vp9_encodeframe.c 121.43 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_aq_complexity.h"
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
#define GF_ZEROMV_ZBIN_BOOST 0
#define LF_ZEROMV_ZBIN_BOOST 0
#define MV_ZBIN_BOOST        0
#define SPLIT_MV_ZBIN_BOOST  0
#define INTRA_ZBIN_BOOST     0
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
                              int mi_row, int mi_col, BLOCK_SIZE bsize,
                              PICK_MODE_CONTEXT *ctx);
// Motion vector component magnitude threshold for defining fast motion.
#define FAST_MOTION_MV_THRESH 24
// This is used as a reference when computing the source variance for the
//  purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
//  which will be faster.
static const uint8_t VP9_VAR_OFFS[64] = {
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128,
  128, 128, 128, 128, 128, 128, 128, 128
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
}; typedef struct { unsigned int sse; int sum; unsigned int var; } diff; static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, const struct buf_2d *ref, BLOCK_SIZE bs) { unsigned int sse; const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, VP9_VAR_OFFS, 0, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi, const struct buf_2d *ref, int mi_row, int mi_col, BLOCK_SIZE bs) { const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); const uint8_t* last_y = &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; unsigned int sse; const unsigned int var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src, mi_row, mi_col, BLOCK_64X64); if (var < 8) return BLOCK_64X64; else if (var < 128) return BLOCK_32X32; else if (var < 2048) return BLOCK_16X16; else return BLOCK_8X8; } static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb.plane[0].src, mi_row, mi_col, BLOCK_64X64); if (var < 4) return BLOCK_64X64; else if (var < 10) return BLOCK_32X32; else return BLOCK_16X16; } // Lighter version of set_offsets that only sets the mode info // pointers. static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col) { const int idx_str = xd->mi_stride * mi_row + mi_col; xd->mi = cm->mi_grid_visible + idx_str; xd->mi[0] = cm->mi + idx_str; }
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
static int is_block_in_mb_map(const VP9_COMP *cpi, int mi_row, int mi_col, BLOCK_SIZE bsize) { const VP9_COMMON *const cm = &cpi->common; const int mb_rows = cm->mb_rows; const int mb_cols = cm->mb_cols; const int mb_row = mi_row >> 1; const int mb_col = mi_col >> 1; const int mb_width = num_8x8_blocks_wide_lookup[bsize] >> 1; const int mb_height = num_8x8_blocks_high_lookup[bsize] >> 1; int r, c; if (bsize <= BLOCK_16X16) { return cpi->active_map[mb_row * mb_cols + mb_col]; } for (r = 0; r < mb_height; ++r) { for (c = 0; c < mb_width; ++c) { int row = mb_row + r; int col = mb_col + c; if (row >= mb_rows || col >= mb_cols) continue; if (cpi->active_map[row * mb_cols + col]) return 1; } } return 0; } static int check_active_map(const VP9_COMP *cpi, const MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (cpi->active_map_enabled && !x->e_mbd.lossless) { return is_block_in_mb_map(cpi, mi_row, mi_col, bsize); } else { return 1; } } static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; const struct segmentation *const seg = &cm->seg; set_skip_context(xd, mi_row, mi_col); // Activity map pointer x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize); set_modeinfo_offsets(cm, xd, mi_row, mi_col); mbmi = &xd->mi[0]->mbmi; // Set up destination pointers. vp9_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, cm->mi_cols);
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
// Set up source buffers. vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); // R/D setup. x->rddiv = cpi->rd.RDDIV; x->rdmult = cpi->rd.RDMULT; // Setup segment ID. if (seg->enabled) { if (cpi->oxcf.aq_mode != VARIANCE_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); } vp9_init_plane_quantizers(cpi, x); x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id]; } else { mbmi->segment_id = 0; x->encode_breakout = cpi->encode_breakout; } } static void duplicate_mode_info_in_sb(VP9_COMMON * const cm, MACROBLOCKD *const xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { const int block_width = num_8x8_blocks_wide_lookup[bsize]; const int block_height = num_8x8_blocks_high_lookup[bsize]; int i, j; for (j = 0; j < block_height; ++j) for (i = 0; i < block_width; ++i) { if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols) xd->mi[j * xd->mi_stride + i] = xd->mi[0]; } } static void set_block_size(VP9_COMP * const cpi, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col); xd->mi[0]->mbmi.sb_type = bsize; duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize); } } typedef struct { int64_t sum_square_error; int64_t sum_error; int count; int variance; } var; typedef struct { var none; var horz[2]; var vert[2]; } partition_variance; typedef struct { partition_variance part_variances; var split[4]; } v8x8; typedef struct { partition_variance part_variances;
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
v8x8 split[4]; } v16x16; typedef struct { partition_variance part_variances; v16x16 split[4]; } v32x32; typedef struct { partition_variance part_variances; v32x32 split[4]; } v64x64; typedef struct { partition_variance *part_variances; var *split[4]; } variance_node; typedef enum { V16X16, V32X32, V64X64, } TREE_LEVEL; static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) { int i; switch (bsize) { case BLOCK_64X64: { v64x64 *vt = (v64x64 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_32X32: { v32x32 *vt = (v32x32 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_16X16: { v16x16 *vt = (v16x16 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_8X8: { v8x8 *vt = (v8x8 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; break; } default: { assert(0); } } } // Set variance values given sum square error, sum error, count. static void fill_variance(int64_t s2, int64_t s, int c, var *v) { v->sum_square_error = s2; v->sum_error = s; v->count = c; if (c > 0) v->variance = (int)(256 * (v->sum_square_error - v->sum_error * v->sum_error / v->count) / v->count);
