• John Koleszar's avatar
    Remove secondary mv clamping from decode stage · 3085025f
    John Koleszar authored
    This patch removes the secondary MV clamping from the MV decoder. This
    behavior was consistent with limits placed on non-split MVs by the
    reference encoder, but was inconsistent with the MVs generated in the
    split case.
    
    The purpose of this secondary clamping was only to prevent crashes on
    invalid data. It was not intended to be a behaviour an encoder could or
    should rely on. Instead of doing additional clamping in a way that
    changes the entropy context, the secondary clamp is removed and the
    border handling is made implmentation specific. With respect to the
    spec, the border is treated as essentially infinite, limited only by
    the clamping performed on the near/nearest reference and the maximum
    encodable magnitude of the residual MV.
    
    This does not affect any currently produced streams.
    
    Change-Id: I68d35a2fbb51570d6569eab4ad233961405230a3
    3085025f
decodframe.c 29.94 KiB
/*
 *  Copyright (c) 2010 The VP8 project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include "onyxd_int.h"
#include "header.h"
#include "reconintra.h"
#include "reconintra4x4.h"
#include "recon.h"
#include "reconinter.h"
#include "dequantize.h"
#include "detokenize.h"
#include "invtrans.h"
#include "alloccommon.h"
#include "entropymode.h"
#include "quant_common.h"
#include "segmentation_common.h"
#include "setupintrarecon.h"
#include "demode.h"
#include "decodemv.h"
#include "extend.h"
#include "vpx_mem/vpx_mem.h"
#include "idct.h"
#include "dequantize.h"
#include "predictdc.h"
#include "threading.h"
#include "decoderthreading.h"
#include "dboolhuff.h"
#include <assert.h>
#include <stdio.h>
void vp8cx_init_de_quantizer(VP8D_COMP *pbi)
    int r, c;
    int i;
    int Q;
    VP8_COMMON *const pc = & pbi->common;
    for (Q = 0; Q < QINDEX_RANGE; Q++)
        pc->Y1dequant[Q][0][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
        pc->Y2dequant[Q][0][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
        pc->UVdequant[Q][0][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
        // all the ac values = ;
        for (i = 1; i < 16; i++)
            int rc = vp8_default_zig_zag1d[i];
            r = (rc >> 2);
            c = (rc & 3);
            pc->Y1dequant[Q][r][c] = (short)vp8_ac_yquant(Q);
            pc->Y2dequant[Q][r][c] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
            pc->UVdequant[Q][r][c] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
static void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd)
    int i;
    int QIndex;
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; VP8_COMMON *const pc = & pbi->common; // Decide whether to use the default or alternate baseline Q value. if (xd->segmentation_enabled) { // Abs Value if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; // Delta Value else { QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range } } else QIndex = pc->base_qindex; // Set up the block level dequant pointers for (i = 0; i < 16; i++) { xd->block[i].dequant = pc->Y1dequant[QIndex]; } for (i = 16; i < 24; i++) { xd->block[i].dequant = pc->UVdequant[QIndex]; } xd->block[24].dequant = pc->Y2dequant[QIndex]; } #if CONFIG_RUNTIME_CPU_DETECT #define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x) #else #define RTCD_VTABLE(x) NULL #endif //skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it // to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) { if (xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME) { vp8_build_intra_predictors_mbuv_s(xd); vp8_build_intra_predictors_mby_s_ptr(xd); } else { vp8_build_inter_predictors_mb_s(xd); } } static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. * * This limit kicks in at 19 pixels for the top and left edges, for * the 16 pixels plus 3 taps right of the central pixel when subpel * filtering. The bottom and right edges use 16 pixels plus 2 pixels * left of the central pixel when filtering. */
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
