000; sf->thresh_mult[THR_D63_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2000; sf->thresh_mult[THR_I8X8_PRED] = 2000; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_NEWMV ] = 1000; sf->thresh_mult[THR_NEWG ] = 1000; sf->thresh_mult[THR_NEWA ] = 1000; #endif sf->thresh_mult[THR_SPLITMV ] = 2500; sf->thresh_mult[THR_SPLITG ] = 5000; sf->thresh_mult[THR_SPLITA ] = 5000; sf->thresh_mult[THR_COMP_ZEROLG ] = 0; sf->thresh_mult[THR_COMP_NEARESTLG] = 0; sf->thresh_mult[THR_COMP_NEARLG ] = 0; sf->thresh_mult[THR_COMP_ZEROLA ] = 0; sf->thresh_mult[THR_COMP_NEARESTLA] = 0; sf->thresh_mult[THR_COMP_NEARLA ] = 0; sf->thresh_mult[THR_COMP_ZEROGA ] = 0; sf->thresh_mult[THR_COMP_NEARESTGA] = 0; sf->thresh_mult[THR_COMP_NEARGA ] = 0; sf->thresh_mult[THR_COMP_NEWLG ] = 1000; sf->thresh_mult[THR_COMP_NEWLA ] = 1000; sf->thresh_mult[THR_COMP_NEWGA ] = 1000; sf->thresh_mult[THR_COMP_SPLITLA ] = 2500; sf->thresh_mult[THR_COMP_SPLITGA ] = 5000; sf->thresh_mult[THR_COMP_SPLITLG ] = 5000; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; sf->search_best_filter = SEARCH_BEST_FILTER; break; case 1: #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTMV_FILT] = 0; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROMV_FILT ] = 0; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEARMV_FILT ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_D45_PRED ] = 1000; sf->thresh_mult[THR_D135_PRED] = 1000; sf->thresh_mult[THR_D117_PRED] = 1000; sf->thresh_mult[THR_D153_PRED] = 1000; sf->thresh_mult[THR_D27_PRED ] = 1000; sf->thresh_mult[THR_D63_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2500; sf->thresh_mult[THR_I8X8_PRED] = 2500; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_NEARESTG ] = 1000; sf->thresh_mult[THR_NEARESTG_FILT ] = 1000; sf->thresh_mult[THR_NEARESTA ] = 1000; sf->thresh_mult[THR_NEARESTA_FILT ] = 1000;
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
sf->thresh_mult[THR_ZEROG ] = 1000; sf->thresh_mult[THR_ZEROA ] = 1000; sf->thresh_mult[THR_NEARG ] = 1000; sf->thresh_mult[THR_NEARA ] = 1000; sf->thresh_mult[THR_ZEROG_FILT ] = 1000; sf->thresh_mult[THR_ZEROA_FILT ] = 1000; sf->thresh_mult[THR_NEARG_FILT ] = 1000; sf->thresh_mult[THR_NEARA_FILT ] = 1000; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROG ] = 0; sf->thresh_mult[THR_ZEROA ] = 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTG ] = 0; sf->thresh_mult[THR_NEARESTA ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEARG ] = 0; sf->thresh_mult[THR_NEARA ] = 0; sf->thresh_mult[THR_ZEROMV_FILT ] = 0; sf->thresh_mult[THR_ZEROG_FILT ] = 0; sf->thresh_mult[THR_ZEROA_FILT ] = 0; sf->thresh_mult[THR_NEARESTMV_FILT] = 0; sf->thresh_mult[THR_NEARESTG_FILT ] = 0; sf->thresh_mult[THR_NEARESTA_FILT ] = 0; sf->thresh_mult[THR_NEARMV_FILT ] = 0; sf->thresh_mult[THR_NEARG_FILT ] = 0; sf->thresh_mult[THR_NEARA_FILT ] = 0; sf->thresh_mult[THR_NEWMV ] = 1000; sf->thresh_mult[THR_NEWG ] = 1000; sf->thresh_mult[THR_NEWA ] = 1000; sf->thresh_mult[THR_NEWMV_FILT ] = 1000; sf->thresh_mult[THR_NEWG_FILT ] = 1000; sf->thresh_mult[THR_NEWA_FILT ] = 1000; #else sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_D45_PRED ] = 1000; sf->thresh_mult[THR_D135_PRED] = 1000; sf->thresh_mult[THR_D117_PRED] = 1000; sf->thresh_mult[THR_D153_PRED] = 1000; sf->thresh_mult[THR_D27_PRED ] = 1000; sf->thresh_mult[THR_D63_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2500; sf->thresh_mult[THR_I8X8_PRED] = 2500; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_NEARESTG ] = 1000; sf->thresh_mult[THR_NEARESTA ] = 1000; sf->thresh_mult[THR_ZEROG ] = 1000; sf->thresh_mult[THR_ZEROA ] = 1000; sf->thresh_mult[THR_NEARG ] = 1000; sf->thresh_mult[THR_NEARA ] = 1000; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROG ] = 0; sf->thresh_mult[THR_ZEROA ] = 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTG ] = 0; sf->thresh_mult[THR_NEARESTA ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEARG ] = 0; sf->thresh_mult[THR_NEARA ] = 0; sf->thresh_mult[THR_NEWMV ] = 1000;
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
sf->thresh_mult[THR_NEWG ] = 1000; sf->thresh_mult[THR_NEWA ] = 1000; #endif sf->thresh_mult[THR_SPLITMV ] = 1700; sf->thresh_mult[THR_SPLITG ] = 4500; sf->thresh_mult[THR_SPLITA ] = 4500; sf->thresh_mult[THR_COMP_ZEROLG ] = 0; sf->thresh_mult[THR_COMP_NEARESTLG] = 0; sf->thresh_mult[THR_COMP_NEARLG ] = 0; sf->thresh_mult[THR_COMP_ZEROLA ] = 0; sf->thresh_mult[THR_COMP_NEARESTLA] = 0; sf->thresh_mult[THR_COMP_NEARLA ] = 0; sf->thresh_mult[THR_COMP_ZEROGA ] = 0; sf->thresh_mult[THR_COMP_NEARESTGA] = 0; sf->thresh_mult[THR_COMP_NEARGA ] = 0; sf->thresh_mult[THR_COMP_NEWLG ] = 1000; sf->thresh_mult[THR_COMP_NEWLA ] = 1000; sf->thresh_mult[THR_COMP_NEWGA ] = 1000; sf->thresh_mult[THR_COMP_SPLITLA ] = 1700; sf->thresh_mult[THR_COMP_SPLITGA ] = 4500; sf->thresh_mult[THR_COMP_SPLITLG ] = 4500; if (Speed > 0) { /* Disable coefficient optimization above speed 0 */ sf->optimize_coefficients = 0; sf->no_skip_block4x4_search = 0; sf->first_step = 1; cpi->mode_check_freq[THR_SPLITG] = 2; cpi->mode_check_freq[THR_SPLITA] = 2; cpi->mode_check_freq[THR_SPLITMV] = 0; cpi->mode_check_freq[THR_COMP_SPLITGA] = 2; cpi->mode_check_freq[THR_COMP_SPLITLG] = 2; cpi->mode_check_freq[THR_COMP_SPLITLA] = 0; } if (Speed > 1) { cpi->mode_check_freq[THR_SPLITG] = 4; cpi->mode_check_freq[THR_SPLITA] = 4; cpi->mode_check_freq[THR_SPLITMV] = 2; cpi->mode_check_freq[THR_COMP_SPLITGA] = 4; cpi->mode_check_freq[THR_COMP_SPLITLG] = 4; cpi->mode_check_freq[THR_COMP_SPLITLA] = 2; sf->thresh_mult[THR_TM ] = 1500; sf->thresh_mult[THR_V_PRED ] = 1500; sf->thresh_mult[THR_H_PRED ] = 1500; sf->thresh_mult[THR_D45_PRED ] = 1500; sf->thresh_mult[THR_D135_PRED] = 1500; sf->thresh_mult[THR_D117_PRED] = 1500; sf->thresh_mult[THR_D153_PRED] = 1500; sf->thresh_mult[THR_D27_PRED ] = 1500; sf->thresh_mult[THR_D63_PRED ] = 1500; sf->thresh_mult[THR_B_PRED ] = 5000; sf->thresh_mult[THR_I8X8_PRED] = 5000; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEWMV ] = 2000; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEWMV_FILT ] = 2000; #endif sf->thresh_mult[THR_SPLITMV ] = 10000; sf->thresh_mult[THR_COMP_SPLITLG ] = 20000; }
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 1500; sf->thresh_mult[THR_ZEROG ] = 1500; sf->thresh_mult[THR_NEARG ] = 1500; sf->thresh_mult[THR_NEWG ] = 2000; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTG_FILT ] = 1500; sf->thresh_mult[THR_ZEROG_FILT ] = 1500; sf->thresh_mult[THR_NEARG_FILT ] = 1500; sf->thresh_mult[THR_NEWG_FILT ] = 2000; #endif sf->thresh_mult[THR_SPLITG ] = 20000; sf->thresh_mult[THR_COMP_SPLITGA ] = 20000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 1500; sf->thresh_mult[THR_ZEROA ] = 1500; sf->thresh_mult[THR_NEARA ] = 1500; sf->thresh_mult[THR_NEWA ] = 2000; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTA_FILT ] = 1500; sf->thresh_mult[THR_ZEROA_FILT ] = 1500; sf->thresh_mult[THR_NEARA_FILT ] = 1500; sf->thresh_mult[THR_NEWA_FILT ] = 2000; #endif sf->thresh_mult[THR_SPLITA ] = 20000; sf->thresh_mult[THR_COMP_SPLITLA ] = 10000; } sf->thresh_mult[THR_COMP_ZEROLG ] = 1500; sf->thresh_mult[THR_COMP_NEARESTLG] = 1500; sf->thresh_mult[THR_COMP_NEARLG ] = 1500; sf->thresh_mult[THR_COMP_ZEROLA ] = 1500; sf->thresh_mult[THR_COMP_NEARESTLA] = 1500; sf->thresh_mult[THR_COMP_NEARLA ] = 1500; sf->thresh_mult[THR_COMP_ZEROGA ] = 1500; sf->thresh_mult[THR_COMP_NEARESTGA] = 1500; sf->thresh_mult[THR_COMP_NEARGA ] = 1500; sf->thresh_mult[THR_COMP_NEWLG ] = 2000; sf->thresh_mult[THR_COMP_NEWLA ] = 2000; sf->thresh_mult[THR_COMP_NEWGA ] = 2000; } if (Speed > 2) { cpi->mode_check_freq[THR_SPLITG] = 15; cpi->mode_check_freq[THR_SPLITA] = 15; cpi->mode_check_freq[THR_SPLITMV] = 7; cpi->mode_check_freq[THR_COMP_SPLITGA] = 15; cpi->mode_check_freq[THR_COMP_SPLITLG] = 15; cpi->mode_check_freq[THR_COMP_SPLITLA] = 7; sf->thresh_mult[THR_TM ] = 2000; sf->thresh_mult[THR_V_PRED ] = 2000; sf->thresh_mult[THR_H_PRED ] = 2000; sf->thresh_mult[THR_D45_PRED ] = 2000; sf->thresh_mult[THR_D135_PRED] = 2000; sf->thresh_mult[THR_D117_PRED] = 2000; sf->thresh_mult[THR_D153_PRED] = 2000; sf->thresh_mult[THR_D27_PRED ] = 2000; sf->thresh_mult[THR_D63_PRED ] = 2000; sf->thresh_mult[THR_B_PRED ] = 7500; sf->thresh_mult[THR_I8X8_PRED] = 7500; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEWMV ] = 2000; #if CONFIG_PRED_FILTER
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
sf->thresh_mult[THR_NEWMV_FILT ] = 2000; #endif sf->thresh_mult[THR_SPLITMV ] = 25000; sf->thresh_mult[THR_COMP_SPLITLG ] = 50000; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 2000; sf->thresh_mult[THR_ZEROG ] = 2000; sf->thresh_mult[THR_NEARG ] = 2000; sf->thresh_mult[THR_NEWG ] = 2500; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTG_FILT ] = 2000; sf->thresh_mult[THR_ZEROG_FILT ] = 2000; sf->thresh_mult[THR_NEARG_FILT ] = 2000; sf->thresh_mult[THR_NEWG_FILT ] = 2500; #endif sf->thresh_mult[THR_SPLITG ] = 50000; sf->thresh_mult[THR_COMP_SPLITGA ] = 50000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 2000; sf->thresh_mult[THR_ZEROA ] = 2000; sf->thresh_mult[THR_NEARA ] = 2000; sf->thresh_mult[THR_NEWA ] = 2500; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTA_FILT ] = 2000; sf->thresh_mult[THR_ZEROA_FILT ] = 2000; sf->thresh_mult[THR_NEARA_FILT ] = 2000; sf->thresh_mult[THR_NEWA_FILT ] = 2500; #endif sf->thresh_mult[THR_SPLITA ] = 50000; sf->thresh_mult[THR_COMP_SPLITLA ] = 25000; } sf->thresh_mult[THR_COMP_ZEROLG ] = 2000; sf->thresh_mult[THR_COMP_NEARESTLG] = 2000; sf->thresh_mult[THR_COMP_NEARLG ] = 2000; sf->thresh_mult[THR_COMP_ZEROLA ] = 2000; sf->thresh_mult[THR_COMP_NEARESTLA] = 2000; sf->thresh_mult[THR_COMP_NEARLA ] = 2000; sf->thresh_mult[THR_COMP_ZEROGA ] = 2000; sf->thresh_mult[THR_COMP_NEARESTGA] = 2000; sf->thresh_mult[THR_COMP_NEARGA ] = 2000; sf->thresh_mult[THR_COMP_NEWLG ] = 2500; sf->thresh_mult[THR_COMP_NEWLA ] = 2500; sf->thresh_mult[THR_COMP_NEWGA ] = 2500; sf->improved_dct = 0; // Only do recode loop on key frames, golden frames and // alt ref frames sf->recode_loop = 2; } break; }; /* switch */ /* disable frame modes if flags not set */ if (!(cpi->ref_frame_flags & VP8_LAST_FLAG)) { sf->thresh_mult[THR_NEWMV ] = INT_MAX; sf->thresh_mult[THR_NEARESTMV] = INT_MAX; sf->thresh_mult[THR_ZEROMV ] = INT_MAX; sf->thresh_mult[THR_NEARMV ] = INT_MAX; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEWMV_FILT ] = INT_MAX;
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
sf->thresh_mult[THR_NEARESTMV_FILT] = INT_MAX; sf->thresh_mult[THR_ZEROMV_FILT ] = INT_MAX; sf->thresh_mult[THR_NEARMV_FILT ] = INT_MAX; #endif sf->thresh_mult[THR_SPLITMV ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG)) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTG_FILT ] = INT_MAX; sf->thresh_mult[THR_ZEROG_FILT ] = INT_MAX; sf->thresh_mult[THR_NEARG_FILT ] = INT_MAX; sf->thresh_mult[THR_NEWG_FILT ] = INT_MAX; #endif sf->thresh_mult[THR_SPLITG ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_ALT_FLAG)) { sf->thresh_mult[THR_NEARESTA ] = INT_MAX; sf->thresh_mult[THR_ZEROA ] = INT_MAX; sf->thresh_mult[THR_NEARA ] = INT_MAX; sf->thresh_mult[THR_NEWA ] = INT_MAX; #if CONFIG_PRED_FILTER sf->thresh_mult[THR_NEARESTA_FILT ] = INT_MAX; sf->thresh_mult[THR_ZEROA_FILT ] = INT_MAX; sf->thresh_mult[THR_NEARA_FILT ] = INT_MAX; sf->thresh_mult[THR_NEWA_FILT ] = INT_MAX; #endif sf->thresh_mult[THR_SPLITA ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP8_LAST_FLAG | VP8_GOLD_FLAG)) != (VP8_LAST_FLAG | VP8_GOLD_FLAG)) { sf->thresh_mult[THR_COMP_ZEROLG ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTLG] = INT_MAX; sf->thresh_mult[THR_COMP_NEARLG ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWLG ] = INT_MAX; sf->thresh_mult[THR_COMP_SPLITLG ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP8_LAST_FLAG | VP8_ALT_FLAG)) != (VP8_LAST_FLAG | VP8_ALT_FLAG)) { sf->thresh_mult[THR_COMP_ZEROLA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTLA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARLA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWLA ] = INT_MAX; sf->thresh_mult[THR_COMP_SPLITLA ] = INT_MAX; } if ((cpi->ref_frame_flags & (VP8_GOLD_FLAG | VP8_ALT_FLAG)) != (VP8_GOLD_FLAG | VP8_ALT_FLAG)) { sf->thresh_mult[THR_COMP_ZEROGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEARESTGA] = INT_MAX; sf->thresh_mult[THR_COMP_NEARGA ] = INT_MAX; sf->thresh_mult[THR_COMP_NEWGA ] = INT_MAX; sf->thresh_mult[THR_COMP_SPLITGA ] = INT_MAX; } // Slow quant, dct and trellis not worthwhile for first pass // so make sure they are always turned off. if (cpi->pass == 1) { sf->optimize_coefficients = 0; sf->improved_dct = 0; } if (cpi->sf.search_method == NSTEP) { vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); } else if (cpi->sf.search_method == DIAMOND) { vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride);
