• Eskil Abrahamsen Blomfeldt's avatar
    Fix pixel bleed in BorderImage · a9238292
    Eskil Abrahamsen Blomfeldt authored
    
    Keeping all patches of the border image in the same texture
    with different sample points can cause parts of the border
    to bleed over to the center patch. To rectify this, we
    create a separate texture for each of the nine patches we
    need, and separate image nodes.
    
    To avoid applying antialiasing on the interior edges of the
    border image, we introduce new antialiasing flags which can
    be used to specify precisely which edges of the image should
    be antialiased.
    
    [ChangeLog][BorderImage] Fixed possible pixel bleed between
    border patches and center patch in BorderImage.
    
    Change-Id: Icc292b3969217320eecca99e79675316c42eab08
    Task-number: QTBUG-35838
    Reviewed-by: default avatarGunnar Sletta <gunnar@sletta.org>
    a9238292
vp9_segmentation.c 10.23 KiB
/*
 *  Copyright (c) 2012 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <limits.h>
#include "vpx_mem/vpx_mem.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_tile_common.h"
void vp9_enable_segmentation(VP9_PTR ptr) {
  VP9_COMP *cpi = (VP9_COMP *)ptr;
  cpi->mb.e_mbd.seg.enabled = 1;
  cpi->mb.e_mbd.seg.update_map = 1;
  cpi->mb.e_mbd.seg.update_data = 1;
void vp9_disable_segmentation(VP9_PTR ptr) {
  VP9_COMP *cpi = (VP9_COMP *)ptr;
  cpi->mb.e_mbd.seg.enabled = 0;
void vp9_set_segmentation_map(VP9_PTR ptr,
                              unsigned char *segmentation_map) {
  VP9_COMP *cpi = (VP9_COMP *)(ptr);
  // Copy in the new segmentation map
  vpx_memcpy(cpi->segmentation_map, segmentation_map,
             (cpi->common.mi_rows * cpi->common.mi_cols));
  // Signal that the map should be updated.
  cpi->mb.e_mbd.seg.update_map = 1;
  cpi->mb.e_mbd.seg.update_data = 1;
void vp9_set_segment_data(VP9_PTR ptr,
                          signed char *feature_data,
                          unsigned char abs_delta) {
  VP9_COMP *cpi = (VP9_COMP *)(ptr);
  cpi->mb.e_mbd.seg.abs_delta = abs_delta;
  vpx_memcpy(cpi->mb.e_mbd.seg.feature_data, feature_data,
             sizeof(cpi->mb.e_mbd.seg.feature_data));
  // TBD ?? Set the feature mask
  // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0,
  //            sizeof(cpi->mb.e_mbd.segment_feature_mask));
// Based on set of segment counts calculate a probability tree
static void calc_segtree_probs(int *segcounts, vp9_prob *segment_tree_probs) {
  // Work out probabilities of each segment
  const int c01 = segcounts[0] + segcounts[1];
  const int c23 = segcounts[2] + segcounts[3];
  const int c45 = segcounts[4] + segcounts[5];
  const int c67 = segcounts[6] + segcounts[7];
  segment_tree_probs[0] = get_binary_prob(c01 + c23, c45 + c67);
  segment_tree_probs[1] = get_binary_prob(c01, c23);
  segment_tree_probs[2] = get_binary_prob(c45, c67);
  segment_tree_probs[3] = get_binary_prob(segcounts[0], segcounts[1]);
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
segment_tree_probs[4] = get_binary_prob(segcounts[2], segcounts[3]); segment_tree_probs[5] = get_binary_prob(segcounts[4], segcounts[5]); segment_tree_probs[6] = get_binary_prob(segcounts[6], segcounts[7]); } // Based on set of segment counts and probabilities calculate a cost estimate static int cost_segmap(int *segcounts, vp9_prob *probs) { const int c01 = segcounts[0] + segcounts[1]; const int c23 = segcounts[2] + segcounts[3]; const int c45 = segcounts[4] + segcounts[5]; const int c67 = segcounts[6] + segcounts[7]; const int c0123 = c01 + c23; const int c4567 = c45 + c67; // Cost the top node of the tree int cost = c0123 * vp9_cost_zero(probs[0]) + c4567 * vp9_cost_one(probs[0]); // Cost subsequent levels if (c0123 > 0) { cost += c01 * vp9_cost_zero(probs[1]) + c23 * vp9_cost_one(probs[1]); if (c01 > 0) cost += segcounts[0] * vp9_cost_zero(probs[3]) + segcounts[1] * vp9_cost_one(probs[3]); if (c23 > 0) cost += segcounts[2] * vp9_cost_zero(probs[4]) + segcounts[3] * vp9_cost_one(probs[4]); } if (c4567 > 0) { cost += c45 * vp9_cost_zero(probs[2]) + c67 * vp9_cost_one(probs[2]); if (c45 > 0) cost += segcounts[4] * vp9_cost_zero(probs[5]) + segcounts[5] * vp9_cost_one(probs[5]); if (c67 > 0) cost += segcounts[6] * vp9_cost_zero(probs[6]) + segcounts[7] * vp9_cost_one(probs[6]); } return cost; } static void count_segs(VP9_COMP *cpi, MODE_INFO *mi, int *no_pred_segcounts, int (*temporal_predictor_count)[2], int *t_unpred_seg_counts, int bw, int bh, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; int segment_id; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; segment_id = mi->mbmi.segment_id; xd->mode_info_context = mi; set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); // Count the number of hits on each segment with no prediction no_pred_segcounts[segment_id]++; // Temporal prediction not allowed on key frames if (cm->frame_type != KEY_FRAME) { const BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type; // Test to see if the segment id matches the predicted value. const int pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map,
