• Paul Wilkins's avatar
    Further CQ, Key frame and ARF changes · 57136a26
    Paul Wilkins authored
    This code fixes a bug in the calculation of
    the minimum Q for alt ref frames.
    
    It also allows an extended gf/arf interval for sections
    of clips that completely static (or nearly so).
    
    Change-Id: I1a21aaa16d4f0578e5f99b13bebd78d59403c73b
    57136a26
encodeframe.c 47.19 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "vpx_ports/config.h"
#include "encodemb.h"
#include "encodemv.h"
#include "common.h"
#include "onyx_int.h"
#include "extend.h"
#include "entropymode.h"
#include "quant_common.h"
#include "segmentation.h"
#include "setupintrarecon.h"
#include "encodeintra.h"
#include "reconinter.h"
#include "rdopt.h"
#include "pickinter.h"
#include "findnearmv.h"
#include "reconintra.h"
#include <stdio.h>
#include <limits.h>
#include "subpixel.h"
#include "vpx_ports/vpx_timer.h"
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD(x)     &cpi->common.rtcd.x
#define IF_RTCD(x)  (x)
#else
#define RTCD(x)     NULL
#define IF_RTCD(x)  NULL
#endif
extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ;
extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex);
extern void vp8_auto_select_speed(VP8_COMP *cpi);
extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi,
                                      MACROBLOCK *x,
                                      MB_ROW_COMP *mbr_ei,
                                      int mb_row,
                                      int count);
void vp8_build_block_offsets(MACROBLOCK *x);
void vp8_setup_block_ptrs(MACROBLOCK *x);
int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset);
int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t);
#ifdef MODE_STATS
unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int inter_uv_modes[4] = {0, 0, 0, 0};
unsigned int inter_b_modes[15]  = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unsigned int y_modes[5]   = {0, 0, 0, 0, 0};
unsigned int uv_modes[4]  = {0, 0, 0, 0};
unsigned int b_modes[14]  = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
#endif
static const int qrounding_factors[129] =
    48, 48, 48, 48, 48, 48, 48, 48,
    48, 48, 48, 48, 48, 48, 48, 48,
    48, 48, 48, 48, 48, 48, 48, 48,
    48, 48, 48, 48, 48, 48, 48, 48,
    48, 48, 48, 48, 48, 48, 48, 48,
    48, 48, 48, 48, 48, 48, 48, 48,
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 }; static const int qzbin_factors[129] = { 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 }; static const int qrounding_factors_y2[129] = { 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48 }; static const int qzbin_factors_y2[129] = { 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80,
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80 }; #define EXACT_QUANT #ifdef EXACT_QUANT static void vp8cx_invert_quant(int improved_quant, short *quant, short *shift, short d) { if(improved_quant) { unsigned t; int l; t = d; for(l = 0; t > 1; l++) t>>=1; t = 1 + (1<<(16+l))/d; *quant = (short)(t - (1<<16)); *shift = l; } else { *quant = (1 << 16) / d; *shift = 0; } } void vp8cx_init_quantizer(VP8_COMP *cpi) { int i; int quant_val; int Q; int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44}; for (Q = 0; Q < QINDEX_RANGE; Q++) { // dc values quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q); cpi->Y1quant_fast[Q][0] = (1 << 16) / quant_val; vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + 0, cpi->Y1quant_shift[Q] + 0, quant_val); cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y1dequant[Q][0] = quant_val; cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q); cpi->Y2quant_fast[Q][0] = (1 << 16) / quant_val; vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + 0, cpi->Y2quant_shift[Q] + 0, quant_val); cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7; cpi->common.Y2dequant[Q][0] = quant_val; cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q); cpi->UVquant_fast[Q][0] = (1 << 16) / quant_val; vp8cx_invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + 0, cpi->UVquant_shift[Q] + 0, quant_val); cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;; cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.UVdequant[Q][0] = quant_val; cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7; // all the ac values = ; for (i = 1; i < 16; i++) {
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