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
} if (cpi->sf.improved_dct) { cpi->mb.vp8_short_fdct16x16 = FDCT_INVOKE(&cpi->rtcd.fdct, short16x16); cpi->mb.vp8_short_fdct8x8 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x8); cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4); cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4); } else { cpi->mb.vp8_short_fdct16x16 = FDCT_INVOKE(&cpi->rtcd.fdct, short16x16); cpi->mb.vp8_short_fdct8x8 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x8); cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4); cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4); } cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4); cpi->mb.short_fhaar2x2 = FDCT_INVOKE(&cpi->rtcd.fdct, haar_short2x2); cpi->mb.quantize_b_4x4 = vp8_regular_quantize_b_4x4; cpi->mb.quantize_b_4x4_pair = vp8_regular_quantize_b_4x4_pair; cpi->mb.quantize_b_8x8 = vp8_regular_quantize_b_8x8; cpi->mb.quantize_b_16x16 = vp8_regular_quantize_b_16x16; cpi->mb.quantize_b_2x2 = vp8_regular_quantize_b_2x2; vp8cx_init_quantizer(cpi); #if CONFIG_RUNTIME_CPU_DETECT cpi->mb.e_mbd.rtcd = &cpi->common.rtcd; #endif if (cpi->sf.iterative_sub_pixel == 1) { cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively; } else if (cpi->sf.quarter_pixel_search) { cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step; } else if (cpi->sf.half_pixel_search) { cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step; } if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) cpi->mb.optimize = 1; else cpi->mb.optimize = 0; #ifdef SPEEDSTATS frames_at_speed[cpi->Speed]++; #endif } static void alloc_raw_frame_buffers(VP8_COMP *cpi) { int width = (cpi->oxcf.Width + 15) & ~15; int height = (cpi->oxcf.Height + 15) & ~15; cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height, cpi->oxcf.lag_in_frames); if (!cpi->lookahead) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate lag buffers"); #if VP8_TEMPORAL_ALT_REF if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height, VP8BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); #endif } static int vp8_alloc_partition_data(VP8_COMP *cpi) { vpx_free(cpi->mb.pip);
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1), sizeof(PARTITION_INFO)); if (!cpi->mb.pip) return 1; cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; return 0; } void vp8_alloc_compressor_data(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int width = cm->Width; int height = cm->Height; if (vp8_alloc_frame_buffers(cm, width, height)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); if (vp8_alloc_partition_data(cpi)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate partition data"); if ((width & 0xf) != 0) width += 16 - (width & 0xf); if ((height & 0xf) != 0) height += 16 - (height & 0xf); if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf, width, height, VP8BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, VP8BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); vpx_free(cpi->tok); { unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16; CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); } // Data used for real time vc mode to see if gf needs refreshing cpi->inter_zz_count = 0; cpi->gf_bad_count = 0; cpi->gf_update_recommended = 0; // Structures used to minitor GF usage vpx_free(cpi->gf_active_flags); CHECK_MEM_ERROR(cpi->gf_active_flags, vpx_calloc(1, cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; vpx_free(cpi->mb_activity_map); CHECK_MEM_ERROR(cpi->mb_activity_map, vpx_calloc(sizeof(unsigned int), cm->mb_rows * cm->mb_cols)); vpx_free(cpi->mb_norm_activity_map);
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
CHECK_MEM_ERROR(cpi->mb_norm_activity_map, vpx_calloc(sizeof(unsigned int), cm->mb_rows * cm->mb_cols)); vpx_free(cpi->twopass.total_stats); cpi->twopass.total_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS)); vpx_free(cpi->twopass.total_left_stats); cpi->twopass.total_left_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS)); vpx_free(cpi->twopass.this_frame_stats); cpi->twopass.this_frame_stats = vpx_calloc(1, sizeof(FIRSTPASS_STATS)); if (!cpi->twopass.total_stats || !cpi->twopass.total_left_stats || !cpi->twopass.this_frame_stats) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate firstpass stats"); vpx_free(cpi->tplist); CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * (cpi->common.mb_rows))); } // TODO perhaps change number of steps expose to outside world when setting // max and min limits. Also this will likely want refining for the extended Q // range. // // Table that converts 0-63 Q range values passed in outside to the Qindex // range used internally. static const int q_trans[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, }; int vp8_reverse_trans(int x) { int i; for (i = 0; i < 64; i++) if (q_trans[i] >= x) return i; return 63; }; void vp8_new_frame_rate(VP8_COMP *cpi, double framerate) { if (framerate < .1) framerate = 30; cpi->oxcf.frame_rate = framerate; cpi->output_frame_rate = cpi->oxcf.frame_rate; cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); if (cpi->min_frame_bandwidth < FRAME_OVERHEAD_BITS) cpi->min_frame_bandwidth = FRAME_OVERHEAD_BITS; // Set Maximum gf/arf interval cpi->max_gf_interval = ((int)(cpi->output_frame_rate / 2.0) + 2);
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12; // Extended interval for genuinely static scenes cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1; // Special conditions when altr ref frame enabled in lagged compress mode if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) { if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; if (cpi->twopass.static_scene_max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1; } if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval; } static int rescale(int val, int num, int denom) { int64_t llnum = num; int64_t llden = denom; int64_t llval = val; return llval * llnum / llden; } static void init_config(VP8_PTR ptr, VP8_CONFIG *oxcf) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; cpi->oxcf = *oxcf; cpi->goldfreq = 7; cm->version = oxcf->Version; vp8_setup_version(cm); // change includes all joint functionality vp8_change_config(ptr, oxcf); // Initialize active best and worst q and average q values. cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; cpi->active_best_quality = cpi->oxcf.best_allowed_q; cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; // Initialise the starting buffer levels cpi->buffer_level = cpi->oxcf.starting_buffer_level; cpi->bits_off_target = cpi->oxcf.starting_buffer_level; cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->total_actual_bits = 0; cpi->total_target_vs_actual = 0; cpi->static_mb_pct = 0; #if VP8_TEMPORAL_ALT_REF { int i; cpi->fixed_divide[0] = 0; for (i = 1; i < 512; i++)
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
cpi->fixed_divide[i] = 0x80000 / i; } #endif } void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; if (!cpi) return; if (!oxcf) return; if (cm->version != oxcf->Version) { cm->version = oxcf->Version; vp8_setup_version(cm); } cpi->oxcf = *oxcf; switch (cpi->oxcf.Mode) { // Real time and one pass deprecated in test code base case MODE_FIRSTPASS: cpi->pass = 1; cpi->compressor_speed = 1; break; case MODE_SECONDPASS: cpi->pass = 2; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_SECONDPASS_BEST: cpi->pass = 2; cpi->compressor_speed = 0; break; } cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level]; #if CONFIG_LOSSLESS cpi->oxcf.lossless = oxcf->lossless; if (cpi->oxcf.lossless) { cpi->rtcd.fdct.short4x4 = vp8_short_walsh4x4_x8_c; cpi->rtcd.fdct.fast4x4 = vp8_short_walsh4x4_x8_c; cpi->rtcd.fdct.short8x4 = vp8_short_walsh8x4_x8_c; cpi->rtcd.fdct.fast8x4 = vp8_short_walsh8x4_x8_c; cpi->rtcd.fdct.walsh_short4x4 = vp8_short_walsh4x4_lossless_c; cpi->common.rtcd.idct.idct1 = vp8_short_inv_walsh4x4_1_x8_c; cpi->common.rtcd.idct.idct16 = vp8_short_inv_walsh4x4_x8_c; cpi->common.rtcd.idct.idct1_scalar_add = vp8_dc_only_inv_walsh_add_c; cpi->common.rtcd.idct.iwalsh1 = vp8_short_inv_walsh4x4_1_c; cpi->common.rtcd.idct.iwalsh16 = vp8_short_inv_walsh4x4_lossless_c; } #endif cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; // cpi->use_golden_frame_only = 0; // cpi->use_last_frame_only = 0; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->refresh_entropy_probs = 1; setup_features(cpi); cpi->mb.e_mbd.allow_high_precision_mv = 0; // Default mv precision adaptation { int i; for (i = 0; i < MAX_MB_SEGMENTS; i++) cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } // At the moment the first order values may not be > MAXQ if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ; // local file playback mode == really big buffer if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { cpi->oxcf.starting_buffer_level = 60000; cpi->oxcf.optimal_buffer_level = 60000; cpi->oxcf.maximum_buffer_size = 240000; } // Convert target bandwidth from Kbit/s to Bit/s cpi->oxcf.target_bandwidth *= 1000; cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); // Set or reset optimal and maximum buffer levels. if (cpi->oxcf.optimal_buffer_level == 0) cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.maximum_buffer_size == 0) cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size, cpi->oxcf.target_bandwidth, 1000); // Set up frame rate and related parameters rate control values. vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate); // Set absolute upper and lower quality limits cpi->worst_quality = cpi->oxcf.worst_allowed_q; cpi->best_quality = cpi->oxcf.best_allowed_q; // active values should only be modified if out of new range if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) { cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; } // less likely else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) { cpi->active_worst_quality = cpi->oxcf.best_allowed_q; } if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) { cpi->active_best_quality = cpi->oxcf.best_allowed_q; }
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
// less likely else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) { cpi->active_best_quality = cpi->oxcf.worst_allowed_q; } cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE; cpi->cq_target_quality = cpi->oxcf.cq_level; if (!cm->use_bilinear_mc_filter) cm->mcomp_filter_type = DEFAULT_INTERP_FILTER; else cm->mcomp_filter_type = BILINEAR; cpi->target_bandwidth = cpi->oxcf.target_bandwidth; cm->Width = cpi->oxcf.Width; cm->Height = cpi->oxcf.Height; cm->horiz_scale = cpi->horiz_scale; cm->vert_scale = cpi->vert_scale; // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7; cm->sharpness_level = cpi->oxcf.Sharpness; if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) { int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); // always go to the next whole number cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; } if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width || ((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height || cm->yv12_fb[cm->lst_fb_idx].y_width == 0) { alloc_raw_frame_buffers(cpi); vp8_alloc_compressor_data(cpi); } if (cpi->oxcf.fixed_q >= 0) { cpi->last_q[0] = cpi->oxcf.fixed_q; cpi->last_q[1] = cpi->oxcf.fixed_q; cpi->last_boosted_qindex = cpi->oxcf.fixed_q; } cpi->Speed = cpi->oxcf.cpu_used; // force to allowlag to 0 if lag_in_frames is 0; if (cpi->oxcf.lag_in_frames == 0) { cpi->oxcf.allow_lag = 0; } // Limit on lag buffers as these are not currently dynamically allocated else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; // YX Temp cpi->alt_ref_source = NULL; cpi->is_src_frame_alt_ref = 0; #if 0