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
bsize, mi_row, mi_col); const int pred_flag = pred_segment_id == segment_id; const int pred_context = vp9_get_pred_context_seg_id(xd); // Store the prediction status for this mb and update counts // as appropriate vp9_set_pred_flag_seg_id(cm, bsize, mi_row, mi_col, pred_flag); temporal_predictor_count[pred_context][pred_flag]++; if (!pred_flag) // Update the "unpredicted" segment count t_unpred_seg_counts[segment_id]++; } } static void count_segs_sb(VP9_COMP *cpi, MODE_INFO *mi, int *no_pred_segcounts, int (*temporal_predictor_count)[2], int *t_unpred_seg_counts, int mi_row, int mi_col, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int bwl, bhl; const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; bwl = mi_width_log2(mi->mbmi.sb_type); bhl = mi_height_log2(mi->mbmi.sb_type); if (bwl == bsl && bhl == bsl) { count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1 << bsl, 1 << bsl, mi_row, mi_col); } else if (bwl == bsl && bhl < bsl) { count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1 << bsl, bs, mi_row, mi_col); count_segs(cpi, mi + bs * mis, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, 1 << bsl, bs, mi_row + bs, mi_col); } else if (bwl < bsl && bhl == bsl) { count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, 1 << bsl, mi_row, mi_col); count_segs(cpi, mi + bs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, bs, 1 << bsl, mi_row, mi_col + bs); } else { BLOCK_SIZE_TYPE subsize; int n; assert(bwl < bsl && bhl < bsl); if (bsize == BLOCK_64X64) { subsize = BLOCK_32X32; } else if (bsize == BLOCK_32X32) { subsize = BLOCK_16X16; } else { assert(bsize == BLOCK_16X16); subsize = BLOCK_8X8; } for (n = 0; n < 4; n++) { const int y_idx = n >> 1, x_idx = n & 0x01; count_segs_sb(cpi, mi + y_idx * bs * mis + x_idx * bs, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, mi_row + y_idx * bs, mi_col + x_idx * bs, subsize); } } }
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; struct segmentation *seg = &cpi->mb.e_mbd.seg; int no_pred_cost; int t_pred_cost = INT_MAX; int i, tile_col, mi_row, mi_col; int temporal_predictor_count[PREDICTION_PROBS][2]; int no_pred_segcounts[MAX_SEGMENTS]; int t_unpred_seg_counts[MAX_SEGMENTS]; vp9_prob no_pred_tree[SEG_TREE_PROBS]; vp9_prob t_pred_tree[SEG_TREE_PROBS]; vp9_prob t_nopred_prob[PREDICTION_PROBS]; const int mis = cm->mode_info_stride; MODE_INFO *mi_ptr, *mi; // Set default state for the segment tree probabilities and the // temporal coding probabilities vpx_memset(seg->tree_probs, 255, sizeof(seg->tree_probs)); vpx_memset(seg->pred_probs, 255, sizeof(seg->pred_probs)); vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts)); vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts)); vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count)); // First of all generate stats regarding how well the last segment map // predicts this one for (tile_col = 0; tile_col < 1 << cm->log2_tile_cols; tile_col++) { vp9_get_tile_col_offsets(cm, tile_col); mi_ptr = cm->mi + cm->cur_tile_mi_col_start; for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) { mi = mi_ptr; for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end; mi_col += 8, mi += 8) count_segs_sb(cpi, mi, no_pred_segcounts, temporal_predictor_count, t_unpred_seg_counts, mi_row, mi_col, BLOCK_SIZE_SB64X64); } } // Work out probability tree for coding segments without prediction // and the cost. calc_segtree_probs(no_pred_segcounts, no_pred_tree); no_pred_cost = cost_segmap(no_pred_segcounts, no_pred_tree); // Key frames cannot use temporal prediction if (cm->frame_type != KEY_FRAME) { // Work out probability tree for coding those segments not // predicted using the temporal method and the cost. calc_segtree_probs(t_unpred_seg_counts, t_pred_tree); t_pred_cost = cost_segmap(t_unpred_seg_counts, t_pred_tree); // Add in the cost of the signalling for each prediction context for (i = 0; i < PREDICTION_PROBS; i++) { const int count0 = temporal_predictor_count[i][0]; const int count1 = temporal_predictor_count[i][1]; t_nopred_prob[i] = get_binary_prob(count0, count1); // Add in the predictor signaling cost t_pred_cost += count0 * vp9_cost_zero(t_nopred_prob[i]) + count1 * vp9_cost_one(t_nopred_prob[i]); } } // Now choose which coding method to use.
281282283284285286287288289290
if (t_pred_cost < no_pred_cost) { seg->temporal_update = 1; vpx_memcpy(seg->tree_probs, t_pred_tree, sizeof(t_pred_tree)); vpx_memcpy(seg->pred_probs, t_nopred_prob, sizeof(t_nopred_prob)); } else { seg->temporal_update = 0; vpx_memcpy(seg->tree_probs, no_pred_tree, sizeof(no_pred_tree)); } }