int rc = vp8_default_zig_zag1d[i]; quant_val = vp8_ac_yquant(Q); cpi->Y1quant_fast[Q][rc] = (1 << 16) / quant_val; vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y1quant[Q] + rc, cpi->Y1quant_shift[Q] + rc, quant_val); cpi->Y1zbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y1round[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y1dequant[Q][rc] = quant_val; cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7; quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q); cpi->Y2quant_fast[Q][rc] = (1 << 16) / quant_val; vp8cx_invert_quant(cpi->sf.improved_quant, cpi->Y2quant[Q] + rc, cpi->Y2quant_shift[Q] + rc, quant_val); cpi->Y2zbin[Q][rc] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; cpi->Y2round[Q][rc] = (qrounding_factors_y2[Q] * quant_val) >> 7; cpi->common.Y2dequant[Q][rc] = quant_val; cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7; quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q); cpi->UVquant_fast[Q][rc] = (1 << 16) / quant_val; vp8cx_invert_quant(cpi->sf.improved_quant, cpi->UVquant[Q] + rc, cpi->UVquant_shift[Q] + rc, quant_val); cpi->UVzbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->UVround[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.UVdequant[Q][rc] = quant_val; cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7; } } } #else void vp8cx_init_quantizer(VP8_COMP *cpi) { int i; int quant_val; int Q; int zbin_boost[16] = {0, 0, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 44, 44}; for (Q = 0; Q < QINDEX_RANGE; Q++) { // dc values quant_val = vp8_dc_quant(Q, cpi->common.y1dc_delta_q); cpi->Y1quant[Q][0] = (1 << 16) / quant_val; cpi->Y1zbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y1round[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y1dequant[Q][0] = quant_val; cpi->zrun_zbin_boost_y1[Q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp8_dc2quant(Q, cpi->common.y2dc_delta_q); cpi->Y2quant[Q][0] = (1 << 16) / quant_val; cpi->Y2zbin[Q][0] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; cpi->Y2round[Q][0] = (qrounding_factors_y2[Q] * quant_val) >> 7; cpi->common.Y2dequant[Q][0] = quant_val; cpi->zrun_zbin_boost_y2[Q][0] = (quant_val * zbin_boost[0]) >> 7; quant_val = vp8_dc_uv_quant(Q, cpi->common.uvdc_delta_q); cpi->UVquant[Q][0] = (1 << 16) / quant_val; cpi->UVzbin[Q][0] = ((qzbin_factors[Q] * quant_val) + 64) >> 7;; cpi->UVround[Q][0] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.UVdequant[Q][0] = quant_val; cpi->zrun_zbin_boost_uv[Q][0] = (quant_val * zbin_boost[0]) >> 7; // all the ac values = ; for (i = 1; i < 16; i++) { int rc = vp8_default_zig_zag1d[i]; quant_val = vp8_ac_yquant(Q);
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
cpi->Y1quant[Q][rc] = (1 << 16) / quant_val; cpi->Y1zbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->Y1round[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.Y1dequant[Q][rc] = quant_val; cpi->zrun_zbin_boost_y1[Q][i] = (quant_val * zbin_boost[i]) >> 7; quant_val = vp8_ac2quant(Q, cpi->common.y2ac_delta_q); cpi->Y2quant[Q][rc] = (1 << 16) / quant_val; cpi->Y2zbin[Q][rc] = ((qzbin_factors_y2[Q] * quant_val) + 64) >> 7; cpi->Y2round[Q][rc] = (qrounding_factors_y2[Q] * quant_val) >> 7; cpi->common.Y2dequant[Q][rc] = quant_val; cpi->zrun_zbin_boost_y2[Q][i] = (quant_val * zbin_boost[i]) >> 7; quant_val = vp8_ac_uv_quant(Q, cpi->common.uvac_delta_q); cpi->UVquant[Q][rc] = (1 << 16) / quant_val; cpi->UVzbin[Q][rc] = ((qzbin_factors[Q] * quant_val) + 64) >> 7; cpi->UVround[Q][rc] = (qrounding_factors[Q] * quant_val) >> 7; cpi->common.UVdequant[Q][rc] = quant_val; cpi->zrun_zbin_boost_uv[Q][i] = (quant_val * zbin_boost[i]) >> 7; } } } #endif void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x) { int i; int QIndex; MACROBLOCKD *xd = &x->e_mbd; int zbin_extra; // Select the baseline MB Q index. if (xd->segmentation_enabled) { // Abs Value if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][xd->mode_info_context->mbmi.segment_id]; // Delta Value else { QIndex = cpi->common.base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][xd->mode_info_context->mbmi.segment_id]; QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range } } else QIndex = cpi->common.base_qindex; // Y zbin_extra = (cpi->common.Y1dequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; for (i = 0; i < 16; i++) { x->block[i].quant = cpi->Y1quant[QIndex]; x->block[i].quant_fast = cpi->Y1quant_fast[QIndex]; x->block[i].quant_shift = cpi->Y1quant_shift[QIndex]; x->block[i].zbin = cpi->Y1zbin[QIndex]; x->block[i].round = cpi->Y1round[QIndex]; x->e_mbd.block[i].dequant = cpi->common.Y1dequant[QIndex]; x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_y1[QIndex]; x->block[i].zbin_extra = (short)zbin_extra; } // UV zbin_extra = (cpi->common.UVdequant[QIndex][1] * (cpi->zbin_over_quant + cpi->zbin_mode_boost)) >> 7; for (i = 16; i < 24; i++) { x->block[i].quant = cpi->UVquant[QIndex]; x->block[i].quant_fast = cpi->UVquant_fast[QIndex]; x->block[i].quant_shift = cpi->UVquant_shift[QIndex];
