• Jarkko Koivikko's avatar
    Add full screen input mode for super wide screens · ad44e00c
    Jarkko Koivikko authored
    
    In full screen mode the virtual keyboard replicates the contents of
    the focused input field to full screen input field located on top
    of keyboard.
    
    This mode can be activated by VirtualKeyboardSettings.fullScreenMode.
    
    [ChangeLog] Added full screen input mode for super wide screens.
    
    Change-Id: Ib2650c04767fb0945cc2bedc5b1801d254a15a41
    Reviewed-by: default avatarMitch Curtis <mitch.curtis@qt.io>
    ad44e00c
vp9_encodeframe.c 122.49 KiB
/*
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./vp9_rtcd.h"
#include "./vpx_config.h"
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_mvref_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_systemdependent.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9/encoder/vp9_aq_complexity.h"
#include "vp9/encoder/vp9_aq_cyclicrefresh.h"
#include "vp9/encoder/vp9_aq_variance.h"
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_extend.h"
#include "vp9/encoder/vp9_pickmode.h"
#include "vp9/encoder/vp9_rdopt.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/encoder/vp9_tokenize.h"
#define GF_ZEROMV_ZBIN_BOOST 0
#define LF_ZEROMV_ZBIN_BOOST 0
#define MV_ZBIN_BOOST        0
#define SPLIT_MV_ZBIN_BOOST  0
#define INTRA_ZBIN_BOOST     0
static INLINE uint8_t *get_sb_index(MACROBLOCK *x, BLOCK_SIZE subsize) {
  switch (subsize) {
    case BLOCK_64X64:
    case BLOCK_64X32:
    case BLOCK_32X64:
    case BLOCK_32X32:
      return &x->sb_index;
    case BLOCK_32X16:
    case BLOCK_16X32:
    case BLOCK_16X16:
      return &x->mb_index;
    case BLOCK_16X8:
    case BLOCK_8X16:
    case BLOCK_8X8:
      return &x->b_index;
    case BLOCK_8X4:
    case BLOCK_4X8:
    case BLOCK_4X4:
      return &x->ab_index;
    default:
7172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
assert(0); return NULL; } } static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE bsize); static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x); // activity_avg must be positive, or flat regions could get a zero weight // (infinite lambda), which confounds analysis. // This also avoids the need for divide by zero checks in // vp9_activity_masking(). #define ACTIVITY_AVG_MIN 64 // Motion vector component magnitude threshold for defining fast motion. #define FAST_MOTION_MV_THRESH 24 // This is used as a reference when computing the source variance for the // purposes of activity masking. // Eventually this should be replaced by custom no-reference routines, // which will be faster. static const uint8_t VP9_VAR_OFFS[64] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { unsigned int var, sse; var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, VP9_VAR_OFFS, 0, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static unsigned int get_sby_perpixel_diff_variance(VP9_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bs) { const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); int offset = (mi_row * MI_SIZE) * yv12->y_stride + (mi_col * MI_SIZE); unsigned int var, sse; var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, yv12->y_buffer + offset, yv12->y_stride, &sse); return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); } static BLOCK_SIZE get_rd_var_based_fixed_partition(VP9_COMP *cpi, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb, mi_row, mi_col, BLOCK_64X64); if (var < 8) return BLOCK_64X64; else if (var < 128) return BLOCK_32X32; else if (var < 2048)
141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
return BLOCK_16X16; else return BLOCK_8X8; } static BLOCK_SIZE get_nonrd_var_based_fixed_partition(VP9_COMP *cpi, int mi_row, int mi_col) { unsigned int var = get_sby_perpixel_diff_variance(cpi, &cpi->mb, mi_row, mi_col, BLOCK_64X64); if (var < 4) return BLOCK_64X64; else if (var < 10) return BLOCK_32X32; else return BLOCK_16X16; } // Lighter version of set_offsets that only sets the mode info // pointers. static INLINE void set_modeinfo_offsets(VP9_COMMON *const cm, MACROBLOCKD *const xd, int mi_row, int mi_col) { const int idx_str = xd->mode_info_stride * mi_row + mi_col; xd->mi_8x8 = cm->mi_grid_visible + idx_str; xd->mi_8x8[0] = cm->mi + idx_str; } static int is_block_in_mb_map(VP9_COMP *cpi, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; const int mb_rows = cm->mb_rows; const int mb_cols = cm->mb_cols; const int mb_row = mi_row >> 1; const int mb_col = mi_col >> 1; const int mb_width = num_8x8_blocks_wide_lookup[bsize] >> 1; const int mb_height = num_8x8_blocks_high_lookup[bsize] >> 1; int r, c; if (bsize <= BLOCK_16X16) { return cpi->active_map[mb_row * mb_cols + mb_col]; } for (r = 0; r < mb_height; ++r) { for (c = 0; c < mb_width; ++c) { int row = mb_row + r; int col = mb_col + c; if (row >= mb_rows || col >= mb_cols) continue; if (cpi->active_map[row * mb_cols + col]) return 1; } } return 0; } static void set_offsets(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; const int mb_row = mi_row >> 1; const int mb_col = mi_col >> 1; const int idx_map = mb_row * cm->mb_cols + mb_col; const struct segmentation *const seg = &cm->seg; set_skip_context(xd, xd->above_context, xd->left_context, mi_row, mi_col);
211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280
// Activity map pointer x->mb_activity_ptr = &cpi->mb_activity_map[idx_map]; if (cpi->active_map_enabled && !x->e_mbd.lossless) { x->in_active_map = is_block_in_mb_map(cpi, mi_row, mi_col, bsize); } else { x->in_active_map = 1; } set_modeinfo_offsets(cm, xd, mi_row, mi_col); mbmi = &xd->mi_8x8[0]->mbmi; // Set up destination pointers. vp9_setup_dst_planes(xd, get_frame_new_buffer(cm), mi_row, mi_col); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, cm->mi_cols); // Set up source buffers. vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); // R/D setup. x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; // Setup segment ID. if (seg->enabled) { if (cpi->oxcf.aq_mode != VARIANCE_AQ) { const uint8_t *const map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); } vp9_init_plane_quantizers(cpi, x); if (seg->enabled && cpi->seg0_cnt > 0 && !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME) && vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) { cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt; } else { const int y = mb_row & ~3; const int x = mb_col & ~3; const int p16 = ((mb_row & 1) << 1) + (mb_col & 1); const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1); const int tile_progress = tile->mi_col_start * cm->mb_rows >> 1; const int mb_cols = (tile->mi_col_end - tile->mi_col_start) >> 1; cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs; } x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id]; } else { mbmi->segment_id = 0; x->encode_breakout = cpi->encode_breakout; } } static void duplicate_mode_info_in_sb(VP9_COMMON * const cm, MACROBLOCKD *const xd,
