An error occurred while loading the file. Please try again.
-
Jan Arve Saether authored
Do not bound explicit preferred size with implicit sizes. This means that if Layout.preferredWidth was *explicitly* set to 50, and Layout.maximumWidth had the implicit value 20, the effective maximum width would be expanded to 50 in order to not disregard the explicitly set preferred width. (covered by the tag "expandMaxToExplicitPref" in test_sizeHint) Note that this doesn't break any autotests, but the row layout autotest was slightly changed to be able to add the new test cases. This should make the behavior match the behavior of QGraphicsGridLayout and QGraphicsLinearLayout Change-Id: Ia23c8ef909827f14349906c003c72bb83689ef9a Reviewed-by:
Caroline Chao <caroline.chao@digia.com> Reviewed-by:
Jens Bache-Wiig <jens.bache-wiig@digia.com>
4051e698
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/encoder/vp9_onyx_int.h"
void vp9_ssim_parms_16x16_c(uint8_t *s, int sp, uint8_t *r,
int rp, unsigned long *sum_s, unsigned long *sum_r,
unsigned long *sum_sq_s, unsigned long *sum_sq_r,
unsigned long *sum_sxr) {
int i, j;
for (i = 0; i < 16; i++, s += sp, r += rp) {
for (j = 0; j < 16; j++) {
*sum_s += s[j];
*sum_r += r[j];
*sum_sq_s += s[j] * s[j];
*sum_sq_r += r[j] * r[j];
*sum_sxr += s[j] * r[j];
}
}
}
void vp9_ssim_parms_8x8_c(uint8_t *s, int sp, uint8_t *r, int rp,
unsigned long *sum_s, unsigned long *sum_r,
unsigned long *sum_sq_s, unsigned long *sum_sq_r,
unsigned long *sum_sxr) {
int i, j;
for (i = 0; i < 8; i++, s += sp, r += rp) {
for (j = 0; j < 8; j++) {
*sum_s += s[j];
*sum_r += r[j];
*sum_sq_s += s[j] * s[j];
*sum_sq_r += r[j] * r[j];
*sum_sxr += s[j] * r[j];
}
}
}
const static int64_t cc1 = 26634; // (64^2*(.01*255)^2
const static int64_t cc2 = 239708; // (64^2*(.03*255)^2
static double similarity(unsigned long sum_s, unsigned long sum_r,
unsigned long sum_sq_s, unsigned long sum_sq_r,
unsigned long sum_sxr, int count) {
int64_t ssim_n, ssim_d;
int64_t c1, c2;
// scale the constants by number of pixels
c1 = (cc1 * count * count) >> 12;
c2 = (cc2 * count * count) >> 12;
ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr -
(int64_t) 2 * sum_s * sum_r + c2);
ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
(int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2);
return ssim_n * 1.0 / ssim_d;
}
static double ssim_16x16(uint8_t *s, int sp, uint8_t *r, int rp) {
unsigned long sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
vp9_ssim_parms_16x16(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
&sum_sxr);
return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 256);
}
static double ssim_8x8(uint8_t *s, int sp, uint8_t *r, int rp) {
unsigned long sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
vp9_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
&sum_sxr);
return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64);
}
// We are using a 8x8 moving window with starting location of each 8x8 window
// on the 4x4 pixel grid. Such arrangement allows the windows to overlap
// block boundaries to penalize blocking artifacts.
double vp9_ssim2(uint8_t *img1, uint8_t *img2, int stride_img1,
int stride_img2, int width, int height) {
int i, j;
int samples = 0;
double ssim_total = 0;
// sample point start with each 4x4 location
for (i = 0; i <= height - 8;
i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
for (j = 0; j <= width - 8; j += 4) {
double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
ssim_total += v;
samples++;
}
}
ssim_total /= samples;
return ssim_total;
}
double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
int lumamask, double *weight) {
double a, b, c;
double ssimv;
a = vp9_ssim2(source->y_buffer, dest->y_buffer,
source->y_stride, dest->y_stride,
source->y_crop_width, source->y_crop_height);
b = vp9_ssim2(source->u_buffer, dest->u_buffer,
source->uv_stride, dest->uv_stride,
source->uv_crop_width, source->uv_crop_height);
c = vp9_ssim2(source->v_buffer, dest->v_buffer,
source->uv_stride, dest->uv_stride,
source->uv_crop_width, source->uv_crop_height);
ssimv = a * .8 + .1 * (b + c);
*weight = 1;
return ssimv;
}
double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
double *ssim_y, double *ssim_u, double *ssim_v) {
double ssim_all = 0;
double a, b, c;
a = vp9_ssim2(source->y_buffer, dest->y_buffer,
source->y_stride, dest->y_stride,
source->y_crop_width, source->y_crop_height);
b = vp9_ssim2(source->u_buffer, dest->u_buffer,
source->uv_stride, dest->uv_stride,
source->uv_crop_width, source->uv_crop_height);
c = vp9_ssim2(source->v_buffer, dest->v_buffer,
source->uv_stride, dest->uv_stride,
141142143144145146147148149
source->uv_crop_width, source->uv_crop_height);
*ssim_y = a;
*ssim_u = b;
*ssim_v = c;
ssim_all = (a * 4 + b + c) / 6;
return ssim_all;
}