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
x->block[i].zbin = cpi->UVzbin[QIndex]; x->block[i].round = cpi->UVround[QIndex]; x->e_mbd.block[i].dequant = cpi->common.UVdequant[QIndex]; x->block[i].zrun_zbin_boost = cpi->zrun_zbin_boost_uv[QIndex]; x->block[i].zbin_extra = (short)zbin_extra; } // Y2 zbin_extra = (cpi->common.Y2dequant[QIndex][1] * ((cpi->zbin_over_quant / 2) + cpi->zbin_mode_boost)) >> 7; x->block[24].quant_fast = cpi->Y2quant_fast[QIndex]; x->block[24].quant = cpi->Y2quant[QIndex]; x->block[24].quant_shift = cpi->Y2quant_shift[QIndex]; x->block[24].zbin = cpi->Y2zbin[QIndex]; x->block[24].round = cpi->Y2round[QIndex]; x->e_mbd.block[24].dequant = cpi->common.Y2dequant[QIndex]; x->block[24].zrun_zbin_boost = cpi->zrun_zbin_boost_y2[QIndex]; x->block[24].zbin_extra = (short)zbin_extra; } void vp8cx_frame_init_quantizer(VP8_COMP *cpi) { // Clear Zbin mode boost for default case cpi->zbin_mode_boost = 0; // vp8cx_init_quantizer() is first called in vp8_create_compressor(). A check is added here so that vp8cx_init_quantizer() is only called // when these values are not all zero. if (cpi->common.y1dc_delta_q | cpi->common.y2dc_delta_q | cpi->common.uvdc_delta_q | cpi->common.y2ac_delta_q | cpi->common.uvac_delta_q) { vp8cx_init_quantizer(cpi); } // MB level quantizer setup vp8cx_mb_init_quantizer(cpi, &cpi->mb); } /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp8_activity_masking(). */ #define VP8_ACTIVITY_AVG_MIN (64) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const unsigned char VP8_VAR_OFFS[16]= { 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 }; unsigned int vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { unsigned int act; unsigned int sse; int sum; unsigned int a; unsigned int b; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0, &sse, &sum); /* This requires a full 32 bits of precision. */
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
act = (sse<<8) - sum*sum; /* Drop 4 to give us some headroom to work with. */ act = (act + 8) >> 4; /* If the region is flat, lower the activity some more. */ if (act < 8<<12) act = act < 5<<12 ? act : 5<<12; /* TODO: For non-flat regions, edge regions should receive less masking * than textured regions, but identifying edge regions quickly and * reliably enough is still a subject of experimentation. * This will be most noticable near edges with a complex shape (e.g., * text), but the 4x4 transform size should make this less of a problem * than it would be for an 8x8 transform. */ /* Apply the masking to the RD multiplier. */ a = act + 4*cpi->activity_avg; b = 4*act + cpi->activity_avg; x->rdmult = (unsigned int)(((INT64)x->rdmult*b + (a>>1))/a); return act; } static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *segment_counts, int *totalrate) { INT64 activity_sum = 0; int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int seg_map_index = (mb_row * cpi->common.mb_cols); // reset above block coeffs xd->above_context = cm->above_context; xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); cpi->tplist[mb_row].start = *tp; //printf("Main mb_row = %d\n", mb_row); // Distance of Mb to the top & bottom edges, specified in 1/8th pel // units as they are always compared to values that are in 1/8th pel units xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; // Set up limit values for vertical motion vector components // to prevent them extending beyond the UMV borders x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Distance of Mb to the left & right edges, specified in // 1/8th pel units as they are always compared to values // that are in 1/8th pel units