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
// Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif } #define M_LOG2_E 0.693147180559945309417 #define log2f(x) (log (x) / (float) M_LOG2_E) static void cal_nmvjointsadcost(int *mvjointsadcost) { mvjointsadcost[0] = 600; mvjointsadcost[1] = 300; mvjointsadcost[2] = 300; mvjointsadcost[0] = 300; } static void cal_nmvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost [0] [0] = 0; mvsadcost [1] [0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost [0][i] = (int) z; mvsadcost [1][i] = (int) z; mvsadcost [0][-i] = (int) z; mvsadcost [1][-i] = (int) z; } while (++i <= MV_MAX); } static void cal_nmvsadcosts_hp(int *mvsadcost[2]) { int i = 1; mvsadcost [0] [0] = 0; mvsadcost [1] [0] = 0; do { double z = 256 * (2 * (log2f(8 * i) + .6)); mvsadcost [0][i] = (int) z; mvsadcost [1][i] = (int) z; mvsadcost [0][-i] = (int) z; mvsadcost [1][-i] = (int) z; } while (++i <= MV_MAX); } VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf) { int i; volatile union { VP8_COMP *cpi; VP8_PTR ptr; } ctx; VP8_COMP *cpi; VP8_COMMON *cm; cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP)); // Check that the CPI instance is valid if (!cpi) return 0; cm = &cpi->common; vpx_memset(cpi, 0, sizeof(VP8_COMP)); if (setjmp(cm->error.jmp)) { VP8_PTR ptr = ctx.ptr; ctx.cpi->common.error.setjmp = 0;
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
vp8_remove_compressor(&ptr); return 0; } cpi->common.error.setjmp = 1; CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); vp8_create_common(&cpi->common); vp8_cmachine_specific_config(cpi); init_config((VP8_PTR)cpi, oxcf); memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob)); cpi->common.current_video_frame = 0; cpi->kf_overspend_bits = 0; cpi->kf_bitrate_adjustment = 0; cpi->frames_till_gf_update_due = 0; cpi->gf_overspend_bits = 0; cpi->non_gf_bitrate_adjustment = 0; cm->prob_last_coded = 128; cm->prob_gf_coded = 128; cm->prob_intra_coded = 63; #if CONFIG_SUPERBLOCKS cm->sb_coded = 200; #endif for (i = 0; i < COMP_PRED_CONTEXTS; i++) cm->prob_comppred[i] = 128; for (i = 0; i < TX_SIZE_MAX - 1; i++) cm->prob_tx[i] = 128; // Prime the recent reference frame useage counters. // Hereafter they will be maintained as a sort of moving average cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; // Set reference frame sign bias for ALTREF frame to 1 (for now) cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->gold_is_last = 0; cpi->alt_is_last = 0; cpi->gold_is_alt = 0; // allocate memory for storing last frame's MVs for MV prediction. CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int_mv))); CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int))); CHECK_MEM_ERROR(cpi->lf_ref_frame, vpx_calloc((cpi->common.mb_rows + 2) * (cpi->common.mb_cols + 2), sizeof(int))); // Create the encoder segmentation map and set all entries to 0 CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); // And a copy in common for temporal coding CHECK_MEM_ERROR(cm->last_frame_seg_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); // And a place holder structure is the coding context // for use if we want to save and restore it CHECK_MEM_ERROR(cpi->coding_context.last_frame_seg_map_copy, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); vpx_memset(cpi->active_map, 1, (cpi->common.mb_rows * cpi->common.mb_cols)); cpi->active_map_enabled = 0; for (i = 0; i < (sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0])); i++) {
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
CHECK_MEM_ERROR(cpi->mbgraph_stats[i].mb_stats, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols * sizeof(*cpi->mbgraph_stats[i].mb_stats), 1)); } #ifdef ENTROPY_STATS if (cpi->pass != 1) init_context_counters(); #endif #ifdef MODE_STATS vp8_zero(y_modes); vp8_zero(i8x8_modes); vp8_zero(uv_modes); vp8_zero(uv_modes_y); vp8_zero(b_modes); vp8_zero(inter_y_modes); vp8_zero(inter_uv_modes); vp8_zero(inter_b_modes); #endif #ifdef NMV_STATS init_nmvstats(); #endif /*Initialize the feed-forward activity masking.*/ cpi->activity_avg = 90 << 12; cpi->frames_since_key = 8; // Give a sensible default for the first frame. cpi->key_frame_frequency = cpi->oxcf.key_freq; cpi->this_key_frame_forced = FALSE; cpi->next_key_frame_forced = FALSE; cpi->source_alt_ref_pending = FALSE; cpi->source_alt_ref_active = FALSE; cpi->common.refresh_alt_ref_frame = 0; cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS; #if CONFIG_INTERNAL_STATS cpi->b_calculate_ssimg = 0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_sq_error = 0.0; cpi->total_sq_error2 = 0.0; cpi->total_y = 0.0; cpi->total_u = 0.0; cpi->total_v = 0.0; cpi->total = 0.0; cpi->totalp_y = 0.0; cpi->totalp_u = 0.0; cpi->totalp_v = 0.0; cpi->totalp = 0.0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; } if (cpi->b_calculate_ssimg) { cpi->total_ssimg_y = 0; cpi->total_ssimg_u = 0; cpi->total_ssimg_v = 0; cpi->total_ssimg_all = 0; } #endif #ifndef LLONG_MAX #define LLONG_MAX 9223372036854775807LL
1891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
#endif cpi->first_time_stamp_ever = LLONG_MAX; cpi->frames_till_gf_update_due = 0; cpi->key_frame_count = 1; cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; cpi->ni_tot_qi = 0; cpi->ni_frames = 0; cpi->tot_q = 0.0; cpi->avg_q = vp8_convert_qindex_to_q(cpi->oxcf.worst_allowed_q); cpi->total_byte_count = 0; cpi->rate_correction_factor = 1.0; cpi->key_frame_rate_correction_factor = 1.0; cpi->gf_rate_correction_factor = 1.0; cpi->twopass.est_max_qcorrection_factor = 1.0; cal_nmvjointsadcost(cpi->mb.nmvjointsadcost); cpi->mb.nmvcost[0] = &cpi->mb.nmvcosts[0][MV_MAX]; cpi->mb.nmvcost[1] = &cpi->mb.nmvcosts[1][MV_MAX]; cpi->mb.nmvsadcost[0] = &cpi->mb.nmvsadcosts[0][MV_MAX]; cpi->mb.nmvsadcost[1] = &cpi->mb.nmvsadcosts[1][MV_MAX]; cal_nmvsadcosts(cpi->mb.nmvsadcost); cpi->mb.nmvcost_hp[0] = &cpi->mb.nmvcosts_hp[0][MV_MAX]; cpi->mb.nmvcost_hp[1] = &cpi->mb.nmvcosts_hp[1][MV_MAX]; cpi->mb.nmvsadcost_hp[0] = &cpi->mb.nmvsadcosts_hp[0][MV_MAX]; cpi->mb.nmvsadcost_hp[1] = &cpi->mb.nmvsadcosts_hp[1][MV_MAX]; cal_nmvsadcosts_hp(cpi->mb.nmvsadcost_hp); for (i = 0; i < KEY_FRAME_CONTEXT; i++) { cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate; } #ifdef OUTPUT_YUV_SRC yuv_file = fopen("bd.yuv", "ab"); #endif #ifdef OUTPUT_YUV_REC yuv_rec_file = fopen("rec.yuv", "wb"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif cpi->output_pkt_list = oxcf->output_pkt_list; if (cpi->pass == 1) { vp8_init_first_pass(cpi); } else if (cpi->pass == 2) { size_t packet_sz = sizeof(FIRSTPASS_STATS); int packets = oxcf->two_pass_stats_in.sz / packet_sz; cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf; cpi->twopass.stats_in = cpi->twopass.stats_in_start; cpi->twopass.stats_in_end = (void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz); vp8_init_second_pass(cpi); } vp8_set_speed_features(cpi); // Set starting values of RD threshold multipliers (128 = *1) for (i = 0; i < MAX_MODES; i++) { cpi->rd_thresh_mult[i] = 128; } #ifdef ENTROPY_STATS
1961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
init_mv_ref_counts(); #endif #define BFP(BT, SDF, VF, SVF, SVFHH, SVFHV, SVFHHV, SDX3F, SDX8F, SDX4DF) \ cpi->fn_ptr[BT].sdf = SDF; \ cpi->fn_ptr[BT].vf = VF; \ cpi->fn_ptr[BT].svf = SVF; \ cpi->fn_ptr[BT].svf_halfpix_h = SVFHH; \ cpi->fn_ptr[BT].svf_halfpix_v = SVFHV; \ cpi->fn_ptr[BT].svf_halfpix_hv = SVFHHV; \ cpi->fn_ptr[BT].sdx3f = SDX3F; \ cpi->fn_ptr[BT].sdx8f = SDX8F; \ cpi->fn_ptr[BT].sdx4df = SDX4DF; #if CONFIG_SUPERBLOCKS BFP(BLOCK_32X32, vp8_sad32x32, vp8_variance32x32, vp8_sub_pixel_variance32x32, vp8_variance_halfpixvar32x32_h, vp8_variance_halfpixvar32x32_v, vp8_variance_halfpixvar32x32_hv, vp8_sad32x32x3, vp8_sad32x32x8, vp8_sad32x32x4d) #endif BFP(BLOCK_16X16, vp8_sad16x16, vp8_variance16x16, vp8_sub_pixel_variance16x16, vp8_variance_halfpixvar16x16_h, vp8_variance_halfpixvar16x16_v, vp8_variance_halfpixvar16x16_hv, vp8_sad16x16x3, vp8_sad16x16x8, vp8_sad16x16x4d) BFP(BLOCK_16X8, vp8_sad16x8, vp8_variance16x8, vp8_sub_pixel_variance16x8, NULL, NULL, NULL, vp8_sad16x8x3, vp8_sad16x8x8, vp8_sad16x8x4d) BFP(BLOCK_8X16, vp8_sad8x16, vp8_variance8x16, vp8_sub_pixel_variance8x16, NULL, NULL, NULL, vp8_sad8x16x3, vp8_sad8x16x8, vp8_sad8x16x4d) BFP(BLOCK_8X8, vp8_sad8x8, vp8_variance8x8, vp8_sub_pixel_variance8x8, NULL, NULL, NULL, vp8_sad8x8x3, vp8_sad8x8x8, vp8_sad8x8x4d) BFP(BLOCK_4X4, vp8_sad4x4, vp8_variance4x4, vp8_sub_pixel_variance4x4, NULL, NULL, NULL, vp8_sad4x4x3, vp8_sad4x4x8, vp8_sad4x4x4d) #if ARCH_X86 || ARCH_X86_64 cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn; cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn; #endif cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search); cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search); cpi->refining_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, refining_search); // make sure frame 1 is okay cpi->error_bins[0] = cpi->common.MBs; // vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later // when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame. vp8cx_init_quantizer(cpi); vp8_loop_filter_init(cm); cpi->common.error.setjmp = 0; vp8_zero(cpi->y_uv_mode_count) return (VP8_PTR) cpi; } void vp8_remove_compressor(VP8_PTR *ptr) { VP8_COMP *cpi = (VP8_COMP *)(*ptr); int i;
2031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100
if (!cpi) return; if (cpi && (cpi->common.current_video_frame > 0)) { if (cpi->pass == 2) { vp8_end_second_pass(cpi); } #ifdef ENTROPY_STATS if (cpi->pass != 1) { print_context_counters(); print_tree_update_probs(); print_mode_context(); } #endif #ifdef NMV_STATS if (cpi->pass != 1) print_nmvstats(); #endif #if CONFIG_INTERNAL_STATS vp8_clear_system_state(); // printf("\n8x8-4x4:%d-%d\n", cpi->t8x8_count, cpi->t4x4_count); if (cpi->pass != 1) { FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) / 10000000.000; double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; #if defined(MODE_STATS) print_mode_contexts(&cpi->common); #endif if (cpi->b_calculate_psnr) { YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height; double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error); double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2); double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(ms)\n"); fprintf(f, "%7.2f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f\n", dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim, total_encode_time); // fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%8.0f %10ld\n", // dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim, // total_encode_time, cpi->tot_recode_hits); } if (cpi->b_calculate_ssimg) { fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(ms)\n"); fprintf(f, "%7.2f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); // fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f %10ld\n", dr, // cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, // cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time, cpi->tot_recode_hits); } fclose(f); } #endif #ifdef MODE_STATS { extern int count_mb_seg[4];
2101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170