if (mv->col < (xd->mb_to_left_edge - (19 << 3))) mv->col = xd->mb_to_left_edge - (16 << 3); else if (mv->col > xd->mb_to_right_edge + (18 << 3)) mv->col = xd->mb_to_right_edge + (16 << 3); if (mv->row < (xd->mb_to_top_edge - (19 << 3))) mv->row = xd->mb_to_top_edge - (16 << 3); else if (mv->row > xd->mb_to_bottom_edge + (18 << 3)) mv->row = xd->mb_to_bottom_edge + (16 << 3); } static void clamp_mvs(MACROBLOCKD *xd) { if (xd->mbmi.mode == SPLITMV) { int i; for (i=0; i<16; i++) clamp_mv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); } else { clamp_mv_to_umv_border(&xd->mbmi.mv.as_mv, xd); clamp_mv_to_umv_border(&xd->block[16].bmi.mv.as_mv, xd); } } static void reconstruct_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) { if (xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME) { vp8_build_intra_predictors_mbuv(xd); if (xd->mbmi.mode != B_PRED) { vp8_build_intra_predictors_mby_ptr(xd); vp8_recon16x16mb(RTCD_VTABLE(recon), xd); } else { vp8_recon_intra4x4mb(RTCD_VTABLE(recon), xd); } } else { vp8_build_inter_predictors_mb(xd); vp8_recon16x16mb(RTCD_VTABLE(recon), xd); } } static void de_quantand_idct(VP8D_COMP *pbi, MACROBLOCKD *xd) { int i; BLOCKD *b = &xd->block[24]; if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV) { DEQUANT_INVOKE(&pbi->dequant, block)(b); // do 2nd order transform on the dc block if (b->eob > 1) { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0;
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } for (i = 0; i < 16; i++) { b = &xd->block[i]; if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_dc)(b->qcoeff, &b->dequant[0][0], b->diff, 32, xd->block[24].diff[i]); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar)(xd->block[24].diff[i], b->diff, 32); } } for (i = 16; i < 24; i++) { b = &xd->block[i]; if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, idct)(b->qcoeff, &b->dequant[0][0], b->diff, 16); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar)(b->qcoeff[0] * b->dequant[0][0], b->diff, 16); ((int *)b->qcoeff)[0] = 0; } } } else { for (i = 0; i < 24; i++) { b = &xd->block[i]; if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, idct)(b->qcoeff, &b->dequant[0][0], b->diff, (32 - (i & 16))); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar)(b->qcoeff[0] * b->dequant[0][0], b->diff, (32 - (i & 16))); ((int *)b->qcoeff)[0] = 0; } } } } void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd) { int eobtotal = 0; MV orig_mvs[24]; int i, do_clamp = xd->mbmi.need_to_clamp_mvs; if (xd->mbmi.mb_skip_coeff)
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
{ vp8_reset_mb_tokens_context(xd); } else { eobtotal = vp8_decode_mb_tokens(pbi, xd); } /* Perform temporary clamping of the MV to be used for prediction */ if (do_clamp) { if (xd->mbmi.mode == SPLITMV) for (i=0; i<24; i++) orig_mvs[i] = xd->block[i].bmi.mv.as_mv; else { orig_mvs[0] = xd->mbmi.mv.as_mv; orig_mvs[1] = xd->block[16].bmi.mv.as_mv; } clamp_mvs(xd); } xd->mode_info_context->mbmi.dc_diff = 1; do { if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV && eobtotal == 0) { xd->mode_info_context->mbmi.dc_diff = 0; skip_recon_mb(pbi, xd); break; } if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); de_quantand_idct(pbi, xd); reconstruct_mb(pbi, xd); } while(0); /* Restore the original MV so as not to affect the entropy context. */ if (do_clamp) { if (xd->mbmi.mode == SPLITMV) for (i=0; i<24; i++) xd->block[i].bmi.mv.as_mv = orig_mvs[i]; else { xd->mbmi.mv.as_mv = orig_mvs[0]; xd->block[16].bmi.mv.as_mv = orig_mvs[1]; } } } static int get_delta_q(vp8_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp8_read_bit(bc)) { ret_val = vp8_read_literal(bc, 4); if (vp8_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
return ret_val; } #ifdef PACKET_TESTING #include <stdio.h> FILE *vpxlog = 0; #endif void vp8_decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd) { int i; int recon_yoffset, recon_uvoffset; int mb_col; int recon_y_stride = pc->last_frame.y_stride; int recon_uv_stride = pc->last_frame.uv_stride; vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; // reset above block coeffs xd->above_context[Y1CONTEXT] = pc->above_context[Y1CONTEXT]; xd->above_context[UCONTEXT ] = pc->above_context[UCONTEXT]; xd->above_context[VCONTEXT ] = pc->above_context[VCONTEXT]; xd->above_context[Y2CONTEXT] = pc->above_context[Y2CONTEXT]; xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { // Take a copy of the mode and Mv information for this macroblock into the xd->mbmi // the partition_bmi array is unused in the decoder, so don't copy it. vpx_memcpy(&xd->mbmi, &xd->mode_info_context->mbmi, sizeof(MB_MODE_INFO) - sizeof(xd->mbmi.partition_bmi)); if (xd->mbmi.mode == SPLITMV || xd->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *d = &xd->block[i]; vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); } } // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->dst.y_buffer = pc->new_frame.y_buffer + recon_yoffset; xd->dst.u_buffer = pc->new_frame.u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->new_frame.v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); // Select the appropriate reference frame for this MB if (xd->mbmi.ref_frame == LAST_FRAME) { xd->pre.y_buffer = pc->last_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = pc->last_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->last_frame.v_buffer + recon_uvoffset; }
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
else if (xd->mbmi.ref_frame == GOLDEN_FRAME) { // Golden frame reconstruction buffer xd->pre.y_buffer = pc->golden_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = pc->golden_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->golden_frame.v_buffer + recon_uvoffset; } else { // Alternate reference frame reconstruction buffer xd->pre.y_buffer = pc->alt_ref_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = pc->alt_ref_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->alt_ref_frame.v_buffer + recon_uvoffset; } vp8_build_uvmvs(xd, pc->full_pixel); /* if(pbi->common.current_video_frame==0 &&mb_col==1 && mb_row==0) pbi->debugoutput =1; else pbi->debugoutput =0; */ vp8dx_bool_decoder_fill(xd->current_bc); vp8_decode_macroblock(pbi, xd); recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->gf_active_ptr++; // GF useage flag for next MB xd->above_context[Y1CONTEXT] += 4; xd->above_context[UCONTEXT ] += 2; xd->above_context[VCONTEXT ] += 2; xd->above_context[Y2CONTEXT] ++; pbi->current_mb_col_main = mb_col; } // adjust to the next row of mbs vp8_extend_mb_row( &pc->new_frame, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8 ); ++xd->mode_info_context; /* skip prediction column */ pbi->last_mb_row_decoded = mb_row; } static unsigned int read_partition_size(const unsigned char *cx_size) { const unsigned int size = cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); return size; } static void setup_token_decoder(VP8D_COMP *pbi, const unsigned char *cx_data) { int num_part; int i; VP8_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; vp8_reader *bool_decoder;
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
const unsigned char *partition; /* Parse number of token partitions to use */ pc->multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2); num_part = 1 << pc->multi_token_partition; /* Set up pointers to the first partition */ partition = cx_data; bool_decoder = &pbi->bc2; if (num_part > 1) { CHECK_MEM_ERROR(pbi->mbc, vpx_malloc(num_part * sizeof(vp8_reader))); bool_decoder = pbi->mbc; partition += 3 * (num_part - 1); } for (i = 0; i < num_part; i++) { const unsigned char *partition_size_ptr = cx_data + i * 3; unsigned int partition_size; /* Calculate the length of this partition. The last partition * size is implicit. */ if (i < num_part - 1) { partition_size = read_partition_size(partition_size_ptr); } else { partition_size = user_data_end - partition; } if (partition + partition_size > user_data_end) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", i + 1); if (vp8dx_start_decode(bool_decoder, IF_RTCD(&pbi->dboolhuff), partition, partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", i + 1); /* Advance to the next partition */ partition += partition_size; bool_decoder++; } /* Clamp number of decoder threads */ if (pbi->decoding_thread_count > num_part - 1) pbi->decoding_thread_count = num_part - 1; } static void stop_token_decoder(VP8D_COMP *pbi) { int i; VP8_COMMON *pc = &pbi->common; if (pc->multi_token_partition != ONE_PARTITION) { int num_part = (1 << pc->multi_token_partition); for (i = 0; i < num_part; i++) { vp8dx_stop_decode(&pbi->mbc[i]); } vpx_free(pbi->mbc);
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