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; // Set up limit values for horizontal motion vector components // to prevent them extending beyond the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; if(cpi->oxcf.tuning == VP8_TUNE_SSIM) activity_sum += vp8_activity_masking(cpi, x); // Is segmentation enabled // MB level adjutment to quantizer if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id for current MB (with range checking) if (cpi->segmentation_map[seg_map_index+mb_col] <= 3) xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[seg_map_index+mb_col]; else xd->mode_info_context->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x); } else xd->mode_info_context->mbmi.segment_id = 0; // Set to Segment 0 by default x->active_ptr = cpi->active_map + seg_map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp); #ifdef MODE_STATS y_modes[xd->mbmi.mode] ++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset); #ifdef MODE_STATS inter_y_modes[xd->mbmi.mode] ++; if (xd->mbmi.mode == SPLITMV) { int b; for (b = 0; b < xd->mbmi.partition_count; b++) { inter_b_modes[x->partition->bmi[b].mode] ++; } } #endif // Count of last ref frame 0,0 useage if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) cpi->inter_zz_count ++; // Special case code for cyclic refresh // If cyclic update enabled then copy xd->mbmi.segment_id; (which may have been updated based on mode // during vp8cx_encode_inter_macroblock()) back into the global sgmentation map
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
if (cpi->cyclic_refresh_mode_enabled && xd->segmentation_enabled) { cpi->segmentation_map[seg_map_index+mb_col] = xd->mode_info_context->mbmi.segment_id; // If the block has been refreshed mark it as clean (the magnitude of the -ve influences how long it will be before we consider another refresh): // Else if it was coded (last frame 0,0) and has not already been refreshed then mark it as a candidate for cleanup next time (marked 0) // else mark it as dirty (1). if (xd->mode_info_context->mbmi.segment_id) cpi->cyclic_refresh_map[seg_map_index+mb_col] = -1; else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[seg_map_index+mb_col] == 1) cpi->cyclic_refresh_map[seg_map_index+mb_col] = 0; } else cpi->cyclic_refresh_map[seg_map_index+mb_col] = 1; } } cpi->tplist[mb_row].stop = *tp; x->gf_active_ptr++; // Increment pointer into gf useage flags structure for next mb for (i = 0; i < 16; i++) vpx_memcpy(&xd->mode_info_context->bmi[i], &xd->block[i].bmi, sizeof(xd->block[i].bmi)); // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; // Keep track of segment useage segment_counts[xd->mode_info_context->mbmi.segment_id] ++; // skip to next mb xd->mode_info_context++; x->partition_info++; xd->above_context++; cpi->current_mb_col_main = mb_col; } //extend the recon for intra prediction vp8_extend_mb_row( &cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); // this is to account for the border xd->mode_info_context++; x->partition_info++; x->activity_sum += activity_sum; } void vp8_encode_frame(VP8_COMP *cpi) { int mb_row; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd;
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
TOKENEXTRA *tp = cpi->tok; int segment_counts[MAX_MB_SEGMENTS]; int totalrate; // Functions setup for all frame types so we can use MC in AltRef if (cm->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear16x16); } x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Point to base of GF active flags data structure x->vector_range = 32; // Count of MBs using the alternate Q if any cpi->alt_qcount = 0; // Reset frame count of inter 0,0 motion vector useage. cpi->inter_zz_count = 0; vpx_memset(segment_counts, 0, sizeof(segment_counts)); cpi->prediction_error = 0; cpi->intra_error = 0; cpi->skip_true_count = 0; cpi->skip_false_count = 0; #if 0 // Experimental code cpi->frame_distortion = 0; cpi->last_mb_distortion = 0; #endif totalrate = 0; x->partition_info = x->pi; xd->mode_info_context = cm->mi; xd->mode_info_stride = cm->mode_info_stride; xd->frame_type = cm->frame_type; xd->frames_since_golden = cm->frames_since_golden; xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; vp8_zero(cpi->MVcount); // vp8_zero( Contexts) vp8_zero(cpi->coef_counts); // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm);
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
vp8cx_frame_init_quantizer(cpi); if (cpi->compressor_speed == 2) { if (cpi->oxcf.cpu_used < 0) cpi->Speed = -(cpi->oxcf.cpu_used); else vp8_auto_select_speed(cpi); } vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); vp8cx_initialize_me_consts(cpi, cm->base_qindex); // Copy data over into macro block data sturctures. x->src = * cpi->Source; xd->pre = cm->yv12_fb[cm->lst_fb_idx]; xd->dst = cm->yv12_fb[cm->new_fb_idx]; // set up frame new frame for intra coded blocks vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); x->activity_sum = 0; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_context->mbmi.uv_mode = DC_PRED; xd->left_context = &cm->left_context; vp8_zero(cpi->count_mb_ref_frame_usage) vp8_zero(cpi->ymode_count) vp8_zero(cpi->uv_mode_count) x->mvc = cm->fc.mvc; vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); if (!cpi->b_multi_threaded) { // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { vp8_zero(cm->left_context) encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } cpi->tok_count = tp - cpi->tok; } else {