281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
int mi_row, int mi_col, BLOCK_SIZE bsize) { const int block_width = num_8x8_blocks_wide_lookup[bsize]; const int block_height = num_8x8_blocks_high_lookup[bsize]; const int mis = xd->mode_info_stride; int i, j; for (j = 0; j < block_height; ++j) for (i = 0; i < block_width; ++i) { if (mi_row + j < cm->mi_rows && mi_col + i < cm->mi_cols) xd->mi_8x8[j * mis + i] = xd->mi_8x8[0]; } } static void set_block_size(VP9_COMP * const cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; set_modeinfo_offsets(&cpi->common, xd, mi_row, mi_col); xd->mi_8x8[0]->mbmi.sb_type = bsize; duplicate_mode_info_in_sb(&cpi->common, xd, mi_row, mi_col, bsize); } } typedef struct { int64_t sum_square_error; int64_t sum_error; int count; int variance; } var; typedef struct { var none; var horz[2]; var vert[2]; } partition_variance; typedef struct { partition_variance part_variances; var split[4]; } v8x8; typedef struct { partition_variance part_variances; v8x8 split[4]; } v16x16; typedef struct { partition_variance part_variances; v16x16 split[4]; } v32x32; typedef struct { partition_variance part_variances; v32x32 split[4]; } v64x64; typedef struct { partition_variance *part_variances; var *split[4]; } variance_node; typedef enum { V16X16, V32X32, V64X64, } TREE_LEVEL;
351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420
static void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) { int i; switch (bsize) { case BLOCK_64X64: { v64x64 *vt = (v64x64 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_32X32: { v32x32 *vt = (v32x32 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_16X16: { v16x16 *vt = (v16x16 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].part_variances.none; break; } case BLOCK_8X8: { v8x8 *vt = (v8x8 *) data; node->part_variances = &vt->part_variances; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; break; } default: { assert(0); } } } // Set variance values given sum square error, sum error, count. static void fill_variance(int64_t s2, int64_t s, int c, var *v) { v->sum_square_error = s2; v->sum_error = s; v->count = c; if (c > 0) v->variance = (int)(256 * (v->sum_square_error - v->sum_error * v->sum_error / v->count) / v->count); else v->variance = 0; } void sum_2_variances(const var *a, const var *b, var *r) { fill_variance(a->sum_square_error + b->sum_square_error, a->sum_error + b->sum_error, a->count + b->count, r); } static void fill_variance_tree(void *data, BLOCK_SIZE bsize) { variance_node node; tree_to_node(data, bsize, &node); sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], &node.part_variances->none); } static int set_vt_partitioning(VP9_COMP *cpi, void *data, const TileInfo *const tile, BLOCK_SIZE bsize,
421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490
int mi_row, int mi_col, int mi_size) { VP9_COMMON * const cm = &cpi->common; variance_node vt; const int block_width = num_8x8_blocks_wide_lookup[bsize]; const int block_height = num_8x8_blocks_high_lookup[bsize]; // TODO(debargha): Choose this more intelligently. const int64_t threshold_multiplier = 25; int64_t threshold = threshold_multiplier * cpi->common.base_qindex; assert(block_height == block_width); tree_to_node(data, bsize, &vt); // Split none is available only if we have more than half a block size // in width and height inside the visible image. if (mi_col + block_width / 2 < cm->mi_cols && mi_row + block_height / 2 < cm->mi_rows && vt.part_variances->none.variance < threshold) { set_block_size(cpi, tile, mi_row, mi_col, bsize); return 1; } // Vertical split is available on all but the bottom border. if (mi_row + block_height / 2 < cm->mi_rows && vt.part_variances->vert[0].variance < threshold && vt.part_variances->vert[1].variance < threshold) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_VERT); set_block_size(cpi, tile, mi_row, mi_col, subsize); set_block_size(cpi, tile, mi_row, mi_col + block_width / 2, subsize); return 1; } // Horizontal split is available on all but the right border. if (mi_col + block_width / 2 < cm->mi_cols && vt.part_variances->horz[0].variance < threshold && vt.part_variances->horz[1].variance < threshold) { BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_HORZ); set_block_size(cpi, tile, mi_row, mi_col, subsize); set_block_size(cpi, tile, mi_row + block_height / 2, mi_col, subsize); return 1; } return 0; } // TODO(debargha): Fix this function and make it work as expected. static void choose_partitioning(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK *x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; int i, j, k; v64x64 vt; uint8_t *s; const uint8_t *d; int sp; int dp; int pixels_wide = 64, pixels_high = 64; int_mv nearest_mv, near_mv; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); const struct scale_factors *const sf = &cm->frame_refs[LAST_FRAME - 1].sf; vp9_zero(vt); set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0)
491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560
pixels_high += (xd->mb_to_bottom_edge >> 3); s = x->plane[0].src.buf; sp = x->plane[0].src.stride; if (cm->frame_type != KEY_FRAME) { vp9_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf); xd->mi_8x8[0]->mbmi.ref_frame[0] = LAST_FRAME; xd->mi_8x8[0]->mbmi.sb_type = BLOCK_64X64; vp9_find_best_ref_mvs(xd, cm->allow_high_precision_mv, xd->mi_8x8[0]->mbmi.ref_mvs[LAST_FRAME], &nearest_mv, &near_mv); xd->mi_8x8[0]->mbmi.mv[0] = nearest_mv; vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64); d = xd->plane[0].dst.buf; dp = xd->plane[0].dst.stride; } else { d = VP9_VAR_OFFS; dp = 0; } // Fill in the entire tree of 8x8 variances for splits. for (i = 0; i < 4; i++) { const int x32_idx = ((i & 1) << 5); const int y32_idx = ((i >> 1) << 5); for (j = 0; j < 4; j++) { const int x16_idx = x32_idx + ((j & 1) << 4); const int y16_idx = y32_idx + ((j >> 1) << 4); v16x16 *vst = &vt.split[i].split[j]; for (k = 0; k < 4; k++) { int x_idx = x16_idx + ((k & 1) << 3); int y_idx = y16_idx + ((k >> 1) << 3); unsigned int sse = 0; int sum = 0; if (x_idx < pixels_wide && y_idx < pixels_high) vp9_get_sse_sum_8x8(s + y_idx * sp + x_idx, sp, d + y_idx * dp + x_idx, dp, &sse, &sum); fill_variance(sse, sum, 64, &vst->split[k].part_variances.none); } } } // Fill the rest of the variance tree by summing split partition values. for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16); } fill_variance_tree(&vt.split[i], BLOCK_32X32); } fill_variance_tree(&vt, BLOCK_64X64); // Now go through the entire structure, splitting every block size until // we get to one that's got a variance lower than our threshold, or we // hit 8x8. if (!set_vt_partitioning(cpi, &vt, tile, BLOCK_64X64, mi_row, mi_col, 8)) { for (i = 0; i < 4; ++i) { const int x32_idx = ((i & 1) << 2); const int y32_idx = ((i >> 1) << 2); if (!set_vt_partitioning(cpi, &vt.split[i], tile, BLOCK_32X32, (mi_row + y32_idx), (mi_col + x32_idx), 4)) { for (j = 0; j < 4; ++j) { const int x16_idx = ((j & 1) << 1); const int y16_idx = ((j >> 1) << 1); // NOTE: This is a temporary hack to disable 8x8 partitions, // since it works really bad - possibly due to a bug #define DISABLE_8X8_VAR_BASED_PARTITION #ifdef DISABLE_8X8_VAR_BASED_PARTITION
561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630
if (mi_row + y32_idx + y16_idx + 1 < cm->mi_rows && mi_row + x32_idx + x16_idx + 1 < cm->mi_cols) { set_block_size(cpi, tile, (mi_row + y32_idx + y16_idx), (mi_col + x32_idx + x16_idx), BLOCK_16X16); } else { for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); set_block_size(cpi, tile, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); } } #else if (!set_vt_partitioning(cpi, &vt.split[i].split[j], tile, BLOCK_16X16, (mi_row + y32_idx + y16_idx), (mi_col + x32_idx + x16_idx), 2)) { for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); set_block_size(cpi, tile, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx), BLOCK_8X8); } } #endif } } } } } // Original activity measure from Tim T's code. static unsigned int tt_activity_measure(MACROBLOCK *x) { unsigned int sse; // TODO: This could also be done over smaller areas (8x8), but that would // require extensive changes elsewhere, as lambda is assumed to be fixed // over an entire MB in most of the code. // Another option is to compute four 8x8 variances, and pick a single // lambda using a non-linear combination (e.g., the smallest, or second // smallest, etc.). const unsigned int act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride, VP9_VAR_OFFS, 0, &sse) << 4; // If the region is flat, lower the activity some more. return act < (8 << 12) ? MIN(act, 5 << 12) : act; } // Stub for alternative experimental activity measures. static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) { return vp9_encode_intra(x, use_dc_pred); } // Measure the activity of the current macroblock // What we measure here is TBD so abstracted to this function #define ALT_ACT_MEASURE 1 static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) { unsigned int mb_activity; if (ALT_ACT_MEASURE) { const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); // Or use and alternative. mb_activity = alt_activity_measure(x, use_dc_pred); } else {
631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
// Original activity measure from Tim T's code. mb_activity = tt_activity_measure(x); } return MAX(mb_activity, ACTIVITY_AVG_MIN); } // Calculate an "average" mb activity value for the frame #define ACT_MEDIAN 0 static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) { #if ACT_MEDIAN // Find median: Simple n^2 algorithm for experimentation { unsigned int median; unsigned int i, j; unsigned int *sortlist; unsigned int tmp; // Create a list to sort to CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); // Copy map to sort list vpx_memcpy(sortlist, cpi->mb_activity_map, sizeof(unsigned int) * cpi->common.MBs); // Ripple each value down to its correct position for (i = 1; i < cpi->common.MBs; i ++) { for (j = i; j > 0; j --) { if (sortlist[j] < sortlist[j - 1]) { // Swap values tmp = sortlist[j - 1]; sortlist[j - 1] = sortlist[j]; sortlist[j] = tmp; } else { break; } } } // Even number MBs so estimate median as mean of two either side. median = (1 + sortlist[cpi->common.MBs >> 1] + sortlist[(cpi->common.MBs >> 1) + 1]) >> 1; cpi->activity_avg = median; vpx_free(sortlist); } #else // Simple mean for now cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs); #endif // ACT_MEDIAN if (cpi->activity_avg < ACTIVITY_AVG_MIN) cpi->activity_avg = ACTIVITY_AVG_MIN; // Experimental code: return fixed value normalized for several clips if (ALT_ACT_MEASURE) cpi->activity_avg = 100000; } #define USE_ACT_INDEX 0 #define OUTPUT_NORM_ACT_STATS 0 #if USE_ACT_INDEX // Calculate an activity index for each mb static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) { VP9_COMMON *const cm = &cpi->common; int mb_row, mb_col;
701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
int64_t act; int64_t a; int64_t b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n%12d\n", cpi->activity_avg); #endif // Reset pointers to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; // Calculate normalized mb activity number. for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Read activity from the map act = *(x->mb_activity_ptr); // Calculate a normalized activity number a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (b >= a) *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; else *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_activity_ptr)); #endif // Increment activity map pointers x->mb_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } #endif // USE_ACT_INDEX // Loop through all MBs. Note activity of each, average activity and // calculate a normalized activity for each static void build_activity_map(VP9_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *xd = &x->e_mbd; VP9_COMMON *const cm = &cpi->common; #if ALT_ACT_MEASURE YV12_BUFFER_CONFIG *new_yv12 = get_frame_new_buffer(cm); int recon_yoffset; int recon_y_stride = new_yv12->y_stride; #endif int mb_row, mb_col; unsigned int mb_activity; int64_t activity_sum = 0; x->mb_activity_ptr = cpi->mb_activity_map; // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { #if ALT_ACT_MEASURE // reset above block coeffs xd->up_available = (mb_row != 0);
771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840