char modes_stats_file[250]; FILE *f; double dr = (double)cpi->oxcf.frame_rate * (double)cpi->bytes * (double)8 / (double)cpi->count / (double)1000; sprintf(modes_stats_file, "modes_q%03d.stt", cpi->common.base_qindex); f = fopen(modes_stats_file, "w"); fprintf(f, "intra_mode in Intra Frames:\n"); { int i; fprintf(f, "Y: "); for (i = 0; i < VP8_YMODES; i++) fprintf(f, " %8d,", y_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "I8: "); for (i = 0; i < VP8_I8X8_MODES; i++) fprintf(f, " %8d,", i8x8_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "UV: "); for (i = 0; i < VP8_UV_MODES; i++) fprintf(f, " %8d,", uv_modes[i]); fprintf(f, "\n"); } { int i, j; fprintf(f, "KeyFrame Y-UV:\n"); for (i = 0; i < VP8_YMODES; i++) { fprintf(f, "%2d:", i); for (j = 0; j < VP8_UV_MODES; j++) fprintf(f, "%8d, ", uv_modes_y[i][j]); fprintf(f, "\n"); } } { int i, j; fprintf(f, "Inter Y-UV:\n"); for (i = 0; i < VP8_YMODES; i++) { fprintf(f, "%2d:", i); for (j = 0; j < VP8_UV_MODES; j++) fprintf(f, "%8d, ", cpi->y_uv_mode_count[i][j]); fprintf(f, "\n"); } } { int i; fprintf(f, "B: "); for (i = 0; i < VP8_BINTRAMODES; i++) fprintf(f, "%8d, ", b_modes[i]); fprintf(f, "\n"); } fprintf(f, "Modes in Inter Frames:\n"); { int i; fprintf(f, "Y: "); for (i = 0; i < MB_MODE_COUNT; i++) fprintf(f, " %8d,", inter_y_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "UV: "); for (i = 0; i < VP8_UV_MODES; i++) fprintf(f, " %8d,", inter_uv_modes[i]); fprintf(f, "\n"); } { int i; fprintf(f, "B: "); for (i = 0; i < B_MODE_COUNT; i++) fprintf(f, "%8d, ", inter_b_modes[i]);
2171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240
fprintf(f, "\n"); } fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]); fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]); fclose(f); } #endif #ifdef ENTROPY_STATS { int i, j, k; FILE *fmode = fopen("modecontext.c", "w"); fprintf(fmode, "\n#include \"entropymode.h\"\n\n"); fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts "); fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n"); for (i = 0; i < 10; i++) { fprintf(fmode, " { // Above Mode : %d\n", i); for (j = 0; j < 10; j++) { fprintf(fmode, " {"); for (k = 0; k < VP8_BINTRAMODES; k++) { if (!intra_mode_stats[i][j][k]) fprintf(fmode, " %5d, ", 1); else fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); } fprintf(fmode, "}, // left_mode %d\n", j); } fprintf(fmode, " },\n"); } fprintf(fmode, "};\n"); fclose(fmode); } #endif #if defined(SECTIONBITS_OUTPUT) if (0) { int i; FILE *f = fopen("tokenbits.stt", "a"); for (i = 0; i < 28; i++) fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); fprintf(f, "\n"); fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif }
2241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310
dealloc_compressor_data(cpi); vpx_free(cpi->mb.ss); vpx_free(cpi->tok); for (i = 0; i < sizeof(cpi->mbgraph_stats) / sizeof(cpi->mbgraph_stats[0]); i++) { vpx_free(cpi->mbgraph_stats[i].mb_stats); } vp8_remove_common(&cpi->common); vpx_free(cpi); *ptr = 0; #ifdef OUTPUT_YUV_SRC fclose(yuv_file); #endif #ifdef OUTPUT_YUV_REC fclose(yuv_rec_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static uint64_t calc_plane_error(unsigned char *orig, int orig_stride, unsigned char *recon, int recon_stride, unsigned int cols, unsigned int rows) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row + 16 <= rows; row += 16) { for (col = 0; col + 16 <= cols; col += 16) { unsigned int sse; vp8_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse); total_sse += sse; } /* Handle odd-sized width */ if (col < cols) { unsigned int border_row, border_col; unsigned char *border_orig = orig; unsigned char *border_recon = recon; for (border_row = 0; border_row < 16; border_row++) { for (border_col = col; border_col < cols; border_col++) { diff = border_orig[border_col] - border_recon[border_col]; total_sse += diff * diff; } border_orig += orig_stride; border_recon += recon_stride; } } orig += orig_stride * 16; recon += recon_stride * 16;
2311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380
} /* Handle odd-sized height */ for (; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } static void generate_psnr_packet(VP8_COMP *cpi) { YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; struct vpx_codec_cx_pkt pkt; uint64_t sse; int i; unsigned int width = cpi->common.Width; unsigned int height = cpi->common.Height; pkt.kind = VPX_CODEC_PSNR_PKT; sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, width, height); pkt.data.psnr.sse[0] = sse; pkt.data.psnr.sse[1] = sse; pkt.data.psnr.samples[0] = width * height; pkt.data.psnr.samples[1] = width * height; width = (width + 1) / 2; height = (height + 1) / 2; sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, width, height); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[2] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[2] = width * height; sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, width, height); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[3] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[3] = width * height; for (i = 0; i < 4; i++) pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0, pkt.data.psnr.sse[i]); vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags) { VP8_COMP *cpi = (VP8_COMP *)(ptr); if (ref_frame_flags > 7) return -1; cpi->ref_frame_flags = ref_frame_flags; return 0;
2381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
} int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags) { VP8_COMP *cpi = (VP8_COMP *)(ptr); if (ref_frame_flags > 7) return -1; cpi->common.refresh_golden_frame = 0; cpi->common.refresh_alt_ref_frame = 0; cpi->common.refresh_last_frame = 0; if (ref_frame_flags & VP8_LAST_FLAG) cpi->common.refresh_last_frame = 1; if (ref_frame_flags & VP8_GOLD_FLAG) cpi->common.refresh_golden_frame = 1; if (ref_frame_flags & VP8_ALT_FLAG) cpi->common.refresh_alt_ref_frame = 1; return 0; } int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP8_LAST_FLAG) ref_fb_idx = cm->lst_fb_idx; else if (ref_frame_flag == VP8_GOLD_FLAG) ref_fb_idx = cm->gld_fb_idx; else if (ref_frame_flag == VP8_ALT_FLAG) ref_fb_idx = cm->alt_fb_idx; else return -1; vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd); return 0; } int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP8_LAST_FLAG) ref_fb_idx = cm->lst_fb_idx; else if (ref_frame_flag == VP8_GOLD_FLAG) ref_fb_idx = cm->gld_fb_idx; else if (ref_frame_flag == VP8_ALT_FLAG) ref_fb_idx = cm->alt_fb_idx; else return -1; vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]); return 0; } int vp8_update_entropy(VP8_PTR comp, int update) { VP8_COMP *cpi = (VP8_COMP *) comp; VP8_COMMON *cm = &cpi->common; cm->refresh_entropy_probs = update; return 0; } #ifdef OUTPUT_YUV_SRC
2451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
void vp8_write_yuv_frame(YV12_BUFFER_CONFIG *s) { unsigned char *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, yuv_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); } #endif #ifdef OUTPUT_YUV_REC void vp8_write_yuv_rec_frame(VP8_COMMON *cm) { YV12_BUFFER_CONFIG *s = cm->frame_to_show; unsigned char *src = s->y_buffer; int h = cm->Height; do { fwrite(src, s->y_width, 1, yuv_rec_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = (cm->Height + 1) / 2; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = (cm->Height + 1) / 2; do { fwrite(src, s->uv_width, 1, yuv_rec_file); src += s->uv_stride; } while (--h); } #endif static void update_alt_ref_frame_stats(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; // Update data structure that monitors level of reference to last GF vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; // this frame refreshes means next frames don't unless specified by user cpi->common.frames_since_golden = 0; // Clear the alternate reference update pending flag. cpi->source_alt_ref_pending = FALSE; // Set the alternate refernce frame active flag
2521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590
cpi->source_alt_ref_active = TRUE; } static void update_golden_frame_stats(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; // Update the Golden frame usage counts. if (cm->refresh_golden_frame) { // Update data structure that monitors level of reference to last GF vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; // this frame refreshes means next frames don't unless specified by user cm->refresh_golden_frame = 0; cpi->common.frames_since_golden = 0; // if ( cm->frame_type == KEY_FRAME ) // { cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; // } // else // { // // Carry a potrtion of count over to begining of next gf sequence // cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5; // cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5; // cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5; // cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5; // } // ******** Fixed Q test code only ************ // If we are going to use the ALT reference for the next group of frames set a flag to say so. if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame) { cpi->source_alt_ref_pending = TRUE; cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; } if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = FALSE; // Decrement count down till next gf if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; } else if (!cpi->common.refresh_alt_ref_frame) { // Decrement count down till next gf if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; if (cpi->common.frames_till_alt_ref_frame) cpi->common.frames_till_alt_ref_frame--; cpi->common.frames_since_golden++; if (cpi->common.frames_since_golden > 1) { cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME]; cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME]; cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]; cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; } } } int find_fp_qindex() { int i;
2591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660
for (i = 0; i < QINDEX_RANGE; i++) { if (vp8_convert_qindex_to_q(i) >= 30.0) { break; } } if (i == QINDEX_RANGE) i--; return i; } static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { (void) size; (void) dest; (void) frame_flags; vp8_set_quantizer(cpi, find_fp_qindex()); vp8_first_pass(cpi); } #if 1 void write_yuv_frame_to_file(YV12_BUFFER_CONFIG *frame) { // write the frame int i; FILE *fp = fopen("encode_recon.yuv", "a"); for (i = 0; i < frame->y_height; i++) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, fp); for (i = 0; i < frame->uv_height; i++) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, fp); for (i = 0; i < frame->uv_height; i++) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, fp); fclose(fp); } #endif #define WRITE_RECON_BUFFER 0 #if WRITE_RECON_BUFFER void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { // write the frame FILE *yframe; int i; char filename[255]; sprintf(filename, "cx\\y%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->y_height; i++) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\u%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\v%04d.raw", this_frame); yframe = fopen(filename, "wb");
2661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730