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
#if CONFIG_MULTITHREAD int i; vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count); for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { cpi->current_mb_col_main = -1; for (i = 0; i < cpi->encoding_thread_count; i++) { if ((mb_row + i + 1) >= cm->mb_rows) break; cpi->mb_row_ei[i].mb_row = mb_row + i + 1; cpi->mb_row_ei[i].tp = cpi->tok + (mb_row + i + 1) * (cm->mb_cols * 16 * 24); cpi->mb_row_ei[i].current_mb_col = -1; //SetEvent(cpi->h_event_mbrencoding[i]); sem_post(&cpi->h_event_mbrencoding[i]); } vp8_zero(cm->left_context) tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; if (mb_row < cm->mb_rows - 1) //WaitForSingleObject(cpi->h_event_main, INFINITE); sem_wait(&cpi->h_event_main); } /* for( ;mb_row<cm->mb_rows; mb_row ++) { vp8_zero( cm->left_context) tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); encode_mb_row(cpi, cm, mb_row, x, xd, &tp, segment_counts, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } */ cpi->tok_count = 0; for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++) { cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start; } if (xd->segmentation_enabled) { int i, j; if (xd->segmentation_enabled) {
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
for (i = 0; i < cpi->encoding_thread_count; i++) { for (j = 0; j < 4; j++) segment_counts[j] += cpi->mb_row_ei[i].segment_counts[j]; } } } for (i = 0; i < cpi->encoding_thread_count; i++) { totalrate += cpi->mb_row_ei[i].totalrate; } for (i = 0; i < cpi->encoding_thread_count; i++) { x->activity_sum += cpi->mb_row_ei[i].mb.activity_sum; } #endif } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); } // Work out the segment probabilites if segmentation is enabled if (xd->segmentation_enabled) { int tot_count; int i; // Set to defaults vpx_memset(xd->mb_segment_tree_probs, 255 , sizeof(xd->mb_segment_tree_probs)); tot_count = segment_counts[0] + segment_counts[1] + segment_counts[2] + segment_counts[3]; if (tot_count) { xd->mb_segment_tree_probs[0] = ((segment_counts[0] + segment_counts[1]) * 255) / tot_count; tot_count = segment_counts[0] + segment_counts[1]; if (tot_count > 0) { xd->mb_segment_tree_probs[1] = (segment_counts[0] * 255) / tot_count; } tot_count = segment_counts[2] + segment_counts[3]; if (tot_count > 0) xd->mb_segment_tree_probs[2] = (segment_counts[2] * 255) / tot_count; // Zero probabilities not allowed for (i = 0; i < MB_FEATURE_TREE_PROBS; i ++) { if (xd->mb_segment_tree_probs[i] == 0) xd->mb_segment_tree_probs[i] = 1; } } } // 256 rate units to the bit cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES // Make a note of the percentage MBs coded Intra. if (cm->frame_type == KEY_FRAME)
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
{ cpi->this_frame_percent_intra = 100; } else { int tot_modes; tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME] + cpi->count_mb_ref_frame_usage[LAST_FRAME] + cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] + cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; if (tot_modes) cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; } #if 0 { int cnt = 0; int flag[2] = {0, 0}; for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt]) { flag[0] = 1; vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount); break; } } for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt]) { flag[1] = 1; vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount); break; } } if (flag[0] || flag[1]) vp8_build_component_cost_table(cpi->mb.mvcost, cpi->mb.mvsadcost, (const MV_CONTEXT *) cm->fc.mvc, flag); } #endif // Adjust the projected reference frame useage probability numbers to reflect // what we have just seen. This may be usefull when we make multiple itterations // of the recode loop rather than continuing to use values from the previous frame. if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame) { const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if ((rf_intra + rf_inter) > 0) { cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); if (cpi->prob_intra_coded < 1) cpi->prob_intra_coded = 1; if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) { cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (cpi->prob_last_coded < 1) cpi->prob_last_coded = 1;