recon_yoffset = (mb_row * recon_y_stride * 16); #endif // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { #if ALT_ACT_MEASURE xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; xd->left_available = (mb_col != 0); recon_yoffset += 16; #endif // measure activity mb_activity = mb_activity_measure(x, mb_row, mb_col); // Keep frame sum activity_sum += mb_activity; // Store MB level activity details. *x->mb_activity_ptr = mb_activity; // Increment activity map pointer x->mb_activity_ptr++; // adjust to the next column of source macroblocks x->plane[0].src.buf += 16; } // adjust to the next row of mbs x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; } // Calculate an "average" MB activity calc_av_activity(cpi, activity_sum); #if USE_ACT_INDEX // Calculate an activity index number of each mb calc_activity_index(cpi, x); #endif } // Macroblock activity masking static void activity_masking(VP9_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #else const int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. const int64_t a = act + (2 * cpi->activity_avg); const int64_t b = (2 * act) + cpi->activity_avg; x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #endif // Activity based Zbin adjustment adjust_act_zbin(cpi, x); } static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, BLOCK_SIZE bsize, int output_enabled) { int i, x_idx, y; VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane;
841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
MODE_INFO *mi = &ctx->mic; MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; MODE_INFO *mi_addr = xd->mi_8x8[0]; const struct segmentation *const seg = &cm->seg; const int mis = cm->mode_info_stride; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; int max_plane; assert(mi->mbmi.sb_type == bsize); *mi_addr = *mi; // For in frame adaptive Q, check for reseting the segment_id and updating // the cyclic refresh map. if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled && output_enabled) { vp9_cyclic_refresh_update_segment(cpi, &xd->mi_8x8[0]->mbmi, mi_row, mi_col, bsize, 1); vp9_init_plane_quantizers(cpi, x); } max_plane = is_inter_block(mbmi) ? MAX_MB_PLANE : 1; for (i = 0; i < max_plane; ++i) { p[i].coeff = ctx->coeff_pbuf[i][1]; p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; p[i].eobs = ctx->eobs_pbuf[i][1]; } for (i = max_plane; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][2]; p[i].qcoeff = ctx->qcoeff_pbuf[i][2]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][2]; p[i].eobs = ctx->eobs_pbuf[i][2]; } // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { xd->mi_8x8[x_idx + y * mis] = mi_addr; } if (cpi->oxcf.aq_mode) vp9_init_plane_quantizers(cpi, x); // FIXME(rbultje) I'm pretty sure this should go to the end of this block // (i.e. after the output_enabled) if (bsize < BLOCK_32X32) { if (bsize < BLOCK_16X16) ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8]; ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16]; } if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } x->skip = ctx->skip; vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk, sizeof(uint8_t) * ctx->num_4x4_blk); if (!output_enabled) return;
911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980
if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { for (i = 0; i < TX_MODES; i++) cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i]; } #if CONFIG_INTERNAL_STATS if (frame_is_intra_only(cm)) { static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, }; ++cpi->mode_chosen_counts[kf_mode_index[mbmi->mode]]; } else { // Note how often each mode chosen as best ++cpi->mode_chosen_counts[ctx->best_mode_index]; } #endif if (!frame_is_intra_only(cm)) { if (is_inter_block(mbmi)) { vp9_update_mv_count(cm, xd); if (cm->interp_filter == SWITCHABLE) { const int ctx = vp9_get_pred_context_switchable_interp(xd); ++cm->counts.switchable_interp[ctx][mbmi->interp_filter]; } } cpi->rd_comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; cpi->rd_comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; cpi->rd_comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) cpi->rd_filter_diff[i] += ctx->best_filter_diff[i]; } } void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col) { uint8_t *const buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, src->alpha_buffer}; const int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, src->alpha_stride}; int i; // Set current frame pointer. x->e_mbd.cur_buf = src; for (i = 0; i < MAX_MB_PLANE; i++) setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mi_row, mi_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } static void rd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, int *totalrate, int64_t *totaldist, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi;
981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050
struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.aq_mode; int i, orig_rdmult; double rdmult_ratio; vp9_clear_system_state(); rdmult_ratio = 1.0; // avoid uninitialized warnings // Use the lower precision, but faster, 32x32 fdct for mode selection. x->use_lp32x32fdct = 1; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (x->ab_index != 0) { *totalrate = 0; *totaldist = 0; return; } } set_offsets(cpi, tile, mi_row, mi_col, bsize); mbmi = &xd->mi_8x8[0]->mbmi; mbmi->sb_type = bsize; for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][0]; p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; p[i].eobs = ctx->eobs_pbuf[i][0]; } ctx->is_coded = 0; x->skip_recode = 0; // Set to zero to make sure we do not use the previous encoded frame stats mbmi->skip = 0; x->source_variance = get_sby_perpixel_variance(cpi, x, bsize); if (aq_mode == VARIANCE_AQ) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : vp9_block_energy(cpi, x, bsize); if (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref)) { mbmi->segment_id = vp9_vaq_segment_id(energy); } else { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); } rdmult_ratio = vp9_vaq_rdmult_ratio(energy); vp9_init_plane_quantizers(cpi, x); } // Save rdmult before it might be changed, so it can be restored later. orig_rdmult = x->rdmult; if (cpi->oxcf.tuning == VP8_TUNE_SSIM) activity_masking(cpi, x); if (aq_mode == VARIANCE_AQ) { vp9_clear_system_state(); x->rdmult = (int)round(x->rdmult * rdmult_ratio); } else if (aq_mode == COMPLEXITY_AQ) { const int mi_offset = mi_row * cm->mi_cols + mi_col; unsigned char complexity = cpi->complexity_map[mi_offset]; const int is_edge = (mi_row <= 1) || (mi_row >= (cm->mi_rows - 2)) ||
1051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120