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
else v->variance = 0; } void sum_2_variances(const var *a, const var *b, var *r) { fill_variance(a->sum_square_error + b->sum_square_error, a->sum_error + b->sum_error, a->count + b->count, r); } static void fill_variance_tree(void *data, BLOCK_SIZE bsize) { variance_node node; tree_to_node(data, bsize, &node); sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], &node.part_variances->none); } static int set_vt_partitioning(VP9_COMP *cpi, void *data, BLOCK_SIZE bsize, int mi_row, int mi_col) { VP9_COMMON * const cm = &cpi->common; variance_node vt; const int block_width = num_8x8_blocks_wide_lookup[bsize]; const int block_height = num_8x8_blocks_high_lookup[bsize]; // TODO(debargha): Choose this more intelligently. const int64_t threshold_multiplier = 25; int64_t threshold = threshold_multiplier * cpi->common.base_qindex; assert(block_height == block_width); tree_to_node(data, bsize, &vt); // Split none is available only if we have more than half a block size // in width and height inside the visible image. if (mi_col + block_width / 2 < cm->mi_cols && mi_row + block_height / 2 < cm->mi_rows && vt.part_variances->none.variance < threshold) { set_block_size(cpi, mi_row, mi_col, bsize); return 1; } // Vertical split is available on all but the bottom border. if (mi_row + block_height / 2 < cm->mi_rows && vt.part_variances->vert[0].variance < threshold && vt.part_variances->vert[1].variance < threshold) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT); set_block_size(cpi, mi_row, mi_col, subsize); set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize); return 1; } // Horizontal split is available on all but the right border. if (mi_col + block_width / 2 < cm->mi_cols && vt.part_variances->horz[0].variance < threshold && vt.part_variances->horz[1].variance < threshold) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ); set_block_size(cpi, mi_row, mi_col, subsize); set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize); return 1; } return 0; } // TODO(debargha): Fix this function and make it work as expected. static void choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
int mi_row, int mi_col) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK *x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; int i, j, k; v64x64 vt; uint8_t *s; const uint8_t *d; int sp; int dp; int pixels_wide = 64, pixels_high = 64; int_mv nearest_mv, near_mv; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf; vp9_zero(vt); set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); s = x->plane[0].src.buf; sp = x->plane[0].src.stride; if (cm->frame_type != KEY_FRAME) { vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf); xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME; xd->mi[0]->mbmi.sb_type = BLOCK_64X64; vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, xd->mi[0]->mbmi.ref_mvs[LAST_FRAME], &nearest_mv, &near_mv); xd->mi[0]->mbmi.mv[0] = nearest_mv; vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64); d = xd->plane[0].dst.buf; dp = xd->plane[0].dst.stride; } else { d = VP9_VAR_OFFS; dp = 0; } // Fill in the entire tree of 8x8 variances for splits. for (i = 0; i < 4; i++) { const int x32_idx = ((i & 1) << 5); const int y32_idx = ((i >> 1) << 5); for (j = 0; j < 4; j++) { const int x16_idx = x32_idx + ((j & 1) << 4); const int y16_idx = y32_idx + ((j >> 1) << 4); v16x16 *vst = &vt.split[i].split[j]; for (k = 0; k < 4; k++) { int x_idx = x16_idx + ((k & 1) << 3); int y_idx = y16_idx + ((k >> 1) << 3); unsigned int sse = 0; int sum = 0; if (x_idx < pixels_wide && y_idx < pixels_high) vp9_get8x8var(s + y_idx * sp + x_idx, sp, d + y_idx * dp + x_idx, dp, &sse, &sum); fill_variance(sse, sum, 64, &vst->split[k].part_variances.none); } } } // Fill the rest of the variance tree by summing split partition values. for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
} fill_variance_tree(&vt.split[i], BLOCK_32X32); } fill_variance_tree(&vt, BLOCK_64X64); // Now go through the entire structure, splitting every block size until // we get to one that's got a variance lower than our threshold, or we // hit 8x8. if (!set_vt_partitioning(cpi, &vt, BLOCK_64X64, mi_row, mi_col)) { for (i = 0; i < 4; ++i) { const int x32_idx = ((i & 1) << 2); const int y32_idx = ((i >> 1) << 2); if (!set_vt_partitioning(cpi, &vt.split[i], BLOCK_32X32, (mi_row + y32_idx), (mi_col + x32_idx))) { for (j = 0; j < 4; ++j) { const int x16_idx = ((j & 1) << 1); const int y16_idx = ((j >> 1) << 1); // NOTE: This is a temporary hack to disable 8x8 partitions, // since it works really bad - possibly due to a bug #define DISABLE_8X8_VAR_BASED_PARTITION #ifdef DISABLE_8X8_VAR_BASED_PARTITION if (mi_row + y32_idx + y16_idx + 1 < cm->mi_rows && mi_row + x32_idx + x16_idx + 1 < cm->mi_cols) { set_block_size(cpi, (mi_row + y32_idx + y16_idx), (mi_col + x32_idx + x16_idx), BLOCK_16X16); } else { for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); set_block_size(cpi, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); } } #else if (!set_vt_partitioning(cpi, &vt.split[i].split[j], tile, BLOCK_16X16, (mi_row + y32_idx + y16_idx), (mi_col + x32_idx + x16_idx), 2)) { for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); set_block_size(cpi, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); } } #endif } } } } } static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, int output_enabled) { int i, x_idx, y; VP9_COMMON *const cm = &cpi->common; RD_OPT *const rd_opt = &cpi->rd; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; MODE_INFO *mi = &ctx->mic;