for (i = 0; i < frame->uv_height; i++) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); } #endif static double compute_edge_pixel_proportion(YV12_BUFFER_CONFIG *frame) { #define EDGE_THRESH 128 int i, j; int num_edge_pels = 0; int num_pels = (frame->y_height - 2) * (frame->y_width - 2); unsigned char *prev = frame->y_buffer + 1; unsigned char *curr = frame->y_buffer + 1 + frame->y_stride; unsigned char *next = frame->y_buffer + 1 + 2 * frame->y_stride; for (i = 1; i < frame->y_height - 1; i++) { for (j = 1; j < frame->y_width - 1; j++) { /* Sobel hor and ver gradients */ int v = 2 * (curr[1] - curr[-1]) + (prev[1] - prev[-1]) + (next[1] - next[-1]); int h = 2 * (prev[0] - next[0]) + (prev[1] - next[1]) + (prev[-1] - next[-1]); h = (h < 0 ? -h : h); v = (v < 0 ? -v : v); if (h > EDGE_THRESH || v > EDGE_THRESH) num_edge_pels++; curr++; prev++; next++; } curr += frame->y_stride - frame->y_width + 2; prev += frame->y_stride - frame->y_width + 2; next += frame->y_stride - frame->y_width + 2; } return (double)num_edge_pels / (double)num_pels; } // Function to test for conditions that indicate we should loop // back and recode a frame. static BOOL recode_loop_test(VP8_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { BOOL force_recode = FALSE; VP8_COMMON *cm = &cpi->common; // Is frame recode allowed at all // Yes if either recode mode 1 is selected or mode two is selcted // and the frame is a key frame. golden frame or alt_ref_frame if ((cpi->sf.recode_loop == 1) || ((cpi->sf.recode_loop == 2) && ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame))) { // General over and under shoot tests if (((cpi->projected_frame_size > high_limit) && (q < maxq)) || ((cpi->projected_frame_size < low_limit) && (q > minq))) { force_recode = TRUE; } // Special Constrained quality tests else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { // Undershoot and below auto cq level if ((q > cpi->cq_target_quality) && (cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3))) { force_recode = TRUE; } // Severe undershoot and between auto and user cq level else if ((q > cpi->oxcf.cq_level) && (cpi->projected_frame_size < cpi->min_frame_bandwidth) && (cpi->active_best_quality > cpi->oxcf.cq_level)) { force_recode = TRUE;
2731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800
cpi->active_best_quality = cpi->oxcf.cq_level; } } } return force_recode; } void update_reference_frames(VP8_COMMON *cm) { YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb; // At this point the new frame has been encoded. // If any buffer copy / swapping is signaled it should be done here. if (cm->frame_type == KEY_FRAME) { yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG | VP8_ALT_FLAG; yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG; yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG; cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx; } else { /* For non key frames */ if (cm->refresh_alt_ref_frame) { assert(!cm->copy_buffer_to_arf); cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALT_FLAG; cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG; cm->alt_fb_idx = cm->new_fb_idx; } else if (cm->copy_buffer_to_arf) { assert(!(cm->copy_buffer_to_arf & ~0x3)); if (cm->copy_buffer_to_arf == 1) { if (cm->alt_fb_idx != cm->lst_fb_idx) { yv12_fb[cm->lst_fb_idx].flags |= VP8_ALT_FLAG; yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG; cm->alt_fb_idx = cm->lst_fb_idx; } } else { /* if (cm->copy_buffer_to_arf == 2) */ if (cm->alt_fb_idx != cm->gld_fb_idx) { yv12_fb[cm->gld_fb_idx].flags |= VP8_ALT_FLAG; yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALT_FLAG; cm->alt_fb_idx = cm->gld_fb_idx; } } } if (cm->refresh_golden_frame) { assert(!cm->copy_buffer_to_gf); cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FLAG; cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG; cm->gld_fb_idx = cm->new_fb_idx; } else if (cm->copy_buffer_to_gf) { assert(!(cm->copy_buffer_to_arf & ~0x3)); if (cm->copy_buffer_to_gf == 1) { if (cm->gld_fb_idx != cm->lst_fb_idx) { yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FLAG; yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG; cm->gld_fb_idx = cm->lst_fb_idx; } } else { /* if (cm->copy_buffer_to_gf == 2) */ if (cm->alt_fb_idx != cm->gld_fb_idx) { yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FLAG; yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FLAG; cm->gld_fb_idx = cm->alt_fb_idx; } } } }
2801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870
if (cm->refresh_last_frame) { cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FLAG; cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FLAG; cm->lst_fb_idx = cm->new_fb_idx; } } void loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm) { if (cm->no_lpf) { cm->filter_level = 0; } #if CONFIG_LOSSLESS else if (cpi->oxcf.lossless) { cm->filter_level = 0; } #endif else { struct vpx_usec_timer timer; vp8_clear_system_state(); vpx_usec_timer_start(&timer); if (cpi->sf.auto_filter == 0) vp8cx_pick_filter_level_fast(cpi->Source, cpi); else vp8cx_pick_filter_level(cpi->Source, cpi); vpx_usec_timer_mark(&timer); cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); } if (cm->filter_level > 0) { vp8cx_set_alt_lf_level(cpi, cm->filter_level); vp8_loop_filter_frame(cm, &cpi->mb.e_mbd); } vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show); } #if CONFIG_PRED_FILTER void select_pred_filter_mode(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int prob_pred_filter_off = cm->prob_pred_filter_off; // Force filter on/off if probability is extreme if (prob_pred_filter_off >= 255 * 0.95) cm->pred_filter_mode = 0; // Off at the frame level else if (prob_pred_filter_off <= 255 * 0.05) cm->pred_filter_mode = 1; // On at the frame level else cm->pred_filter_mode = 2; // Selectable at the MB level } void update_pred_filt_prob(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int prob_pred_filter_off; // Based on the selection in the previous frame determine what mode // to use for the current frame and work out the signaling probability if (cpi->pred_filter_on_count + cpi->pred_filter_off_count) { prob_pred_filter_off = cpi->pred_filter_off_count * 256 / (cpi->pred_filter_on_count + cpi->pred_filter_off_count); if (prob_pred_filter_off < 1) prob_pred_filter_off = 1;
2871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940
if (prob_pred_filter_off > 255) prob_pred_filter_off = 255; cm->prob_pred_filter_off = prob_pred_filter_off; } else cm->prob_pred_filter_off = 128; /* { FILE *fp = fopen("filt_use.txt", "a"); fprintf (fp, "%d %d prob=%d\n", cpi->pred_filter_off_count, cpi->pred_filter_on_count, cm->prob_pred_filter_off); fclose(fp); } */ } #endif static void encode_frame_to_data_rate ( VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags ) { VP8_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; int Q; int frame_over_shoot_limit; int frame_under_shoot_limit; int Loop = FALSE; int loop_count; int this_q; int last_zbin_oq; int q_low; int q_high; int zbin_oq_high; int zbin_oq_low = 0; int top_index; int bottom_index; int active_worst_qchanged = FALSE; int overshoot_seen = FALSE; int undershoot_seen = FALSE; int loop_size_estimate = 0; SPEED_FEATURES *sf = &cpi->sf; #if RESET_FOREACH_FILTER int q_low0; int q_high0; int zbin_oq_high0; int zbin_oq_low0 = 0; int Q0; int last_zbin_oq0; int active_best_quality0; int active_worst_quality0; double rate_correction_factor0; double gf_rate_correction_factor0; #endif /* list of filters to search over */ int mcomp_filters_to_search[] = { EIGHTTAP, EIGHTTAP_SHARP, SIXTAP, SWITCHABLE }; int mcomp_filters = sizeof(mcomp_filters_to_search) / sizeof(*mcomp_filters_to_search);
2941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010
int mcomp_filter_index = 0; INT64 mcomp_filter_cost[4]; // Clear down mmx registers to allow floating point in what follows vp8_clear_system_state(); // For an alt ref frame in 2 pass we skip the call to the second // pass function that sets the target bandwidth so must set it here if (cpi->common.refresh_alt_ref_frame) { cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame cpi->target_bandwidth = cpi->twopass.gf_bits * cpi->output_frame_rate; // per second target bitrate } // Default turn off buffer to buffer copying cm->copy_buffer_to_gf = 0; cm->copy_buffer_to_arf = 0; // Clear zbin over-quant value and mode boost values. cpi->zbin_over_quant = 0; cpi->zbin_mode_boost = 0; // Enable or disable mode based tweaking of the zbin // For 2 Pass Only used where GF/ARF prediction quality // is above a threshold cpi->zbin_mode_boost = 0; #if CONFIG_LOSSLESS cpi->zbin_mode_boost_enabled = FALSE; #else cpi->zbin_mode_boost_enabled = TRUE; #endif if (cpi->gfu_boost <= 400) { cpi->zbin_mode_boost_enabled = FALSE; } // Current default encoder behaviour for the altref sign bias if (cpi->source_alt_ref_active) cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; else cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0; // Check to see if a key frame is signalled // For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass. if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) || (cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) { // Key frame from VFW/auto-keyframe/first frame cm->frame_type = KEY_FRAME; } // Set default state for segment based loop filter update flags xd->mode_ref_lf_delta_update = 0; // Set various flags etc to special state if it is a key frame if (cm->frame_type == KEY_FRAME) { int i; // Reset the loop filter deltas and segmentation map setup_features(cpi); // If segmentation is enabled force a map update for key frames if (xd->segmentation_enabled) { xd->update_mb_segmentation_map = 1; xd->update_mb_segmentation_data = 1; } // The alternate reference frame cannot be active for a key frame cpi->source_alt_ref_active = FALSE; // Reset the RD threshold multipliers to default of * 1 (128)
3011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
for (i = 0; i < MAX_MODES; i++) { cpi->rd_thresh_mult[i] = 128; } } // Test code for new segment features init_seg_features(cpi); // Decide how big to make the frame vp8_pick_frame_size(cpi); vp8_clear_system_state(); // Set an active best quality and if necessary active worst quality Q = cpi->active_worst_quality; if (cm->frame_type == KEY_FRAME) { int high = 2000; int low = 400; if (cpi->kf_boost > high) cpi->active_best_quality = kf_low_motion_minq[Q]; else if (cpi->kf_boost < low) cpi->active_best_quality = kf_high_motion_minq[Q]; else { int gap = high - low; int offset = high - cpi->kf_boost; int qdiff = kf_high_motion_minq[Q] - kf_low_motion_minq[Q]; int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; cpi->active_best_quality = kf_low_motion_minq[Q] + adjustment; } // Make an adjustment based on the %s static // The main impact of this is at lower Q to prevent overly large key // frames unless a lot of the image is static. if (cpi->kf_zeromotion_pct < 64) cpi->active_best_quality += 4 - (cpi->kf_zeromotion_pct >> 4); // Special case for key frames forced because we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping if (cpi->this_key_frame_forced) { int delta_qindex; int qindex = cpi->last_boosted_qindex; delta_qindex = compute_qdelta(cpi, qindex, (qindex * 0.75)); cpi->active_best_quality = qindex + delta_qindex; if (cpi->active_best_quality < cpi->best_quality) cpi->active_best_quality = cpi->best_quality; } } else if (cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame) { int high = 2000; int low = 400; // Use the lower of cpi->active_worst_quality and recent // average Q as basis for GF/ARF Q limit unless last frame was // a key frame. if ((cpi->frames_since_key > 1) && (cpi->avg_frame_qindex < cpi->active_worst_quality)) { Q = cpi->avg_frame_qindex; } // For constrained quality dont allow Q less than the cq level if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < cpi->cq_target_quality)) {
3081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150