(mi_col <= 1) || (mi_col >= (cm->mi_cols - 2)); if (!is_edge && (complexity > 128)) x->rdmult += ((x->rdmult * (complexity - 128)) / 256); } else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { const uint8_t *const map = cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map; // If segment 1, use rdmult for that segment. if (vp9_get_segment_id(cm, map, bsize, mi_row, mi_col)) x->rdmult = vp9_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); } // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx, best_rd); } else { if (bsize >= BLOCK_8X8) vp9_rd_pick_inter_mode_sb(cpi, x, tile, mi_row, mi_col, totalrate, totaldist, bsize, ctx, best_rd); else vp9_rd_pick_inter_mode_sub8x8(cpi, x, tile, mi_row, mi_col, totalrate, totaldist, bsize, ctx, best_rd); } if (aq_mode == VARIANCE_AQ) { x->rdmult = orig_rdmult; if (*totalrate != INT_MAX) { vp9_clear_system_state(); *totalrate = (int)round(*totalrate * rdmult_ratio); } } else if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) || (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)) { x->rdmult = orig_rdmult; } } static void update_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; const MACROBLOCK *const x = &cpi->mb; const MACROBLOCKD *const xd = &x->e_mbd; const MODE_INFO *const mi = xd->mi_8x8[0]; const MB_MODE_INFO *const mbmi = &mi->mbmi; if (!frame_is_intra_only(cm)) { const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) { FRAME_COUNTS *const counts = &cm->counts; const int inter_block = is_inter_block(mbmi); counts->intra_inter[vp9_get_intra_inter_context(xd)][inter_block]++; // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (inter_block) { const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; if (cm->reference_mode == REFERENCE_MODE_SELECT) counts->comp_inter[vp9_get_reference_mode_context(cm, xd)] [has_second_ref(mbmi)]++; if (has_second_ref(mbmi)) { counts->comp_ref[vp9_get_pred_context_comp_ref_p(cm, xd)] [ref0 == GOLDEN_FRAME]++; } else { counts->single_ref[vp9_get_pred_context_single_ref_p1(xd)][0] [ref0 != LAST_FRAME]++; if (ref0 != LAST_FRAME)
1121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190
counts->single_ref[vp9_get_pred_context_single_ref_p2(xd)][1] [ref0 != GOLDEN_FRAME]++; } } } } } static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) { switch (bsize) { case BLOCK_64X64: return &x->sb64_partitioning; case BLOCK_32X32: return &x->sb_partitioning[x->sb_index]; case BLOCK_16X16: return &x->mb_partitioning[x->sb_index][x->mb_index]; case BLOCK_8X8: return &x->b_partitioning[x->sb_index][x->mb_index][x->b_index]; default: assert(0); return NULL; } } static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; for (p = 0; p < MAX_MB_PLANE; p++) { vpx_memcpy( xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); vpx_memcpy( xd->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } vpx_memcpy(xd->above_seg_context + mi_col, sa, sizeof(*xd->above_seg_context) * mi_width); vpx_memcpy(xd->left_seg_context + (mi_row & MI_MASK), sl, sizeof(xd->left_seg_context[0]) * mi_height); } static void save_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { const MACROBLOCK *const x = &cpi->mb; const MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < MAX_MB_PLANE; ++p) { vpx_memcpy(
1191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260
a + num_4x4_blocks_wide * p, xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); vpx_memcpy( l + num_4x4_blocks_high * p, xd->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } vpx_memcpy(sa, xd->above_seg_context + mi_col, sizeof(*xd->above_seg_context) * mi_width); vpx_memcpy(sl, xd->left_seg_context + (mi_row & MI_MASK), sizeof(xd->left_seg_context[0]) * mi_height); } static void encode_b(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (x->ab_index > 0) return; } set_offsets(cpi, tile, mi_row, mi_col, bsize); update_state(cpi, get_block_context(x, bsize), mi_row, mi_col, bsize, output_enabled); encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize); if (output_enabled) { update_stats(cpi); (*tp)->token = EOSB_TOKEN; (*tp)++; } } static void encode_sb(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4; int ctx; PARTITION_TYPE partition; BLOCK_SIZE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize >= BLOCK_8X8) { ctx = partition_plane_context(xd, mi_row, mi_col, bsize); subsize = *get_sb_partitioning(x, bsize); } else { ctx = 0; subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; switch (partition) { case PARTITION_NONE: if (output_enabled && bsize >= BLOCK_8X8) cm->counts.partition[ctx][PARTITION_NONE]++;
1261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330
encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); break; case PARTITION_VERT: if (output_enabled) cm->counts.partition[ctx][PARTITION_VERT]++; *get_sb_index(x, subsize) = 0; encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); if (mi_col + hbs < cm->mi_cols) { *get_sb_index(x, subsize) = 1; encode_b(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize); } break; case PARTITION_HORZ: if (output_enabled) cm->counts.partition[ctx][PARTITION_HORZ]++; *get_sb_index(x, subsize) = 0; encode_b(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); if (mi_row + hbs < cm->mi_rows) { *get_sb_index(x, subsize) = 1; encode_b(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize); } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); if (output_enabled) cm->counts.partition[ctx][PARTITION_SPLIT]++; *get_sb_index(x, subsize) = 0; encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); *get_sb_index(x, subsize) = 1; encode_sb(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize); *get_sb_index(x, subsize) = 2; encode_sb(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize); *get_sb_index(x, subsize) = 3; encode_sb(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, subsize); break; default: assert("Invalid partition type."); } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } // Check to see if the given partition size is allowed for a specified number // of 8x8 block rows and columns remaining in the image. // If not then return the largest allowed partition size static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { if (rows_left <= 0 || cols_left <= 0) { return MIN(bsize, BLOCK_8X8); } else { for (; bsize > 0; bsize -= 3) { *bh = num_8x8_blocks_high_lookup[bsize]; *bw = num_8x8_blocks_wide_lookup[bsize]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return bsize; } // This function attempts to set all mode info entries in a given SB64 // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition.