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; MODE_INFO *mi_addr = xd->mi[0]; const struct segmentation *const seg = &cm->seg; const int mis = cm->mi_stride; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; int max_plane; assert(mi->mbmi.sb_type == bsize); *mi_addr = *mi; // If segmentation in use if (seg->enabled && output_enabled) { // For in frame complexity AQ copy the segment id from the segment map. if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mi_addr->mbmi.segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); } // Else for cyclic refresh mode update the segment map, set the segment id // and then update the quantizer. else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col, bsize, 1); vp9_init_plane_quantizers(cpi, x); } } max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1; for (i = 0; i < max_plane; ++i) { p[i].coeff = ctx->coeff_pbuf[i][1]; p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; p[i].eobs = ctx->eobs_pbuf[i][1]; } for (i = max_plane; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][2]; p[i].qcoeff = ctx->qcoeff_pbuf[i][2]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2]; p[i].eobs = ctx->eobs_pbuf[i][2]; } // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { xd->mi[x_idx + y * mis] = mi_addr; } if (cpi->oxcf.aq_mode) vp9_init_plane_quantizers(cpi, x); // FIXME(rbultje) I'm pretty sure this should go to the end of this block // (i.e. after the output_enabled) if (bsize < BLOCK_32X32) { if (bsize < BLOCK_16X16) ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8]; ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16]; } if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; }
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
x->skip = ctx->skip; vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk, sizeof(uint8_t) * ctx->num_4x4_blk); if (!output_enabled) return; if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { for (i = 0; i < TX_MODES; i++) rd_opt->tx_select_diff[i] += ctx->tx_rd_diff[i]; } #if CONFIG_INTERNAL_STATS if (frame_is_intra_only(cm)) { static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, }; ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]]; } else { // Note how often each mode chosen as best ++cpi->mode_chosen_counts[ctx->best_mode_index]; } #endif if (!frame_is_intra_only(cm)) { if (is_inter_block(mbmi)) { vp9_update_mv_count(cm, xd); if (cm->interp_filter == SWITCHABLE) { const int ctx = vp9_get_pred_context_switchable_interp(xd); ++cm->counts.switchable_interp[ctx][mbmi->interp_filter]; } } rd_opt->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; rd_opt->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; rd_opt->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) rd_opt->filter_diff[i] += ctx->best_filter_diff[i]; } } void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, src->alpha_buffer}; const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, src->alpha_stride}; int i; // Set current frame pointer. x->e_mbd.cur_buf = src; for (i = 0; i < MAX_MB_PLANE; i++) setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile,
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
int mi_row, int mi_col, int *totalrate, int64_t *totaldist, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd, int block) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.aq_mode; int i, orig_rdmult; double rdmult_ratio; vp9_clear_system_state(); rdmult_ratio = 1.0; // avoid uninitialized warnings // Use the lower precision, but faster, 32x32 fdct for mode selection. x->use_lp32x32fdct = 1; // TODO(JBB): Most other places in the code instead of calling the function // and then checking if its not the first 8x8 we put the check in the // calling function. Do that here. if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (block != 0) { *totalrate = 0; *totaldist = 0; return; } } set_offsets(cpi, tile, mi_row, mi_col, bsize); mbmi = &xd->mi[0]->mbmi; mbmi->sb_type = bsize; for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][0]; p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; p[i].eobs = ctx->eobs_pbuf[i][0]; } ctx->is_coded = 0; x->skip_recode = 0; // Set to zero to make sure we do not use the previous encoded frame stats mbmi->skip = 0; x->source_variance = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); // Save rdmult before it might be changed, so it can be restored later. orig_rdmult = x->rdmult; if (aq_mode == VARIANCE_AQ) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : vp9_block_energy(cpi, x, bsize); if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { mbmi->segment_id = vp9_vaq_segment_id(energy); } else { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); } rdmult_ratio = vp9_vaq_rdmult_ratio(energy); vp9_init_plane_quantizers(cpi, x); vp9_clear_system_state();
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
x->rdmult = (int)round(x->rdmult * rdmult_ratio); } else if (aq_mode == COMPLEXITY_AQ) { const int mi_offset = mi_row * cm->mi_cols + mi_col; unsigned char complexity = cpi->complexity_map[mi_offset]; const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) || (mi_col <= 1) || (mi_col >= (cm->mi_cols - 2)); if (!is_edge && (complexity > 128)) x->rdmult += ((x->rdmult * (complexity - 128)) / 256); } else if (aq_mode == CYCLIC_REFRESH_AQ) { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; // If segment 1, use rdmult for that segment. if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col)) x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); } // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx, best_rd); } else { if (bsize >= BLOCK_8X8) vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col, totalrate, totaldist, bsize, ctx, best_rd); else vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate, totaldist, bsize, ctx, best_rd); } x->rdmult = orig_rdmult; if (aq_mode == VARIANCE_AQ && *totalrate != INT_MAX) { vp9_clear_system_state(); *totalrate = (int)round(*totalrate * rdmult_ratio); } } static void update_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const MACROBLOCK *const x = &cpi->mb; const MACROBLOCKD *const xd = &x->e_mbd; const MODE_INFO *const mi = xd->mi[0]; const MB_MODE_INFO *const mbmi = &mi->mbmi; if (!frame_is_intra_only(cm)) { const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) { FRAME_COUNTS *const counts = &cm->counts; const int inter_block = is_inter_block(mbmi); counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++; // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (inter_block) { const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; if (cm->reference_mode == REFERENCE_MODE_SELECT) counts->comp_inter[vp9_get_reference_mode_context(cm, xd)] [has_second_ref(mbmi)]++; if (has_second_ref(mbmi)) { counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)] [ref0 == GOLDEN_FRAME]++; } else { counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0] [ref0 != LAST_FRAME]++;