} else vp8dx_stop_decode(& pbi->bc2); } static void init_frame(VP8D_COMP *pbi) { VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; if (pc->frame_type == KEY_FRAME) { // Various keyframe initializations vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_init_mbmode_probs(pc); vp8_default_coef_probs(pc); vp8_kf_default_bmode_probs(pc->kf_bmode_prob); // reset the segment feature data to 0 with delta coding (Default state). vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); xd->mb_segement_abs_delta = SEGMENT_DELTADATA; // reset the mode ref deltasa for loop filter vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); // All buffers are implicitly updated on key frames. pc->refresh_golden_frame = 1; pc->refresh_alt_ref_frame = 1; pc->copy_buffer_to_gf = 0; pc->copy_buffer_to_arf = 0; // Note that Golden and Altref modes cannot be used on a key frame so // ref_frame_sign_bias[] is undefined and meaningless pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; } else { if (!pc->use_bilinear_mc_filter) pc->mcomp_filter_type = SIXTAP; else pc->mcomp_filter_type = BILINEAR; // To enable choice of different interploation filters if (pc->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16); } } xd->left_context = pc->left_context; xd->mode_info_context = pc->mi; xd->frame_type = pc->frame_type; xd->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; }
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
int vp8_decode_frame(VP8D_COMP *pbi) { vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; const unsigned char *data = (const unsigned char *)pbi->Source; const unsigned char *const data_end = data + pbi->source_sz; int first_partition_length_in_bytes; int mb_row; int i, j, k, l; const int *const mb_feature_data_bits = vp8_mb_feature_data_bits; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; first_partition_length_in_bytes = (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; data += 3; if (data + first_partition_length_in_bytes > data_end) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); vp8_setup_version(pc); if (pc->frame_type == KEY_FRAME) { const int Width = pc->Width; const int Height = pc->Height; // vet via sync code if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); pc->Width = (data[3] | (data[4] << 8)) & 0x3fff; pc->horiz_scale = data[4] >> 6; pc->Height = (data[5] | (data[6] << 8)) & 0x3fff; pc->vert_scale = data[6] >> 6; data += 7; if (Width != pc->Width || Height != pc->Height) { if (pc->Width <= 0) { pc->Width = Width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->Height <= 0) { pc->Height = Height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (vp8_alloc_frame_buffers(&pbi->common, pc->Width, pc->Height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } } if (pc->Width == 0 || pc->Height == 0) { return -1; } init_frame(pbi);
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
if (vp8dx_start_decode(bc, IF_RTCD(&pbi->dboolhuff), data, data_end - data)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); if (pc->frame_type == KEY_FRAME) { pc->clr_type = (YUV_TYPE)vp8_read_bit(bc); pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); } // Is segmentation enabled xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); if (xd->segmentation_enabled) { // Signal whether or not the segmentation map is being explicitly updated this frame. xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); if (xd->update_mb_segmentation_data) { xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc); vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); // For each segmentation feature (Quant and loop filter level) for (i = 0; i < MB_LVL_MAX; i++) { for (j = 0; j < MAX_MB_SEGMENTS; j++) { // Frame level data if (vp8_read_bit(bc)) { xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]); if (vp8_read_bit(bc)) xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j]; } else xd->segment_feature_data[i][j] = 0; } } } if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); // Read the probs used to decode the segment id for each macro block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { // If not explicitly set value is defaulted to 255 by memset above if (vp8_read_bit(bc)) xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } } } // Read the loop filter level and type pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc); pc->filter_level = vp8_read_literal(bc, 6); pc->sharpness_level = vp8_read_literal(bc, 3); // Read in loop filter deltas applied at the MB level based on mode or ref frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { //sign = vp8_read_bit( bc ); xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) // Apply sign xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { //sign = vp8_read_bit( bc ); xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) // Apply sign xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } setup_token_decoder(pbi, data + first_partition_length_in_bytes); xd->current_bc = &pbi->bc2; // Read the default quantizers. { int Q, q_update; Q = vp8_read_literal(bc, 7); // AC 1st order Q = default pc->base_qindex = Q; q_update = 0; pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); if (q_update) vp8cx_init_de_quantizer(pbi); // MB level dequantizer setup mb_init_dequantizer(pbi, &pbi->mb); } // Determine if the golden frame or ARF buffer should be updated and how. // For all non key frames the GF and ARF refresh flags and sign bias // flags must be set explicitly. if (pc->frame_type != KEY_FRAME) { // Should the GF or ARF be updated from the current frame pc->refresh_golden_frame = vp8_read_bit(bc); pc->refresh_alt_ref_frame = vp8_read_bit(bc); // Buffer to buffer copy flags. pc->copy_buffer_to_gf = 0; if (!pc->refresh_golden_frame) pc->copy_buffer_to_gf = vp8_read_literal(bc, 2);
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
pc->copy_buffer_to_arf = 0; if (!pc->refresh_alt_ref_frame) pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); } pc->refresh_entropy_probs = vp8_read_bit(bc); if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, pc->refresh_last_frame, pc->base_qindex); fclose(z); } vp8dx_bool_decoder_fill(bc); { // read coef probability tree for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) { vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l])) { *p = (vp8_prob)vp8_read_literal(bc, 8); } } } vpx_memcpy(&xd->pre, &pc->last_frame, sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->new_frame, sizeof(YV12_BUFFER_CONFIG)); // set up frame new frame for intra coded blocks vp8_setup_intra_recon(&pc->new_frame); vp8_setup_block_dptrs(xd); vp8_build_block_doffsets(xd); // clear out the coeff buffer vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); // Read the mb_no_coeff_skip flag pc->mb_no_coeff_skip = (int)vp8_read_bit(bc); if (pc->frame_type == KEY_FRAME) vp8_kfread_modes(pbi); else
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
vp8_decode_mode_mvs(pbi); // reset since these guys are used as iterators vpx_memset(pc->above_context[Y1CONTEXT], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 4); vpx_memset(pc->above_context[UCONTEXT ], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 2); vpx_memset(pc->above_context[VCONTEXT ], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 2); vpx_memset(pc->above_context[Y2CONTEXT], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols); xd->gf_active_ptr = (signed char *)pc->gf_active_flags; // Point to base of GF active flags data structure vpx_memcpy(&xd->block[0].bmi, &xd->mode_info_context->bmi[0], sizeof(B_MODE_INFO)); if (pbi->b_multithreaded_lf && pbi->common.filter_level != 0) vp8_start_lfthread(pbi); if (pbi->b_multithreaded_rd && pbi->common.multi_token_partition != ONE_PARTITION) { vp8_mtdecode_mb_rows(pbi, xd); } else { int ibc = 0; int num_part = 1 << pbi->common.multi_token_partition; // Decode the individual macro block for (mb_row = 0; mb_row < pc->mb_rows; mb_row++) { if (num_part > 1) { xd->current_bc = & pbi->mbc[ibc]; ibc++; if (ibc == num_part) ibc = 0; } vp8_decode_mb_row(pbi, pc, mb_row, xd); } pbi->last_mb_row_decoded = mb_row; } stop_token_decoder(pbi); vp8dx_stop_decode(bc); // vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); // If this was a kf or Gf note the Q used if ((pc->frame_type == KEY_FRAME) || (pc->refresh_golden_frame) || pbi->common.refresh_alt_ref_frame) pc->last_kf_gf_q = pc->base_qindex; if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif
981982983984
return 0; }