Q = cpi->cq_target_quality; } if (cpi->gfu_boost > high) cpi->active_best_quality = gf_low_motion_minq[Q]; else if (cpi->gfu_boost < low) cpi->active_best_quality = gf_high_motion_minq[Q]; else { int gap = high - low; int offset = high - cpi->gfu_boost; int qdiff = gf_high_motion_minq[Q] - gf_low_motion_minq[Q]; int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; cpi->active_best_quality = gf_low_motion_minq[Q] + adjustment; } // Constrained quality use slightly lower active best. if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) { cpi->active_best_quality = cpi->active_best_quality * 15 / 16; } } else { cpi->active_best_quality = inter_minq[Q]; // For the constant/constrained quality mode we dont want // q to fall below the cq level. if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (cpi->active_best_quality < cpi->cq_target_quality)) { // If we are strongly undershooting the target rate in the last // frames then use the user passed in cq value not the auto // cq value. if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) cpi->active_best_quality = cpi->oxcf.cq_level; else cpi->active_best_quality = cpi->cq_target_quality; } } // Clip the active best and worst quality values to limits if (cpi->active_worst_quality > cpi->worst_quality) cpi->active_worst_quality = cpi->worst_quality; if (cpi->active_best_quality < cpi->best_quality) cpi->active_best_quality = cpi->best_quality; if (cpi->active_best_quality > cpi->worst_quality) cpi->active_best_quality = cpi->worst_quality; if (cpi->active_worst_quality < cpi->active_best_quality) cpi->active_worst_quality = cpi->active_best_quality; // Specuial case code to try and match quality with forced key frames if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { Q = cpi->last_boosted_qindex; } else { // Determine initial Q to try Q = vp8_regulate_q(cpi, cpi->this_frame_target); } last_zbin_oq = cpi->zbin_over_quant; // Set highest allowed value for Zbin over quant if (cm->frame_type == KEY_FRAME) zbin_oq_high = 0; // ZBIN_OQ_MAX/16 else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active)) zbin_oq_high = 16; else zbin_oq_high = ZBIN_OQ_MAX; vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit);
3151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220
// Limit Q range for the adaptive loop. bottom_index = cpi->active_best_quality; top_index = cpi->active_worst_quality; q_low = cpi->active_best_quality; q_high = cpi->active_worst_quality; loop_count = 0; if (cm->frame_type != KEY_FRAME) { /* TODO: Decide this more intelligently */ if (sf->search_best_filter) { cm->mcomp_filter_type = mcomp_filters_to_search[0]; mcomp_filter_index = 0; } else { cm->mcomp_filter_type = DEFAULT_INTERP_FILTER; } /* TODO: Decide this more intelligently */ xd->allow_high_precision_mv = (Q < HIGH_PRECISION_MV_QTHRESH); } #if CONFIG_POSTPROC if (cpi->oxcf.noise_sensitivity > 0) { unsigned char *src; int l = 0; switch (cpi->oxcf.noise_sensitivity) { case 1: l = 20; break; case 2: l = 40; break; case 3: l = 60; break; case 4: case 5: l = 100; break; case 6: l = 150; break; } if (cm->frame_type == KEY_FRAME) { vp8_de_noise(cpi->Source, cpi->Source, l, 1, 0, RTCD(postproc)); } else { vp8_de_noise(cpi->Source, cpi->Source, l, 1, 0, RTCD(postproc)); src = cpi->Source->y_buffer; if (cpi->Source->y_stride < 0) { src += cpi->Source->y_stride * (cpi->Source->y_height - 1); } } } #endif #ifdef OUTPUT_YUV_SRC vp8_write_yuv_frame(cpi->Source); #endif #if RESET_FOREACH_FILTER if (sf->search_best_filter) { q_low0 = q_low; q_high0 = q_high;
3221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290
Q0 = Q; zbin_oq_low0 = zbin_oq_low; zbin_oq_high0 = zbin_oq_high; last_zbin_oq0 = last_zbin_oq; rate_correction_factor0 = cpi->rate_correction_factor; gf_rate_correction_factor0 = cpi->gf_rate_correction_factor; active_best_quality0 = cpi->active_best_quality; active_worst_quality0 = cpi->active_worst_quality; } #endif do { vp8_clear_system_state(); // __asm emms; vp8_set_quantizer(cpi, Q); this_q = Q; if (loop_count == 0) { // setup skip prob for costing in mode/mv decision if (cpi->common.mb_no_coeff_skip) { int k; for (k = 0; k < MBSKIP_CONTEXTS; k++) cm->mbskip_pred_probs[k] = cpi->base_skip_false_prob[Q][k]; if (cm->frame_type != KEY_FRAME) { if (cpi->common.refresh_alt_ref_frame) { for (k = 0; k < MBSKIP_CONTEXTS; k++) { if (cpi->last_skip_false_probs[2][k] != 0) cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[2][k]; } } else if (cpi->common.refresh_golden_frame) { for (k = 0; k < MBSKIP_CONTEXTS; k++) { if (cpi->last_skip_false_probs[1][k] != 0) cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[1][k]; } } else { int k; for (k = 0; k < MBSKIP_CONTEXTS; k++) { if (cpi->last_skip_false_probs[0][k] != 0) cm->mbskip_pred_probs[k] = cpi->last_skip_false_probs[0][k]; } } // as this is for cost estimate, let's make sure it does not // get extreme either way { int k; for (k = 0; k < MBSKIP_CONTEXTS; ++k) { if (cm->mbskip_pred_probs[k] < 5) cm->mbskip_pred_probs[k] = 5; if (cm->mbskip_pred_probs[k] > 250) cm->mbskip_pred_probs[k] = 250; if (cpi->is_src_frame_alt_ref) cm->mbskip_pred_probs[k] = 1; } } } } // Set up entropy depending on frame type. if (cm->frame_type == KEY_FRAME) vp8_setup_key_frame(cpi); else vp8_setup_inter_frame(cpi); } // transform / motion compensation build reconstruction frame
3291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360
vp8_encode_frame(cpi); // Update the skip mb flag probabilities based on the distribution // seen in the last encoder iteration. update_base_skip_probs(cpi); vp8_clear_system_state(); // __asm emms; #if CONFIG_PRED_FILTER // Update prediction filter on/off probability based on // selection made for the current frame if (cm->frame_type != KEY_FRAME) update_pred_filt_prob(cpi); #endif // Dummy pack of the bitstream using up to date stats to get an // accurate estimate of output frame size to determine if we need // to recode. vp8_save_coding_context(cpi); cpi->dummy_packing = 1; vp8_pack_bitstream(cpi, dest, size); cpi->projected_frame_size = (*size) << 3; vp8_restore_coding_context(cpi); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; active_worst_qchanged = FALSE; // Special case handling for forced key frames if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) { int last_q = Q; int kf_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); int high_err_target = cpi->ambient_err; int low_err_target = (cpi->ambient_err >> 1); // Prevent possible divide by zero error below for perfect KF kf_err += (!kf_err); // The key frame is not good enough or we can afford // to make it better without undue risk of popping. if (((kf_err > high_err_target) && (cpi->projected_frame_size <= frame_over_shoot_limit)) || ((kf_err > low_err_target) && (cpi->projected_frame_size <= frame_under_shoot_limit))) { // Lower q_high q_high = (Q > q_low) ? (Q - 1) : q_low; // Adjust Q Q = (Q * high_err_target) / kf_err; if (Q < ((q_high + q_low) >> 1)) Q = (q_high + q_low) >> 1; } // The key frame is much better than the previous frame else if ((kf_err < low_err_target) && (cpi->projected_frame_size >= frame_under_shoot_limit)) { // Raise q_low q_low = (Q < q_high) ? (Q + 1) : q_high; // Adjust Q Q = (Q * low_err_target) / kf_err; if (Q > ((q_high + q_low + 1) >> 1)) Q = (q_high + q_low + 1) >> 1; } // Clamp Q to upper and lower limits: if (Q > q_high) Q = q_high; else if (Q < q_low)
3361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430
Q = q_low; Loop = ((Q != last_q)) ? TRUE : FALSE; } // Is the projected frame size out of range and are we allowed to attempt to recode. else if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, Q, top_index, bottom_index)) { int last_q = Q; int Retries = 0; // Frame size out of permitted range: // Update correction factor & compute new Q to try... // Frame is too large if (cpi->projected_frame_size > cpi->this_frame_target) { q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high; if (undershoot_seen || (loop_count > 1)) { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 1); Q = (q_high + q_low + 1) / 2; // Adjust cpi->zbin_over_quant (only allowed when Q is max) if (Q < MAXQ) cpi->zbin_over_quant = 0; else { zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high; cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; } } else { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10)) { vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); Retries++; } } overshoot_seen = TRUE; } // Frame is too small else { if (cpi->zbin_over_quant == 0) q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant else // else lower zbin_oq_high zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low; if (overshoot_seen || (loop_count > 1)) { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 1); Q = (q_high + q_low) / 2; // Adjust cpi->zbin_over_quant (only allowed when Q is max) if (Q < MAXQ) cpi->zbin_over_quant = 0; else
3431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500
cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; } else { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < q_low)) { q_low = Q; } while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10)) { vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); Retries++; } } undershoot_seen = TRUE; } // Clamp Q to upper and lower limits: if (Q > q_high) Q = q_high; else if (Q < q_low) Q = q_low; // Clamp cpi->zbin_over_quant cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant; // Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE; Loop = ((Q != last_q)) ? TRUE : FALSE; last_zbin_oq = cpi->zbin_over_quant; } else Loop = FALSE; if (cpi->is_src_frame_alt_ref) Loop = FALSE; if (cm->frame_type != KEY_FRAME && !sf->search_best_filter && cm->mcomp_filter_type == SWITCHABLE) { int interp_factor = Q / 3; /* denominator is 256 */ int count[VP8_SWITCHABLE_FILTERS]; int tot_count = 0, c = 0, thr; int i, j; for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) { count[i] = 0; for (j = 0; j <= VP8_SWITCHABLE_FILTERS; ++j) { count[i] += cpi->switchable_interp_count[j][i]; } tot_count += count[i]; } thr = ((tot_count * interp_factor + 128) >> 8); for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) { c += (count[i] >= thr); } if (c == 1) { /* Mostly one filter is used. So set the filter at frame level */ for (i = 0; i < VP8_SWITCHABLE_FILTERS; ++i) { if (count[i]) {
3501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570
cm->mcomp_filter_type = vp8_switchable_interp[i]; Loop = TRUE; /* Make sure to loop since the filter changed */ break; } } } } if (Loop == FALSE && cm->frame_type != KEY_FRAME && sf->search_best_filter) { if (mcomp_filter_index < mcomp_filters) { INT64 err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); INT64 rate = cpi->projected_frame_size << 8; mcomp_filter_cost[mcomp_filter_index] = (RDCOST(cpi->RDMULT, cpi->RDDIV, rate, err)); mcomp_filter_index++; if (mcomp_filter_index < mcomp_filters) { cm->mcomp_filter_type = mcomp_filters_to_search[mcomp_filter_index]; loop_count = -1; Loop = TRUE; } else { int f; INT64 best_cost = mcomp_filter_cost[0]; int mcomp_best_filter = mcomp_filters_to_search[0]; for (f = 1; f < mcomp_filters; f++) { if (mcomp_filter_cost[f] < best_cost) { mcomp_best_filter = mcomp_filters_to_search[f]; best_cost = mcomp_filter_cost[f]; } } if (mcomp_best_filter != mcomp_filters_to_search[mcomp_filters - 1]) { loop_count = -1; Loop = TRUE; cm->mcomp_filter_type = mcomp_best_filter; } /* printf(" best filter = %d, ( ", mcomp_best_filter); for (f=0;f<mcomp_filters; f++) printf("%d ", mcomp_filter_cost[f]); printf(")\n"); */ } #if RESET_FOREACH_FILTER if (Loop == TRUE) { overshoot_seen = FALSE; undershoot_seen = FALSE; zbin_oq_low = zbin_oq_low0; zbin_oq_high = zbin_oq_high0; q_low = q_low0; q_high = q_high0; Q = Q0; cpi->zbin_over_quant = last_zbin_oq = last_zbin_oq0; cpi->rate_correction_factor = rate_correction_factor0; cpi->gf_rate_correction_factor = gf_rate_correction_factor0; cpi->active_best_quality = active_best_quality0; cpi->active_worst_quality = active_worst_quality0; } #endif } } if (Loop == TRUE) { loop_count++; #if CONFIG_INTERNAL_STATS cpi->tot_recode_hits++; #endif } } while (Loop == TRUE); // Special case code to reduce pulsing when key frames are forced at a // fixed interval. Note the reconstruction error if it is the frame before
3571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640