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
if (ref0 != LAST_FRAME) counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1] [ref0 != GOLDEN_FRAME]++; } } } } } static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; for (p = 0; p < MAX_MB_PLANE; p++) { vpx_memcpy( xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); vpx_memcpy( xd->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } vpx_memcpy(xd->above_seg_context + mi_col, sa, sizeof(*xd->above_seg_context) * mi_width); vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl, sizeof(xd->left_seg_context[0]) * mi_height); } static void save_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { const MACROBLOCK *const x = &cpi->mb; const MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < MAX_MB_PLANE; ++p) { vpx_memcpy( a + num_4x4_blocks_wide * p, xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); vpx_memcpy( l + num_4x4_blocks_high * p, xd->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } vpx_memcpy(sa, xd->above_seg_context + mi_col, sizeof(*xd->above_seg_context) * mi_width); vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK), sizeof(xd->left_seg_context[0]) * mi_height);
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
} static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { set_offsets(cpi, tile, mi_row, mi_col, bsize); update_state(cpi, ctx, mi_row, mi_col, bsize, output_enabled); encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx); if (output_enabled) { update_stats(cpi); (*tp)->token = EOSB_TOKEN; (*tp)++; } } static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4; int ctx; PARTITION_TYPE partition; BLOCK_SIZE subsize = bsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize >= BLOCK_8X8) { ctx = partition_plane_context(xd, mi_row, mi_col, bsize); subsize = get_subsize(bsize, pc_tree->partitioning); } else { ctx = 0; subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; if (output_enabled && bsize != BLOCK_4X4) cm->counts.partition[ctx][partition]++; switch (partition) { case PARTITION_NONE: encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->none); break; case PARTITION_VERT: encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->vertical[0]); if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, &pc_tree->vertical[1]); } break; case PARTITION_HORZ: encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->horizontal[0]); if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, &pc_tree->horizontal[1]); } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8) {
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->leaf_split[0]); } else { encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->split[0]); encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, pc_tree->split[1]); encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, pc_tree->split[2]); encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, subsize, pc_tree->split[3]); } break; default: assert("Invalid partition type."); } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } // Check to see if the given partition size is allowed for a specified number // of 8x8 block rows and columns remaining in the image. // If not then return the largest allowed partition size static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { if (rows_left <= 0 || cols_left <= 0) { return MIN(bsize, BLOCK_8X8); } else { for (; bsize > 0; bsize -= 3) { *bh = num_8x8_blocks_high_lookup[bsize]; *bw = num_8x8_blocks_wide_lookup[bsize]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return bsize; } static void set_partial_b64x64_partition(MODE_INFO *mi, int mis, int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining, BLOCK_SIZE bsize, MODE_INFO **mi_8x8) { int bh = bh_in; int r, c; for (r = 0; r < MI_BLOCK_SIZE; r += bh) { int bw = bw_in; for (c = 0; c < MI_BLOCK_SIZE; c += bw) { const int index = r * mis + c; mi_8x8[index] = mi + index; mi_8x8[index]->mbmi.sb_type = find_partition_size(bsize, row8x8_remaining - r, col8x8_remaining - c, &bh, &bw); } } } // This function attempts to set all mode info entries in a given SB64 // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition. static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mi_stride; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; int block_row, block_col;
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; int bh = num_8x8_blocks_high_lookup[bsize]; int bw = num_8x8_blocks_wide_lookup[bsize]; assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // Apply the requested partition size to the SB64 if it is all "in image" if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { int index = block_row * mis + block_col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = bsize; } } } else { // Else this is a partial SB64. set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, col8x8_remaining, bsize, mi_8x8); } } static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8, MODE_INFO **prev_mi_8x8) { const int mis = cm->mi_stride; int block_row, block_col; for (block_row = 0; block_row < 8; ++block_row) { for (block_col = 0; block_col < 8; ++block_col) { MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col]; const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0; if (prev_mi) { const ptrdiff_t offset = prev_mi - cm->prev_mi; mi_8x8[block_row * mis + block_col] = cm->mi + offset; mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type; } } } } static void constrain_copy_partitioning(VP9_COMP *const cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, MODE_INFO **prev_mi_8x8, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mi_stride; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; MODE_INFO *const mi_upper_left = cm->mi + mi_row * mis + mi_col; const int bh = num_8x8_blocks_high_lookup[bsize]; const int bw = num_8x8_blocks_wide_lookup[bsize]; int block_row, block_col; assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // If the SB64 if it is all "in image". if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { const int index = block_row * mis + block_col; MODE_INFO *prev_mi = prev_mi_8x8[index]; const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0; // Use previous partition if block size is not larger than bsize. if (prev_mi && sb_type <= bsize) { int block_row2, block_col2;