1331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400
static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int row8x8_remaining = tile->mi_row_end - mi_row; int col8x8_remaining = tile->mi_col_end - mi_col; int block_row, block_col; MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col; int bh = num_8x8_blocks_high_lookup[bsize]; int bw = num_8x8_blocks_wide_lookup[bsize]; assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // Apply the requested partition size to the SB64 if it is all "in image" if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { int index = block_row * mis + block_col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = bsize; } } } else { // Else this is a partial SB64. for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { int index = block_row * mis + block_col; // Find a partition size that fits bsize = find_partition_size(bsize, (row8x8_remaining - block_row), (col8x8_remaining - block_col), &bh, &bw); mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = bsize; } } } } static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8, MODE_INFO **prev_mi_8x8) { const int mis = cm->mode_info_stride; int block_row, block_col; for (block_row = 0; block_row < 8; ++block_row) { for (block_col = 0; block_col < 8; ++block_col) { MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col]; const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0; if (prev_mi) { const ptrdiff_t offset = prev_mi - cm->prev_mi; mi_8x8[block_row * mis + block_col] = cm->mi + offset; mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type; } } } } static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8) { const int mis = cm->mode_info_stride; int block_row, block_col; if (cm->prev_mi) { for (block_row = 0; block_row < 8; ++block_row) { for (block_col = 0; block_col < 8; ++block_col) { const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col]; if (prev_mi) { if (abs(prev_mi->mbmi.mv[0].as_mv.row) >= 8 || abs(prev_mi->mbmi.mv[0].as_mv.col) >= 8) return 1;
1401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470
} } } } return 0; } static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, int bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi_8x8[0]->mbmi; const struct segmentation *const seg = &cm->seg; *(xd->mi_8x8[0]) = ctx->mic; // For in frame adaptive Q, check for reseting the segment_id and updating // the cyclic refresh map. if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) { vp9_cyclic_refresh_update_segment(cpi, &xd->mi_8x8[0]->mbmi, mi_row, mi_col, bsize, 1); vp9_init_plane_quantizers(cpi, x); } if (is_inter_block(mbmi)) { vp9_update_mv_count(cm, xd); if (cm->interp_filter == SWITCHABLE) { const int pred_ctx = vp9_get_pred_context_switchable_interp(xd); ++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter]; } } } static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (x->ab_index > 0) return; } set_offsets(cpi, tile, mi_row, mi_col, bsize); update_state_rt(cpi, get_block_context(x, bsize), mi_row, mi_col, bsize); encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize); update_stats(cpi); (*tp)->token = EOSB_TOKEN; (*tp)++; } static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4; int ctx; PARTITION_TYPE partition; BLOCK_SIZE subsize; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
1471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540
return; if (bsize >= BLOCK_8X8) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; const int idx_str = xd->mode_info_stride * mi_row + mi_col; MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str; ctx = partition_plane_context(xd, mi_row, mi_col, bsize); subsize = mi_8x8[0]->mbmi.sb_type; } else { ctx = 0; subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; switch (partition) { case PARTITION_NONE: if (output_enabled && bsize >= BLOCK_8X8) cm->counts.partition[ctx][PARTITION_NONE]++; encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); break; case PARTITION_VERT: if (output_enabled) cm->counts.partition[ctx][PARTITION_VERT]++; *get_sb_index(x, subsize) = 0; encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); if (mi_col + hbs < cm->mi_cols) { *get_sb_index(x, subsize) = 1; encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize); } break; case PARTITION_HORZ: if (output_enabled) cm->counts.partition[ctx][PARTITION_HORZ]++; *get_sb_index(x, subsize) = 0; encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); if (mi_row + hbs < cm->mi_rows) { *get_sb_index(x, subsize) = 1; encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize); } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); if (output_enabled) cm->counts.partition[ctx][PARTITION_SPLIT]++; *get_sb_index(x, subsize) = 0; encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize); *get_sb_index(x, subsize) = 1; encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled, subsize); *get_sb_index(x, subsize) = 2; encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled, subsize); *get_sb_index(x, subsize) = 3; encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled, subsize); break; default: assert("Invalid partition type."); } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) update_partition_context(xd, mi_row, mi_col, subsize, bsize); } static void rd_use_partition(VP9_COMP *cpi, const TileInfo *const tile,
1541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610
MODE_INFO **mi_8x8, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mis = cm->mode_info_stride; const int bsl = b_width_log2(bsize); const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2; const int bss = (1 << bsl) / 4; int i, pl; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE subsize; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; int last_part_rate = INT_MAX; int64_t last_part_dist = INT64_MAX; int64_t last_part_rd = INT64_MAX; int none_rate = INT_MAX; int64_t none_dist = INT64_MAX; int64_t none_rd = INT64_MAX; int chosen_rate = INT_MAX; int64_t chosen_dist = INT64_MAX; int64_t chosen_rd = INT64_MAX; BLOCK_SIZE sub_subsize = BLOCK_4X4; int splits_below = 0; BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type; int do_partition_search = 1; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; assert(num_4x4_blocks_wide_lookup[bsize] == num_4x4_blocks_high_lookup[bsize]); partition = partition_lookup[bsl][bs_type]; subsize = get_subsize(bsize, partition); if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (x->ab_index != 0) { *rate = 0; *dist = 0; return; } } else { *(get_sb_partitioning(x, bsize)) = subsize; } save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); set_offsets(cpi, tile, mi_row, mi_col, bsize); if (bsize == BLOCK_16X16) { x->mb_energy = vp9_block_energy(cpi, x, bsize); } if (!x->in_active_map) { do_partition_search = 0; if (mi_row + (mi_step >> 1) < cm->mi_rows && mi_col + (mi_step >> 1) < cm->mi_cols) { *(get_sb_partitioning(x, bsize)) = bsize; bs_type = mi_8x8[0]->mbmi.sb_type = bsize; subsize = bsize; partition = PARTITION_NONE; } } if (do_partition_search && cpi->sf.partition_search_type == SEARCH_PARTITION && cpi->sf.adjust_partitioning_from_last_frame) {
1611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680
// Check if any of the sub blocks are further split. if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { sub_subsize = get_subsize(subsize, PARTITION_SPLIT); splits_below = 1; for (i = 0; i < 4; i++) { int jj = i >> 1, ii = i & 0x01; MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss]; if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) { splits_below = 0; } } } // If partition is not none try none unless each of the 4 splits are split // even further.. if (partition != PARTITION_NONE && !splits_below && mi_row + (mi_step >> 1) < cm->mi_rows && mi_col + (mi_step >> 1) < cm->mi_cols) { *(get_sb_partitioning(x, bsize)) = bsize; rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize, get_block_context(x, bsize), INT64_MAX); pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (none_rate < INT_MAX) { none_rate += x->partition_cost[pl][PARTITION_NONE]; none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist); } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); mi_8x8[0]->mbmi.sb_type = bs_type; *(get_sb_partitioning(x, bsize)) = subsize; } } switch (partition) { case PARTITION_NONE: rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, bsize, get_block_context(x, bsize), INT64_MAX); break; case PARTITION_HORZ: *get_sb_index(x, subsize) = 0; rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize, get_block_context(x, subsize), INT64_MAX); if (last_part_rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) { int rt = 0; int64_t dt = 0; update_state(cpi, get_block_context(x, subsize), mi_row, mi_col, subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(x, subsize) = 1; rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt, subsize, get_block_context(x, subsize), INT64_MAX); if (rt == INT_MAX || dt == INT64_MAX) { last_part_rate = INT_MAX; last_part_dist = INT64_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; case PARTITION_VERT: *get_sb_index(x, subsize) = 0; rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize,