// the force key frame if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) { cpi->ambient_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]); } // This frame's MVs are saved and will be used in next frame's MV // prediction. Last frame has one more line(add to bottom) and one // more column(add to right) than cm->mip. The edge elements are // initialized to 0. if (cm->show_frame) { // do not save for altref frame int mb_row; int mb_col; MODE_INFO *tmp = cm->mip; if (cm->frame_type != KEY_FRAME) { for (mb_row = 0; mb_row < cm->mb_rows + 1; mb_row ++) { for (mb_col = 0; mb_col < cm->mb_cols + 1; mb_col ++) { if (tmp->mbmi.ref_frame != INTRA_FRAME) cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int = tmp->mbmi.mv[0].as_int; cpi->lf_ref_frame_sign_bias[mb_col + mb_row * (cm->mode_info_stride + 1)] = cm->ref_frame_sign_bias[tmp->mbmi.ref_frame]; cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] = tmp->mbmi.ref_frame; tmp++; } } } } // Update the GF useage maps. // This is done after completing the compression of a frame when all modes // etc. are finalized but before loop filter vp8_update_gf_useage_maps(cpi, cm, &cpi->mb); if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1; #if 0 { FILE *f = fopen("gfactive.stt", "a"); fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame); fclose(f); } #endif cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; #if WRITE_RECON_BUFFER if (cm->show_frame) write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame); else write_cx_frame_to_file(cm->frame_to_show, cm->current_video_frame + 1000); #endif // Pick the loop filter level for the frame. loopfilter_frame(cpi, cm); // build the bitstream cpi->dummy_packing = 0; vp8_pack_bitstream(cpi, dest, size); if (cpi->mb.e_mbd.update_mb_segmentation_map) { update_reference_segmentation_map(cpi); } #if CONFIG_PRED_FILTER // Select the prediction filtering mode to use for the // next frame based on the current frame selections
3641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710
if (cm->frame_type != KEY_FRAME) select_pred_filter_mode(cpi); #endif update_reference_frames(cm); vp8_copy(cpi->common.fc.coef_counts, cpi->coef_counts); vp8_copy(cpi->common.fc.hybrid_coef_counts, cpi->hybrid_coef_counts); vp8_copy(cpi->common.fc.coef_counts_8x8, cpi->coef_counts_8x8); vp8_copy(cpi->common.fc.hybrid_coef_counts_8x8, cpi->hybrid_coef_counts_8x8); vp8_copy(cpi->common.fc.coef_counts_16x16, cpi->coef_counts_16x16); vp8_copy(cpi->common.fc.hybrid_coef_counts_16x16, cpi->hybrid_coef_counts_16x16); vp8_adapt_coef_probs(&cpi->common); if (cpi->common.frame_type != KEY_FRAME) { vp8_copy(cpi->common.fc.ymode_counts, cpi->ymode_count); vp8_copy(cpi->common.fc.uv_mode_counts, cpi->y_uv_mode_count); vp8_copy(cpi->common.fc.bmode_counts, cpi->bmode_count); vp8_copy(cpi->common.fc.i8x8_mode_counts, cpi->i8x8_mode_count); vp8_copy(cpi->common.fc.sub_mv_ref_counts, cpi->sub_mv_ref_count); vp8_copy(cpi->common.fc.mbsplit_counts, cpi->mbsplit_count); vp8_adapt_mode_probs(&cpi->common); cpi->common.fc.NMVcount = cpi->NMVcount; vp8_adapt_nmv_probs(&cpi->common, cpi->mb.e_mbd.allow_high_precision_mv); vp8_update_mode_context(&cpi->common); } /* Move storing frame_type out of the above loop since it is also * needed in motion search besides loopfilter */ cm->last_frame_type = cm->frame_type; // Keep a copy of the size estimate used in the loop loop_size_estimate = cpi->projected_frame_size; // Update rate control heuristics cpi->total_byte_count += (*size); cpi->projected_frame_size = (*size) << 3; if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2); cpi->last_q[cm->frame_type] = cm->base_qindex; // Keep record of last boosted (KF/KF/ARF) Q value. // If the current frame is coded at a lower Q then we also update it. // If all mbs in this group are skipped only update if the Q value is // better than that already stored. // This is used to help set quality in forced key frames to reduce popping if ((cm->base_qindex < cpi->last_boosted_qindex) || ((cpi->static_mb_pct < 100) && ((cm->frame_type == KEY_FRAME) || cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->is_src_frame_alt_ref)))) { cpi->last_boosted_qindex = cm->base_qindex; } if (cm->frame_type == KEY_FRAME) { vp8_adjust_key_frame_context(cpi); } // Keep a record of ambient average Q. if (cm->frame_type != KEY_FRAME) cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; // Keep a record from which we can calculate the average Q excluding GF updates and key frames if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame) { cpi->ni_frames++; cpi->tot_q += vp8_convert_qindex_to_q(Q); cpi->avg_q = cpi->tot_q / (double)cpi->ni_frames;
3711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780
// Calculate the average Q for normal inter frames (not key or GFU // frames). cpi->ni_tot_qi += Q; cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); } // Update the buffer level variable. // Non-viewable frames are a special case and are treated as pure overhead. if (!cm->show_frame) cpi->bits_off_target -= cpi->projected_frame_size; else cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size; // Clip the buffer level at the maximum buffer size if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) cpi->bits_off_target = cpi->oxcf.maximum_buffer_size; // Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass. cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32; // Actual bits spent cpi->total_actual_bits += cpi->projected_frame_size; // Debug stats cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size); cpi->buffer_level = cpi->bits_off_target; // Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames if (cm->frame_type == KEY_FRAME) { cpi->twopass.kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; } else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) { cpi->twopass.gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; } // Update the skip mb flag probabilities based on the distribution seen // in this frame. update_base_skip_probs(cpi); #if 0 //CONFIG_NEW_MVREF && CONFIG_INTERNAL_STATS { FILE *f = fopen("mv_ref_dist.stt", "a"); unsigned int i; for (i = 0; i < MAX_MV_REFS; ++i) { fprintf(f, "%10d", cpi->best_ref_index_counts[0][i]); } fprintf(f, "\n" ); fclose(f); } #endif #if 0// 1 && CONFIG_INTERNAL_STATS { FILE *f = fopen("tmp.stt", "a"); int recon_err; vp8_clear_system_state(); // __asm emms; recon_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
3781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850
if (cpi->twopass.total_left_stats->coded_error != 0.0) fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d" "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f" "%6d %5d %5d %5d %8d %8.2f %10d %10.3f" "%10.3f %8d %10d %10d %10d\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, loop_size_estimate, (cpi->projected_frame_size - cpi->this_frame_target), (int)cpi->total_target_vs_actual, (cpi->oxcf.starting_buffer_level - cpi->bits_off_target), (int)cpi->total_actual_bits, vp8_convert_qindex_to_q(cm->base_qindex), (double)vp8_dc_quant(cm->base_qindex, 0) / 4.0, vp8_convert_qindex_to_q(cpi->active_best_quality), vp8_convert_qindex_to_q(cpi->active_worst_quality), cpi->avg_q, vp8_convert_qindex_to_q(cpi->ni_av_qi), vp8_convert_qindex_to_q(cpi->cq_target_quality), cpi->zbin_over_quant, // cpi->avg_frame_qindex, cpi->zbin_over_quant, cm->refresh_golden_frame, cm->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left, cpi->twopass.total_left_stats->coded_error, (double)cpi->twopass.bits_left / cpi->twopass.total_left_stats->coded_error, cpi->tot_recode_hits, recon_err, cpi->kf_boost, cpi->kf_zeromotion_pct); else fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d" "%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f" "%6d %5d %5d %5d %8d %8.2f %10d %10.3f" "%8d %10d %10d %10d\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, loop_size_estimate, (cpi->projected_frame_size - cpi->this_frame_target), (int)cpi->total_target_vs_actual, (cpi->oxcf.starting_buffer_level - cpi->bits_off_target), (int)cpi->total_actual_bits, vp8_convert_qindex_to_q(cm->base_qindex), (double)vp8_dc_quant(cm->base_qindex, 0) / 4.0, vp8_convert_qindex_to_q(cpi->active_best_quality), vp8_convert_qindex_to_q(cpi->active_worst_quality), cpi->avg_q, vp8_convert_qindex_to_q(cpi->ni_av_qi), vp8_convert_qindex_to_q(cpi->cq_target_quality), cpi->zbin_over_quant, // cpi->avg_frame_qindex, cpi->zbin_over_quant, cm->refresh_golden_frame, cm->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->twopass.est_max_qcorrection_factor, (int)cpi->twopass.bits_left, cpi->twopass.total_left_stats->coded_error, cpi->tot_recode_hits, recon_err, cpi->kf_boost, cpi->kf_zeromotion_pct); fclose(f); if (0) { FILE *fmodes = fopen("Modes.stt", "a"); int i; fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cm->refresh_golden_frame, cm->refresh_alt_ref_frame);
3851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920
for (i = 0; i < MAX_MODES; i++) fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif #if 0 // Debug stats for segment feature experiments. print_seg_map(cpi); #endif // If this was a kf or Gf note the Q if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame) cm->last_kf_gf_q = cm->base_qindex; if (cm->refresh_golden_frame == 1) cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; else cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN; if (cm->refresh_alt_ref_frame == 1) cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; else cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF; if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed cpi->gold_is_last = 1; else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other cpi->gold_is_last = 0; if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed cpi->alt_is_last = 1; else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other cpi->alt_is_last = 0; if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed cpi->gold_is_alt = 1; else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other cpi->gold_is_alt = 0; cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FLAG; if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALT_FLAG; if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALT_FLAG; if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame && (cm->frame_type != KEY_FRAME)) // Update the alternate reference frame stats as appropriate. update_alt_ref_frame_stats(cpi); else // Update the Golden frame stats as appropriate. update_golden_frame_stats(cpi); if (cm->frame_type == KEY_FRAME) { // Tell the caller that the frame was coded as a key frame *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; // As this frame is a key frame the next defaults to an inter frame. cm->frame_type = INTER_FRAME;
3921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990
} else { *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY; } // Clear the one shot update flags for segmentation map and mode/ref loop filter deltas. xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; xd->mode_ref_lf_delta_update = 0; // Dont increment frame counters if this was an altref buffer update not a real frame if (cm->show_frame) { cm->current_video_frame++; cpi->frames_since_key++; } // reset to normal state now that we are done. #if 0 { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); recon_file = fopen(filename, "wb"); fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc, cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file); fclose(recon_file); } #endif #ifdef OUTPUT_YUV_REC vp8_write_yuv_rec_frame(cm); #endif if (cm->show_frame) { vpx_memcpy(cm->prev_mip, cm->mip, (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); } else { vpx_memset(cm->prev_mip, 0, (cm->mb_cols + 1) * (cm->mb_rows + 1)* sizeof(MODE_INFO)); } } static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); cpi->twopass.bits_left -= 8 * *size; if (!cpi->common.refresh_alt_ref_frame) { double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.frame_rate; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); if (two_pass_min_rate < lower_bounds_min_rate) two_pass_min_rate = lower_bounds_min_rate; cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->oxcf.frame_rate); } } // For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us. #if HAVE_ARMV7 extern void vp8_push_neon(int64_t *store); extern void vp8_pop_neon(int64_t *store); #endif
3991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060