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
for (block_row2 = 0; block_row2 < bh; ++block_row2) { for (block_col2 = 0; block_col2 < bw; ++block_col2) { const int index2 = (block_row + block_row2) * mis + block_col + block_col2; prev_mi = prev_mi_8x8[index2]; if (prev_mi) { const ptrdiff_t offset = prev_mi - cm->prev_mi; mi_8x8[index2] = cm->mi + offset; mi_8x8[index2]->mbmi.sb_type = prev_mi->mbmi.sb_type; } } } } else { // Otherwise, use fixed partition of size bsize. mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = bsize; } } } } else { // Else this is a partial SB64, copy previous partition. copy_partitioning(cm, mi_8x8, prev_mi_8x8); } } const struct { int row; int col; } coord_lookup[16] = { // 32x32 index = 0 {0, 0}, {0, 2}, {2, 0}, {2, 2}, // 32x32 index = 1 {0, 4}, {0, 6}, {2, 4}, {2, 6}, // 32x32 index = 2 {4, 0}, {4, 2}, {6, 0}, {6, 2}, // 32x32 index = 3 {4, 4}, {4, 6}, {6, 4}, {6, 6}, }; static void set_source_var_based_partition(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; const int mis = cm->mi_stride; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // In-image SB64 if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { const int src_stride = x->plane[0].src.stride; const int pre_stride = cpi->Last_Source->y_stride; const uint8_t *src = x->plane[0].src.buf; const int pre_offset = (mi_row * MI_SIZE) * pre_stride + (mi_col * MI_SIZE); const uint8_t *pre_src = cpi->Last_Source->y_buffer + pre_offset; const unsigned int thr_32x32 = cpi->sf.source_var_thresh; const unsigned int thr_64x64 = thr_32x32 << 1; int i, j; int index; diff d32[4]; int use16x16 = 0;
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
for (i = 0; i < 4; i++) { diff d16[4]; for (j = 0; j < 4; j++) { int b_mi_row = coord_lookup[i * 4 + j].row; int b_mi_col = coord_lookup[i * 4 + j].col; int b_offset = b_mi_row * MI_SIZE * src_stride + b_mi_col * MI_SIZE; vp9_get16x16var(src + b_offset, src_stride, pre_src + b_offset, pre_stride, &d16[j].sse, &d16[j].sum); d16[j].var = d16[j].sse - (((uint32_t)d16[j].sum * d16[j].sum) >> 8); index = b_mi_row * mis + b_mi_col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = BLOCK_16X16; // TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition // size to further improve quality. } if (d16[0].var < thr_32x32 && d16[1].var < thr_32x32 && d16[2].var < thr_32x32 && d16[3].var < thr_32x32) { d32[i].sse = d16[0].sse; d32[i].sum = d16[0].sum; for (j = 1; j < 4; j++) { d32[i].sse += d16[j].sse; d32[i].sum += d16[j].sum; } d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10); index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = BLOCK_32X32; if (!((cm->current_video_frame - 1) % cpi->sf.search_type_check_frequency)) cpi->use_large_partition_rate += 1; } else { use16x16 = 1; } } if (!use16x16) { if (d32[0].var < thr_64x64 && d32[1].var < thr_64x64 && d32[2].var < thr_64x64 && d32[3].var < thr_64x64) { mi_8x8[0] = mi_upper_left; mi_8x8[0]->mbmi.sb_type = BLOCK_64X64; } } } else { // partial in-image SB64 int bh = num_8x8_blocks_high_lookup[BLOCK_16X16]; int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16]; set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8); } } static int is_background(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col) { MACROBLOCK *x = &cpi->mb; uint8_t *src, *pre; int src_stride, pre_stride;
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; int this_sad = 0; int threshold = 0; // This assumes the input source frames are of the same dimension. src_stride = cpi->Source->y_stride; src = cpi->Source->y_buffer + (mi_row * MI_SIZE) * src_stride + (mi_col * MI_SIZE); pre_stride = cpi->Last_Source->y_stride; pre = cpi->Last_Source->y_buffer + (mi_row * MI_SIZE) * pre_stride + (mi_col * MI_SIZE); if (row8x8_remaining >= MI_BLOCK_SIZE && col8x8_remaining >= MI_BLOCK_SIZE) { this_sad = cpi->fn_ptr[BLOCK_64X64].sdf(src, src_stride, pre, pre_stride); threshold = (1 << 12); } else { int r, c; for (r = 0; r < row8x8_remaining; r += 2) for (c = 0; c < col8x8_remaining; c += 2) this_sad += cpi->fn_ptr[BLOCK_16X16].sdf(src, src_stride, pre, pre_stride); threshold = (row8x8_remaining * col8x8_remaining) << 6; } x->in_static_area = (this_sad < 2 * threshold); return x->in_static_area; } static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8, const int motion_thresh) { const int mis = cm->mi_stride; int block_row, block_col; if (cm->prev_mi) { for (block_row = 0; block_row < 8; ++block_row) { for (block_col = 0; block_col < 8; ++block_col) { const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col]; if (prev_mi) { if (abs(prev_mi->mbmi.mv[0].as_mv.row) > motion_thresh || abs(prev_mi->mbmi.mv[0].as_mv.col) > motion_thresh) return 1; } } } } return 0; } static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, int bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const struct segmentation *const seg = &cm->seg; *(xd->mi[0]) = ctx->mic; // For in frame adaptive Q, check for reseting the segment_id and updating // the cyclic refresh map. if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) { vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col, bsize, 1); vp9_init_plane_quantizers(cpi, x); }
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