1681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750
get_block_context(x, subsize), INT64_MAX); if (last_part_rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) { int rt = 0; int64_t dt = 0; update_state(cpi, get_block_context(x, subsize), mi_row, mi_col, subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(x, subsize) = 1; rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt, subsize, get_block_context(x, subsize), INT64_MAX); if (rt == INT_MAX || dt == INT64_MAX) { last_part_rate = INT_MAX; last_part_dist = INT64_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; case PARTITION_SPLIT: // Split partition. last_part_rate = 0; last_part_dist = 0; for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (mi_step >> 1); int y_idx = (i >> 1) * (mi_step >> 1); int jj = i >> 1, ii = i & 0x01; int rt; int64_t dt; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; *get_sb_index(x, subsize) = i; rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp, mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt, i != 3); if (rt == INT_MAX || dt == INT64_MAX) { last_part_rate = INT_MAX; last_part_dist = INT64_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; default: assert(0); } pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (last_part_rate < INT_MAX) { last_part_rate += x->partition_cost[pl][partition]; last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist); } if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && cpi->sf.partition_search_type == SEARCH_PARTITION && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + mi_step < cm->mi_rows || mi_row + (mi_step >> 1) == cm->mi_rows) && (mi_col + mi_step < cm->mi_cols || mi_col + (mi_step >> 1) == cm->mi_cols)) { BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); chosen_rate = 0; chosen_dist = 0; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
1751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820
// Split partition. for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (mi_step >> 1); int y_idx = (i >> 1) * (mi_step >> 1); int rt = 0; int64_t dt = 0; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; *get_sb_index(x, split_subsize) = i; *get_sb_partitioning(x, bsize) = split_subsize; *get_sb_partitioning(x, split_subsize) = split_subsize; save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt, split_subsize, get_block_context(x, split_subsize), INT64_MAX); restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (rt == INT_MAX || dt == INT64_MAX) { chosen_rate = INT_MAX; chosen_dist = INT64_MAX; break; } chosen_rate += rt; chosen_dist += dt; if (i != 3) encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0, split_subsize); pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx, split_subsize); chosen_rate += x->partition_cost[pl][PARTITION_NONE]; } pl = partition_plane_context(xd, mi_row, mi_col, bsize); if (chosen_rate < INT_MAX) { chosen_rate += x->partition_cost[pl][PARTITION_SPLIT]; chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist); } } // If last_part is better set the partitioning to that... if (last_part_rd < chosen_rd) { mi_8x8[0]->mbmi.sb_type = bsize; if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = subsize; chosen_rate = last_part_rate; chosen_dist = last_part_dist; chosen_rd = last_part_rd; } // If none was better set the partitioning to that... if (none_rd < chosen_rd) { if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = bsize; chosen_rate = none_rate; chosen_dist = none_dist; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success.
1821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
if ( bsize == BLOCK_64X64) assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX); if (do_recon) { int output_enabled = (bsize == BLOCK_64X64); // Check the projected output rate for this SB against it's target // and and if necessary apply a Q delta using segmentation to get // closer to the target. if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) { vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, chosen_rate); } if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh, chosen_rate, chosen_dist); encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize); } *rate = chosen_rate; *dist = chosen_dist; } static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 }; static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 }; // Look at all the mode_info entries for blocks that are part of this // partition and find the min and max values for sb_type. // At the moment this is designed to work on a 64x64 SB but could be // adjusted to use a size parameter. // // The min and max are assumed to have been initialized prior to calling this // function so repeat calls can accumulate a min and max of more than one sb64. static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8, BLOCK_SIZE * min_block_size, BLOCK_SIZE * max_block_size ) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; int sb_width_in_blocks = MI_BLOCK_SIZE; int sb_height_in_blocks = MI_BLOCK_SIZE; int i, j; int index = 0; // Check the sb_type for each block that belongs to this region. for (i = 0; i < sb_height_in_blocks; ++i) { for (j = 0; j < sb_width_in_blocks; ++j) { MODE_INFO * mi = mi_8x8[index+j]; BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0; *min_block_size = MIN(*min_block_size, sb_type); *max_block_size = MAX(*max_block_size, sb_type); } index += xd->mode_info_stride; } } // Next square block size less or equal than current block size.
1891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64 }; // Look at neighboring blocks and set a min and max partition size based on // what they chose. static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; MODE_INFO **mi_8x8 = xd->mi_8x8; const int left_in_image = xd->left_available && mi_8x8[-1]; const int above_in_image = xd->up_available && mi_8x8[-xd->mode_info_stride]; MODE_INFO **above_sb64_mi_8x8; MODE_INFO **left_sb64_mi_8x8; int row8x8_remaining = tile->mi_row_end - mi_row; int col8x8_remaining = tile->mi_col_end - mi_col; int bh, bw; BLOCK_SIZE min_size = BLOCK_4X4; BLOCK_SIZE max_size = BLOCK_64X64; // Trap case where we do not have a prediction. if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { // Default "min to max" and "max to min" min_size = BLOCK_64X64; max_size = BLOCK_4X4; // NOTE: each call to get_sb_partition_size_range() uses the previous // passed in values for min and max as a starting point. // Find the min and max partition used in previous frame at this location if (cm->frame_type != KEY_FRAME) { MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[mi_row * xd->mode_info_stride + mi_col]; get_sb_partition_size_range(cpi, prev_mi, &min_size, &max_size); } // Find the min and max partition sizes used in the left SB64 if (left_in_image) { left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE]; get_sb_partition_size_range(cpi, left_sb64_mi_8x8, &min_size, &max_size); } // Find the min and max partition sizes used in the above SB64. if (above_in_image) { above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE]; get_sb_partition_size_range(cpi, above_sb64_mi_8x8, &min_size, &max_size); } // adjust observed min and max if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { min_size = min_partition_size[min_size]; max_size = max_partition_size[max_size]; } } // Check border cases where max and min from neighbors may not be legal. max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining, &bh, &bw); min_size = MIN(min_size, max_size); // When use_square_partition_only is true, make sure at least one square // partition is allowed by selecting the next smaller square size as // *min_block_size.