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (cpi->prob_gf_coded < 1) cpi->prob_gf_coded = 1; } } } #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif /* Update the average activity for the next frame. * This is feed-forward for now; it could also be saved in two-pass, or * done during lookahead when that is eventually added. */ cpi->activity_avg = (unsigned int )(x->activity_sum/cpi->common.MBs); if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; } void vp8_setup_block_ptrs(MACROBLOCK *x) { int r, c; int i; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; } } x->block[24].src_diff = x->src_diff + 384; for (i = 0; i < 25; i++) { x->block[i].coeff = x->coeff + i * 16; } } void vp8_build_block_offsets(MACROBLOCK *x) { int block = 0; int br, bc; vp8_build_block_doffsets(&x->e_mbd); // y blocks
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
for (br = 0; br < 4; br++) { for (bc = 0; bc < 4; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.y_buffer; this_block->src_stride = x->src.y_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // u blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.u_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // v blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.v_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } } static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = & x->e_mbd; const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; #ifdef MODE_STATS const int is_key = cpi->common.frame_type == KEY_FRAME; ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; if (m == B_PRED) { unsigned int *const bct = is_key ? b_modes : inter_b_modes; int b = 0; do { ++ bct[xd->block[b].bmi.mode]; } while (++b < 16); } #endif ++cpi->ymode_count[m]; ++cpi->uv_mode_count[uvm]; } int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t)
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
{ int Error4x4, Error16x16, error_uv; B_PREDICTION_MODE intra_bmodes[16]; int rate4x4, rate16x16, rateuv; int dist4x4, dist16x16, distuv; int rate = 0; int rate4x4_tokenonly = 0; int rate16x16_tokenonly = 0; int rateuv_tokenonly = 0; int i; x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME; #if !(CONFIG_REALTIME_ONLY) if (cpi->sf.RD || cpi->compressor_speed != 2) { Error4x4 = vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4); //save the b modes for possible later use for (i = 0; i < 16; i++) intra_bmodes[i] = x->e_mbd.block[i].bmi.mode; Error16x16 = vp8_rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16); error_uv = vp8_rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv); vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); rate += rateuv; if (Error4x4 < Error16x16) { rate += rate4x4; x->e_mbd.mode_info_context->mbmi.mode = B_PRED; // get back the intra block modes for (i = 0; i < 16; i++) x->e_mbd.block[i].bmi.mode = intra_bmodes[i]; vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); cpi->prediction_error += Error4x4 ; #if 0 // Experimental RD code cpi->frame_distortion += dist4x4; #endif } else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); rate += rate16x16; #if 0 // Experimental RD code cpi->prediction_error += Error16x16; cpi->frame_distortion += dist16x16; #endif } sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); } else #endif { int rate2, distortion2; MB_PREDICTION_MODE mode, best_mode = DC_PRED; int this_rd; Error16x16 = INT_MAX;
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
for (mode = DC_PRED; mode <= TM_PRED; mode ++) { x->e_mbd.mode_info_context->mbmi.mode = mode; vp8_build_intra_predictors_mby_ptr(&x->e_mbd); distortion2 = VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16prederror)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, 0x7fffffff); rate2 = x->mbmode_cost[x->e_mbd.frame_type][mode]; this_rd = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); if (Error16x16 > this_rd) { Error16x16 = this_rd; best_mode = mode; } } vp8_pick_intra4x4mby_modes(IF_RTCD(&cpi->rtcd), x, &rate2, &distortion2); if (distortion2 == INT_MAX) Error4x4 = INT_MAX; else Error4x4 = RD_ESTIMATE(x->rdmult, x->rddiv, rate2, distortion2); if (Error4x4 < Error16x16) { x->e_mbd.mode_info_context->mbmi.mode = B_PRED; vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); cpi->prediction_error += Error4x4; } else { x->e_mbd.mode_info_context->mbmi.mode = best_mode; vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); cpi->prediction_error += Error16x16; } vp8_pick_intra_mbuv_mode(x); vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); } return rate; } #ifdef SPEEDSTATS extern int cnt_pm; #endif extern void vp8_fix_contexts(MACROBLOCKD *x); int vp8cx_encode_inter_macroblock ( VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset ) { MACROBLOCKD *const xd = &x->e_mbd; int inter_error; int intra_error = 0; int rate; int distortion; x->skip = 0; if (xd->segmentation_enabled) x->encode_breakout = cpi->segment_encode_breakout[xd->mode_info_context->mbmi.segment_id]; else x->encode_breakout = cpi->oxcf.encode_breakout; #if !(CONFIG_REALTIME_ONLY)
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
if (cpi->sf.RD) { /* Are we using the fast quantizer for the mode selection? */ if(cpi->sf.use_fastquant_for_pick) cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb); inter_error = vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); /* switch back to the regular quantizer for the encode */ if (cpi->sf.improved_quant) { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb); } } else #endif inter_error = vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); cpi->prediction_error += inter_error; cpi->intra_error += intra_error; #if 0 // Experimental RD code cpi->frame_distortion += distortion; cpi->last_mb_distortion = distortion; #endif // MB level adjutment to quantizer setup if (xd->segmentation_enabled || cpi->zbin_mode_boost_enabled) { // If cyclic update enabled if (cpi->cyclic_refresh_mode_enabled) { // Clear segment_id back to 0 if not coded (last frame 0,0) if ((xd->mode_info_context->mbmi.segment_id == 1) && ((xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV))) { xd->mode_info_context->mbmi.segment_id = 0; } } // Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise if (cpi->zbin_mode_boost_enabled) { if ( xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME ) cpi->zbin_mode_boost = 0; else { if (xd->mode_info_context->mbmi.mode == ZEROMV) { if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (xd->mode_info_context->mbmi.mode == SPLITMV) cpi->zbin_mode_boost = 0; else cpi->zbin_mode_boost = MV_ZBIN_BOOST; } } else cpi->zbin_mode_boost = 0; vp8cx_mb_init_quantizer(cpi, x); }
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame] ++; if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); if (xd->mode_info_context->mbmi.mode == B_PRED) { vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); } else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } sum_intra_stats(cpi, x); } else { MV best_ref_mv; MV nearest, nearby; int mdcounts[4]; int ref_fb_idx; vp8_find_near_mvs(xd, xd->mode_info_context, &nearest, &nearby, &best_ref_mv, mdcounts, xd->mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias); vp8_build_uvmvs(xd, cpi->common.full_pixel); if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = cpi->common.lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = cpi->common.gld_fb_idx; else ref_fb_idx = cpi->common.alt_fb_idx; xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (xd->mode_info_context->mbmi.mode == SPLITMV) { int i; for (i = 0; i < 16; i++) { if (xd->block[i].bmi.mode == NEW4X4) { cpi->MVcount[0][mv_max+((xd->block[i].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++; cpi->MVcount[1][mv_max+((xd->block[i].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++; } } } else if (xd->mode_info_context->mbmi.mode == NEWMV) { cpi->MVcount[0][mv_max+((xd->block[0].bmi.mv.as_mv.row - best_ref_mv.row) >> 1)]++; cpi->MVcount[1][mv_max+((xd->block[0].bmi.mv.as_mv.col - best_ref_mv.col) >> 1)]++; } if (!x->skip && !x->e_mbd.mode_info_context->mbmi.force_no_skip) { vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); // Clear mb_skip_coeff if mb_no_coeff_skip is not set if (!cpi->common.mb_no_coeff_skip) xd->mode_info_context->mbmi.mb_skip_coeff = 0; } else vp8_stuff_inter16x16(x);
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428
} if (!x->skip) vp8_tokenize_mb(cpi, xd, t); else { if (cpi->common.mb_no_coeff_skip) { if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV) xd->mode_info_context->mbmi.dc_diff = 0; else xd->mode_info_context->mbmi.dc_diff = 1; xd->mode_info_context->mbmi.mb_skip_coeff = 1; cpi->skip_true_count ++; vp8_fix_contexts(xd); } else { vp8_stuff_mb(cpi, xd, t); xd->mode_info_context->mbmi.mb_skip_coeff = 0; cpi->skip_false_count ++; } } return rate; }