if (is_inter_block(mbmi)) { vp9_update_mv_count(cm, xd); if (cm->interp_filter == SWITCHABLE) { const int pred_ctx = vp9_get_pred_context_switchable_interp(xd); ++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter]; } } x->skip = ctx->skip; } static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { set_offsets(cpi, tile, mi_row, mi_col, bsize); update_state_rt(cpi, ctx, mi_row, mi_col, bsize); encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx); update_stats(cpi); (*tp)->token = EOSB_TOKEN; (*tp)++; } static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4; int ctx; PARTITION_TYPE partition; BLOCK_SIZE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize >= BLOCK_8X8) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int idx_str = xd->mi_stride * mi_row + mi_col; MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str; ctx = partition_plane_context(xd, mi_row, mi_col, bsize); subsize = mi_8x8[0]->mbmi.sb_type; } else { ctx = 0; subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; if (output_enabled && bsize != BLOCK_4X4) cm->counts.partition[ctx][partition]++; switch (partition) { case PARTITION_NONE: encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->none); break; case PARTITION_VERT: encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->vertical[0]); if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) { encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, &pc_tree->vertical[1]);
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
} break; case PARTITION_HORZ: encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, &pc_tree->horizontal[0]); if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) { encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, &pc_tree->horizontal[1]); } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize, pc_tree->split[0]); encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize, pc_tree->split[1]); encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize, pc_tree->split[2]); encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, subsize, pc_tree->split[3]); break; default: assert("Invalid partition type."); } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } static void rd_use_partition(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mis = cm->mi_stride; const int bsl = b_width_log2(bsize); const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2; const int bss = (1 << bsl) / 4; int i, pl; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE subsize; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; int last_part_rate = INT_MAX; int64_t last_part_dist = INT64_MAX; int64_t last_part_rd = INT64_MAX; int none_rate = INT_MAX; int64_t none_dist = INT64_MAX; int64_t none_rd = INT64_MAX; int chosen_rate = INT_MAX; int64_t chosen_dist = INT64_MAX; int64_t chosen_rd = INT64_MAX; BLOCK_SIZE sub_subsize = BLOCK_4X4; int splits_below = 0; BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type; int do_partition_search = 1; PICK_MODE_CONTEXT *ctx = &pc_tree->none; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; assert(num_4x4_blocks_wide_lookup[bsize] == num_4x4_blocks_high_lookup[bsize]); partition = partition_lookup[bsl][bs_type]; subsize = get_subsize(bsize, partition);
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
pc_tree->partitioning = partition; save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (bsize == BLOCK_16X16) { set_offsets(cpi, tile, mi_row, mi_col, bsize); x->mb_energy = vp9_block_energy(cpi, x, bsize); } else { x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize); } if (!x->in_active_map) { do_partition_search = 0; if (mi_row + (mi_step >> 1) < cm->mi_rows && mi_col + (mi_step >> 1) < cm->mi_cols) { pc_tree->partitioning = PARTITION_NONE; bs_type = mi_8x8[0]->mbmi.sb_type = bsize; subsize = bsize; partition = PARTITION_NONE; } } if (do_partition_search && cpi->sf.partition_search_type == SEARCH_PARTITION && cpi->sf.adjust_partitioning_from_last_frame) { // Check if any of the sub blocks are further split. if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { sub_subsize = get_subsize(subsize, PARTITION_SPLIT); splits_below = 1; for (i = 0; i < 4; i++) { int jj = i >> 1, ii = i & 0x01; MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss]; if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) { splits_below = 0; } } } // If partition is not none try none unless each of the 4 splits are split // even further.. if (partition != PARTITION_NONE && !splits_below && mi_row + (mi_step >> 1) < cm->mi_rows && mi_col + (mi_step >> 1) < cm->mi_cols) { pc_tree->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize, ctx, INT64_MAX, 0); pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (none_rate < INT_MAX) { none_rate += cpi->partition_cost[pl][PARTITION_NONE]; none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist); } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); mi_8x8[0]->mbmi.sb_type = bs_type; pc_tree->partitioning = partition; } } switch (partition) { case PARTITION_NONE: rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, bsize, ctx, INT64_MAX, 0); break; case PARTITION_HORZ: rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize, &pc_tree->horizontal[0], INT64_MAX, 0); if (last_part_rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