int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, int64_t time_stamp, int64_t end_time) { #if HAVE_ARMV7 int64_t store_reg[8]; #endif VP8_COMP *cpi = (VP8_COMP *) ptr; VP8_COMMON *cm = &cpi->common; struct vpx_usec_timer timer; int res = 0; #if HAVE_ARMV7 #if CONFIG_RUNTIME_CPU_DETECT if (cm->rtcd.flags & HAS_NEON) #endif { vp8_push_neon(store_reg); } #endif vpx_usec_timer_start(&timer); if (vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags, cpi->active_map_enabled ? cpi->active_map : NULL)) res = -1; cm->clr_type = sd->clrtype; vpx_usec_timer_mark(&timer); cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); #if HAVE_ARMV7 #if CONFIG_RUNTIME_CPU_DETECT if (cm->rtcd.flags & HAS_NEON) #endif { vp8_pop_neon(store_reg); } #endif return res; } static int frame_is_reference(const VP8_COMP *cpi) { const VP8_COMMON *cm = &cpi->common; const MACROBLOCKD *xd = &cpi->mb.e_mbd; return cm->frame_type == KEY_FRAME || cm->refresh_last_frame || cm->refresh_golden_frame || cm->refresh_alt_ref_frame || cm->copy_buffer_to_gf || cm->copy_buffer_to_arf || cm->refresh_entropy_probs || xd->mode_ref_lf_delta_update || xd->update_mb_segmentation_map || xd->update_mb_segmentation_data; } int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, int64_t *time_stamp, int64_t *time_end, int flush) { #if HAVE_ARMV7 int64_t store_reg[8]; #endif VP8_COMP *cpi = (VP8_COMP *) ptr; VP8_COMMON *cm = &cpi->common; struct vpx_usec_timer cmptimer; YV12_BUFFER_CONFIG *force_src_buffer = NULL; if (!cpi) return -1; #if HAVE_ARMV7 #if CONFIG_RUNTIME_CPU_DETECT if (cm->rtcd.flags & HAS_NEON) #endif {
4061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130
vp8_push_neon(store_reg); } #endif vpx_usec_timer_start(&cmptimer); cpi->source = NULL; cpi->mb.e_mbd.allow_high_precision_mv = ALTREF_HIGH_PRECISION_MV; // Should we code an alternate reference frame if (cpi->oxcf.play_alternate && cpi->source_alt_ref_pending) { if ((cpi->source = vp8_lookahead_peek(cpi->lookahead, cpi->frames_till_gf_update_due))) { cpi->alt_ref_source = cpi->source; if (cpi->oxcf.arnr_max_frames > 0) { vp8_temporal_filter_prepare_c(cpi, cpi->frames_till_gf_update_due); force_src_buffer = &cpi->alt_ref_buffer; } cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due; cm->refresh_alt_ref_frame = 1; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 0; cm->show_frame = 0; cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag. cpi->is_src_frame_alt_ref = 0; } } if (!cpi->source) { if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush))) { cm->show_frame = 1; cpi->is_src_frame_alt_ref = cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source); if (cpi->is_src_frame_alt_ref) cpi->alt_ref_source = NULL; } } if (cpi->source) { cpi->un_scaled_source = cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img; *time_stamp = cpi->source->ts_start; *time_end = cpi->source->ts_end; *frame_flags = cpi->source->flags; } else { *size = 0; if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) { vp8_end_first_pass(cpi); /* get last stats packet */ cpi->twopass.first_pass_done = 1; } #if HAVE_ARMV7 #if CONFIG_RUNTIME_CPU_DETECT if (cm->rtcd.flags & HAS_NEON) #endif { vp8_pop_neon(store_reg); } #endif return -1; } if (cpi->source->ts_start < cpi->first_time_stamp_ever) { cpi->first_time_stamp_ever = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_start; }
4131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200
// adjust frame rates based on timestamps given if (!cm->refresh_alt_ref_frame) { int64_t this_duration; int step = 0; if (cpi->source->ts_start == cpi->first_time_stamp_ever) { this_duration = cpi->source->ts_end - cpi->source->ts_start; step = 1; } else { int64_t last_duration; this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen; last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen; // do a step update if the duration changes by 10% if (last_duration) step = ((this_duration - last_duration) * 10 / last_duration); } if (this_duration) { if (step) vp8_new_frame_rate(cpi, 10000000.0 / this_duration); else { double avg_duration, interval; /* Average this frame's rate into the last second's average * frame rate. If we haven't seen 1 second yet, then average * over the whole interval seen. */ interval = cpi->source->ts_end - cpi->first_time_stamp_ever; if (interval > 10000000.0) interval = 10000000; avg_duration = 10000000.0 / cpi->oxcf.frame_rate; avg_duration *= (interval - avg_duration + this_duration); avg_duration /= interval; vp8_new_frame_rate(cpi, 10000000.0 / avg_duration); } } cpi->last_time_stamp_seen = cpi->source->ts_start; cpi->last_end_time_stamp_seen = cpi->source->ts_end; } // start with a 0 size frame *size = 0; // Clear down mmx registers vp8_clear_system_state(); // __asm emms; cm->frame_type = INTER_FRAME; cm->frame_flags = *frame_flags; #if 0 if (cm->refresh_alt_ref_frame) { // cm->refresh_golden_frame = 1; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 0; } else { cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; } #endif /* find a free buffer for the new frame */ { int i = 0;
4201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270
for (; i < NUM_YV12_BUFFERS; i++) { if (!cm->yv12_fb[i].flags) { cm->new_fb_idx = i; break; } } assert(i < NUM_YV12_BUFFERS); } if (cpi->pass == 1) { Pass1Encode(cpi, size, dest, frame_flags); } else if (cpi->pass == 2) { Pass2Encode(cpi, size, dest, frame_flags); } else { encode_frame_to_data_rate(cpi, size, dest, frame_flags); } if (cm->refresh_entropy_probs) { if (cm->refresh_alt_ref_frame) vpx_memcpy(&cm->lfc_a, &cm->fc, sizeof(cm->fc)); else vpx_memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc)); } // if its a dropped frame honor the requests on subsequent frames if (*size > 0) { cpi->droppable = !frame_is_reference(cpi); // return to normal state cm->refresh_entropy_probs = 1; cm->refresh_alt_ref_frame = 0; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->frame_type = INTER_FRAME; } vpx_usec_timer_mark(&cmptimer); cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) { generate_psnr_packet(cpi); } #if CONFIG_INTERNAL_STATS if (cpi->pass != 1) { cpi->bytes += *size; if (cm->show_frame) { cpi->count++; if (cpi->b_calculate_psnr) { double ye, ue, ve; double frame_psnr; YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer; int y_samples = orig->y_height * orig->y_width; int uv_samples = orig->uv_height * orig->uv_width; int t_samples = y_samples + 2 * uv_samples; int64_t sq_error; ye = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, orig->y_width, orig->y_height); ue = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, orig->uv_width,
4271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340
orig->uv_height); ve = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, orig->uv_width, orig->uv_height); sq_error = ye + ue + ve; frame_psnr = vp8_mse2psnr(t_samples, 255.0, sq_error); cpi->total_y += vp8_mse2psnr(y_samples, 255.0, ye); cpi->total_u += vp8_mse2psnr(uv_samples, 255.0, ue); cpi->total_v += vp8_mse2psnr(uv_samples, 255.0, ve); cpi->total_sq_error += sq_error; cpi->total += frame_psnr; { double frame_psnr2, frame_ssim2 = 0; double weight = 0; #if CONFIG_POSTPROC vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc)); #endif vp8_clear_system_state(); ye = calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer, pp->y_stride, orig->y_width, orig->y_height); ue = calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer, pp->uv_stride, orig->uv_width, orig->uv_height); ve = calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer, pp->uv_stride, orig->uv_width, orig->uv_height); sq_error = ye + ue + ve; frame_psnr2 = vp8_mse2psnr(t_samples, 255.0, sq_error); cpi->totalp_y += vp8_mse2psnr(y_samples, 255.0, ye); cpi->totalp_u += vp8_mse2psnr(uv_samples, 255.0, ue); cpi->totalp_v += vp8_mse2psnr(uv_samples, 255.0, ve); cpi->total_sq_error2 += sq_error; cpi->totalp += frame_psnr2; frame_ssim2 = vp8_calc_ssim(cpi->Source, &cm->post_proc_buffer, 1, &weight); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; #if 0 { FILE *f = fopen("q_used.stt", "a"); fprintf(f, "%5d : Y%f7.3:U%f7.3:V%f7.3:F%f7.3:S%7.3f\n", cpi->common.current_video_frame, y2, u2, v2, frame_psnr2, frame_ssim2); fclose(f); } #endif } } if (cpi->b_calculate_ssimg) { double y, u, v, frame_all; frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v); cpi->total_ssimg_y += y; cpi->total_ssimg_u += u; cpi->total_ssimg_v += v; cpi->total_ssimg_all += frame_all;
4341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410
} } } #endif #if HAVE_ARMV7 #if CONFIG_RUNTIME_CPU_DETECT if (cm->rtcd.flags & HAS_NEON) #endif { vp8_pop_neon(store_reg); } #endif return 0; } int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, vp8_ppflags_t *flags) { VP8_COMP *cpi = (VP8_COMP *) comp; if (cpi->common.refresh_alt_ref_frame) return -1; else { int ret; #if CONFIG_POSTPROC ret = vp8_post_proc_frame(&cpi->common, dest, flags); #else if (cpi->common.frame_to_show) { *dest = *cpi->common.frame_to_show; dest->y_width = cpi->common.Width; dest->y_height = cpi->common.Height; dest->uv_height = cpi->common.Height / 2; ret = 0; } else { ret = -1; } #endif // !CONFIG_POSTPROC vp8_clear_system_state(); return ret; } } int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4]) { VP8_COMP *cpi = (VP8_COMP *) comp; signed char feature_data[SEG_LVL_MAX][MAX_MB_SEGMENTS]; MACROBLOCKD *xd = &cpi->mb.e_mbd; int i; if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols) return -1; if (!map) { vp8_disable_segmentation((VP8_PTR)cpi); return 0; } // Set the segmentation Map vp8_set_segmentation_map((VP8_PTR)cpi, map); // Activate segmentation. vp8_enable_segmentation((VP8_PTR)cpi); // Set up the quant segment data feature_data[SEG_LVL_ALT_Q][0] = delta_q[0]; feature_data[SEG_LVL_ALT_Q][1] = delta_q[1]; feature_data[SEG_LVL_ALT_Q][2] = delta_q[2];
4411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480
feature_data[SEG_LVL_ALT_Q][3] = delta_q[3]; // Set up the loop segment data s feature_data[SEG_LVL_ALT_LF][0] = delta_lf[0]; feature_data[SEG_LVL_ALT_LF][1] = delta_lf[1]; feature_data[SEG_LVL_ALT_LF][2] = delta_lf[2]; feature_data[SEG_LVL_ALT_LF][3] = delta_lf[3]; cpi->segment_encode_breakout[0] = threshold[0]; cpi->segment_encode_breakout[1] = threshold[1]; cpi->segment_encode_breakout[2] = threshold[2]; cpi->segment_encode_breakout[3] = threshold[3]; // Enable the loop and quant changes in the feature mask for (i = 0; i < 4; i++) { if (delta_q[i]) enable_segfeature(xd, i, SEG_LVL_ALT_Q); else disable_segfeature(xd, i, SEG_LVL_ALT_Q); if (delta_lf[i]) enable_segfeature(xd, i, SEG_LVL_ALT_LF); else disable_segfeature(xd, i, SEG_LVL_ALT_LF); } // Initialise the feature data structure // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 vp8_set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); return 0; } int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols) { VP8_COMP *cpi = (VP8_COMP *) comp; if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { if (map) { vpx_memcpy(cpi->active_map, map, rows * cols); cpi->active_map_enabled = 1; } else cpi->active_map_enabled = 0; return 0; } else { // cpi->active_map_enabled = 0; return -1; } } int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { VP8_COMP *cpi = (VP8_COMP *) comp; if (horiz_mode <= ONETWO) cpi->common.horiz_scale = horiz_mode; else return -1; if (vert_mode <= ONETWO) cpi->common.vert_scale = vert_mode; else return -1; return 0; } int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) { int i, j;
44814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506
int Total = 0; unsigned char *src = source->y_buffer; unsigned char *dst = dest->y_buffer; // Loop through the Y plane raw and reconstruction data summing (square differences) for (i = 0; i < source->y_height; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; Total += vp8_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride, &sse); } src += 16 * source->y_stride; dst += 16 * dest->y_stride; } return Total; } int vp8_get_quantizer(VP8_PTR c) { VP8_COMP *cpi = (VP8_COMP *) c; return cpi->common.base_qindex; }