int rt = 0; int64_t dt = 0; PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0]; update_state(cpi, ctx, mi_row, mi_col, subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx); rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt, subsize, &pc_tree->horizontal[1], INT64_MAX, 1); if (rt == INT_MAX || dt == INT64_MAX) { last_part_rate = INT_MAX; last_part_dist = INT64_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; case PARTITION_VERT: rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize, &pc_tree->vertical[0], INT64_MAX, 0); if (last_part_rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) { int rt = 0; int64_t dt = 0; PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0]; update_state(cpi, ctx, mi_row, mi_col, subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx); rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt, subsize, &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX, 1); if (rt == INT_MAX || dt == INT64_MAX) { last_part_rate = INT_MAX; last_part_dist = INT64_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; case PARTITION_SPLIT: if (bsize == BLOCK_8X8) { rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize, pc_tree->leaf_split[0], INT64_MAX, 0); break; } last_part_rate = 0; last_part_dist = 0; for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (mi_step >> 1); int y_idx = (i >> 1) * (mi_step >> 1); int jj = i >> 1, ii = i & 0x01; int rt; int64_t dt; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp, mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt, i != 3, pc_tree->split[i]); if (rt == INT_MAX || dt == INT64_MAX) { last_part_rate = INT_MAX; last_part_dist = INT64_MAX; break; } last_part_rate += rt; last_part_dist += dt; }
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
break; default: assert(0); } pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (last_part_rate < INT_MAX) { last_part_rate += cpi->partition_cost[pl][partition]; last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist); } if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && cpi->sf.partition_search_type == SEARCH_PARTITION && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + mi_step < cm->mi_rows || mi_row + (mi_step >> 1) == cm->mi_rows) && (mi_col + mi_step < cm->mi_cols || mi_col + (mi_step >> 1) == cm->mi_cols)) { BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); chosen_rate = 0; chosen_dist = 0; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); pc_tree->partitioning = PARTITION_SPLIT; // Split partition. for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (mi_step >> 1); int y_idx = (i >> 1) * (mi_step >> 1); int rt = 0; int64_t dt = 0; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); pc_tree->split[i]->partitioning = PARTITION_NONE; rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt, split_subsize, &pc_tree->split[i]->none, INT64_MAX, i); restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (rt == INT_MAX || dt == INT64_MAX) { chosen_rate = INT_MAX; chosen_dist = INT64_MAX; break; } chosen_rate += rt; chosen_dist += dt; if (i != 3) encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0, split_subsize, pc_tree->split[i]); pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx, split_subsize); chosen_rate += cpi->partition_cost[pl][PARTITION_NONE]; } pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (chosen_rate < INT_MAX) { chosen_rate += cpi->partition_cost[pl][PARTITION_SPLIT]; chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist); } } // If last_part is better set the partitioning to that.
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
if (last_part_rd < chosen_rd) { mi_8x8[0]->mbmi.sb_type = bsize; if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; chosen_rate = last_part_rate; chosen_dist = last_part_dist; chosen_rd = last_part_rd; } // If none was better set the partitioning to that. if (none_rd < chosen_rd) { if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; chosen_rate = none_rate; chosen_dist = none_dist; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success. if ( bsize == BLOCK_64X64) assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX); if (do_recon) { int output_enabled = (bsize == BLOCK_64X64); // Check the projected output rate for this SB against it's target // and and if necessary apply a Q delta using segmentation to get // closer to the target. if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) { vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, chosen_rate); } if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh, chosen_rate, chosen_dist); encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize, pc_tree); } *rate = chosen_rate; *dist = chosen_dist; } static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 }; static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 }; // Look at all the mode_info entries for blocks that are part of this // partition and find the min and max values for sb_type. // At the moment this is designed to work on a 64x64 SB but could be // adjusted to use a size parameter. // // The min and max are assumed to have been initialized prior to calling this // function so repeat calls can accumulate a min and max of more than one sb64. static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8, BLOCK_SIZE * min_block_size,
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
BLOCK_SIZE * max_block_size ) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; int sb_width_in_blocks = MI_BLOCK_SIZE; int sb_height_in_blocks = MI_BLOCK_SIZE; int i, j; int index = 0; // Check the sb_type for each block that belongs to this region. for (i = 0; i < sb_height_in_blocks; ++i) { for (j = 0; j < sb_width_in_blocks; ++j) { MODE_INFO * mi = mi_8x8[index+j]; BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0; *min_block_size = MIN(*min_block_size, sb_type); *max_block_size = MAX(*max_block_size, sb_type); } index += xd->mi_stride; } } // Next square block size less or equal than current block size. static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64 }; // Look at neighboring blocks and set a min and max partition size based on // what they chose. static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; MODE_INFO **mi = xd->mi; const int left_in_image = xd->left_available && mi[-1]; const int above_in_image = xd->up_available && mi[-xd->mi_stride]; const int row8x8_remaining = tile->mi_row_end - mi_row; const int col8x8_remaining = tile->mi_col_end - mi_col; int bh, bw; BLOCK_SIZE min_size = BLOCK_4X4; BLOCK_SIZE max_size = BLOCK_64X64; // Trap case where we do not have a prediction. if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { // Default "min to max" and "max to min" min_size = BLOCK_64X64; max_size = BLOCK_4X4; // NOTE: each call to get_sb_partition_size_range() uses the previous // passed in values for min and max as a starting point. // Find the min and max partition used in previous frame at this location if (cm->frame_type != KEY_FRAME) { MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; get_sb_partition_size_range(cpi, prev_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the left SB64 if (left_in_image) { MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE]; get_sb_partition_size_range(cpi, left_sb64_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the above SB64. if (above_in_image) { MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE]; get_sb_partition_size_range(cpi, above_sb64_mi, &min_size, &max_size); } // adjust observed min and max if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } } // Check border cases where max and min from neighbors may not be legal. max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining, &bh, &bw); min_size = MIN(min_size, max_size); // When use_square_partition_only is true, make sure at least one square // partition is allowed by selecting the next smaller square size as // *min_block_size. if (cpi->sf.use_square_partition_only && next_square_size[max_size] < min_size) { min_size = next_square_size[max_size]; } *min_block_size = min_size; *max_block_size = max_size; } static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; MODE_INFO **mi_8x8 = xd->mi; const int left_in_image = xd->left_available && mi_8x8[-1]; const int above_in_image = xd->up_available && mi_8x8[-xd->mi_stride]; int row8x8_remaining = tile->mi_row_end - mi_row; int col8x8_remaining = tile->mi_col_end - mi_col; int bh, bw; BLOCK_SIZE min_size = BLOCK_32X32; BLOCK_SIZE max_size = BLOCK_8X8; int bsl = mi_width_log2_lookup[BLOCK_64X64]; const int search_range_ctrl = (((mi_row + mi_col) >> bsl) + get_chessboard_index(cm)) % 2; // Trap case where we do not have a prediction. if (search_range_ctrl && (left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) { int block; MODE_INFO **mi; BLOCK_SIZE sb_type; // Find the min and max partition sizes used in the left SB64. if (left_in_image) { MODE_INFO *cur_mi; mi = &mi_8x8[-1]; for (block = 0; block < MI_BLOCK_SIZE; ++block) { cur_mi = mi[block * xd->mi_stride]; sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0; min_size = MIN(min_size, sb_type); max_size = MAX(max_size, sb_type); } } // Find the min and max partition sizes used in the above SB64. if (above_in_image) { mi = &mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE]; for (block = 0; block < MI_BLOCK_SIZE; ++block) { sb_type = mi[block] ? mi[block]->mbmi.sb_type : 0; min_size = MIN(min_size, sb_type); max_size = MAX(max_size, sb_type); } } min_size = min_partition_size[min_size]; max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
1891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
&bh, &bw); min_size = MIN(min_size, max_size); min_size = MAX(min_size, BLOCK_8X8); max_size = MIN(max_size, BLOCK_32X32); } else { min_size = BLOCK_8X8; max_size = BLOCK_32X32; } *min_block_size = min_size; *max_block_size = max_size; } static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); } static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); } // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previous rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, int64_t best_rd, PC_TREE *pc_tree) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; TOKENEXTRA *tp_orig = *tp; PICK_MODE_CONTEXT *ctx = &pc_tree->none; int i, pl; BLOCK_SIZE subsize; int this_rate, sum_rate = 0, best_rate = INT_MAX; int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX; int64_t sum_rd = 0; int do_split = bsize >= BLOCK_8X8; int do_rect = 1; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; int partition_vert_allowed = !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; (void) *tp_orig; assert(num_8x8_blocks_wide_lookup[bsize] == num_8x8_blocks_high_lookup[bsize]); if (bsize == BLOCK_16X16) { set_offsets(cpi, tile, mi_row, mi_col, bsize); x->mb_energy = vp9_block_energy(cpi, x, bsize); } else { x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize); } // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (cpi->sf.auto_min_max_partition_size) { partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
1961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
bsize >= cpi->sf.min_partition_size); partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_horz_split); partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_vert_split); do_split &= bsize > cpi->sf.min_partition_size; } if (cpi->sf.use_square_partition_only) { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (cpi->sf.disable_split_var_thresh && partition_none_allowed) { unsigned int source_variancey; vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); source_variancey = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); if (source_variancey < cpi->sf.disable_split_var_thresh) { do_split = 0; if (source_variancey < cpi->sf.disable_split_var_thresh / 2) do_rect = 0; } } if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed)) do_split = 0; // PARTITION_NONE if (partition_none_allowed) { rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize, ctx, best_rd, 0); if (this_rate != INT_MAX) { if (bsize >= BLOCK_8X8) { pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rate += cpi->partition_cost[pl][PARTITION_NONE]; } sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist); if (sum_rd < best_rd) { int64_t stop_thresh = 4096; int64_t stop_thresh_rd; best_rate = this_rate; best_dist = this_dist; best_rd = sum_rd; if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; // Adjust threshold according to partition size. stop_thresh >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh); // If obtained distortion is very small, choose current partition // and stop splitting. if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) { do_split = 0; do_rect = 0; } } } if (!x->in_active_map) { do_split = 0; do_rect = 0; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // store estimated motion vector