1961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030
if (cpi->sf.use_square_partition_only && next_square_size[max_size] < min_size) { min_size = next_square_size[max_size]; } *min_block_size = min_size; *max_block_size = max_size; } static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); } static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); } // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previous rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; TOKENEXTRA *tp_orig = *tp; PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize); int i, pl; BLOCK_SIZE subsize; int this_rate, sum_rate = 0, best_rate = INT_MAX; int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX; int64_t sum_rd = 0; int do_split = bsize >= BLOCK_8X8; int do_rect = 1; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + mi_step >= cm->mi_rows); const int force_vert_split = (mi_col + mi_step >= cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; int partition_vert_allowed = !force_horz_split && xss <= yss && bsize >= BLOCK_8X8; (void) *tp_orig; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (x->ab_index != 0) { *rate = 0; *dist = 0; return; } } assert(num_8x8_blocks_wide_lookup[bsize] == num_8x8_blocks_high_lookup[bsize]); if (bsize == BLOCK_16X16) { set_offsets(cpi, tile, mi_row, mi_col, bsize); x->mb_energy = vp9_block_energy(cpi, x, bsize); } // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size.
2031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100
if (cpi->sf.auto_min_max_partition_size) { partition_none_allowed &= (bsize <= cpi->sf.max_partition_size && bsize >= cpi->sf.min_partition_size); partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_horz_split); partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_vert_split); do_split &= bsize > cpi->sf.min_partition_size; } if (cpi->sf.use_square_partition_only) { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (cpi->sf.disable_split_var_thresh && partition_none_allowed) { unsigned int source_variancey; vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); source_variancey = get_sby_perpixel_variance(cpi, x, bsize); if (source_variancey < cpi->sf.disable_split_var_thresh) { do_split = 0; if (source_variancey < cpi->sf.disable_split_var_thresh / 2) do_rect = 0; } } if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed)) do_split = 0; // PARTITION_NONE if (partition_none_allowed) { rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize, ctx, best_rd); if (this_rate != INT_MAX) { if (bsize >= BLOCK_8X8) { pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rate += x->partition_cost[pl][PARTITION_NONE]; } sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist); if (sum_rd < best_rd) { int64_t stop_thresh = 4096; int64_t stop_thresh_rd; best_rate = this_rate; best_dist = this_dist; best_rd = sum_rd; if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = bsize; // Adjust threshold according to partition size. stop_thresh >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh); // If obtained distortion is very small, choose current partition // and stop splitting. if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) { do_split = 0; do_rect = 0; } } } if (!x->in_active_map) { do_split = 0; do_rect = 0; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); }
2101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170
// store estimated motion vector if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx); // PARTITION_SPLIT sum_rd = 0; // TODO(jingning): use the motion vectors given by the above search as // the starting point of motion search in the following partition type check. if (do_split) { subsize = get_subsize(bsize, PARTITION_SPLIT); for (i = 0; i < 4 && sum_rd < best_rd; ++i) { const int x_idx = (i & 1) * mi_step; const int y_idx = (i >> 1) * mi_step; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; *get_sb_index(x, subsize) = i; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) get_block_context(x, subsize)->pred_interp_filter = ctx->mic.mbmi.interp_filter; rd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rate, &this_dist, i != 3, best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd && i == 4) { pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rate += x->partition_cost[pl][PARTITION_SPLIT]; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd) { best_rate = sum_rate; best_dist = sum_dist; best_rd = sum_rd; *(get_sb_partitioning(x, bsize)) = subsize; } } else { // skip rectangular partition test when larger block size // gives better rd cost if (cpi->sf.less_rectangular_check) do_rect &= !partition_none_allowed; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_HORZ if (partition_horz_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_HORZ); *get_sb_index(x, subsize) = 0; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) get_block_context(x, subsize)->pred_interp_filter = ctx->mic.mbmi.interp_filter; rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize, get_block_context(x, subsize), best_rd); sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd && mi_row + mi_step < cm->mi_rows) {
2171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240
update_state(cpi, get_block_context(x, subsize), mi_row, mi_col, subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(x, subsize) = 1; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) get_block_context(x, subsize)->pred_interp_filter = ctx->mic.mbmi.interp_filter; rd_pick_sb_modes(cpi, tile, mi_row + mi_step, mi_col, &this_rate, &this_dist, subsize, get_block_context(x, subsize), best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rate += x->partition_cost[pl][PARTITION_HORZ]; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd) { best_rd = sum_rd; best_rate = sum_rate; best_dist = sum_dist; *(get_sb_partitioning(x, bsize)) = subsize; } } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_VERT if (partition_vert_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_VERT); *get_sb_index(x, subsize) = 0; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) get_block_context(x, subsize)->pred_interp_filter = ctx->mic.mbmi.interp_filter; rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &sum_rate, &sum_dist, subsize, get_block_context(x, subsize), best_rd); sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd && mi_col + mi_step < cm->mi_cols) { update_state(cpi, get_block_context(x, subsize), mi_row, mi_col, subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(x, subsize) = 1; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && partition_none_allowed) get_block_context(x, subsize)->pred_interp_filter = ctx->mic.mbmi.interp_filter; rd_pick_sb_modes(cpi, tile, mi_row, mi_col + mi_step, &this_rate, &this_dist, subsize, get_block_context(x, subsize), best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist;
2241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rate += x->partition_cost[pl][PARTITION_VERT]; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd) { best_rate = sum_rate; best_dist = sum_dist; best_rd = sum_rd; *(get_sb_partitioning(x, bsize)) = subsize; } } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // TODO(jbb): This code added so that we avoid static analysis // warning related to the fact that best_rd isn't used after this // point. This code should be refactored so that the duplicate // checks occur in some sub function and thus are used... (void) best_rd; *rate = best_rate; *dist = best_dist; if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) { int output_enabled = (bsize == BLOCK_64X64); // Check the projected output rate for this SB against it's target // and and if necessary apply a Q delta using segmentation to get // closer to the target. if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) { vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, best_rate); } if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh, best_rate, best_dist); encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize); } if (bsize == BLOCK_64X64) { assert(tp_orig < *tp); assert(best_rate < INT_MAX); assert(best_dist < INT64_MAX); } else { assert(tp_orig == *tp); } } static void encode_rd_sb_row(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, TOKENEXTRA **tp) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; int mi_col; // Initialize the left context for the new SB row vpx_memset(&xd->left_context, 0, sizeof(xd->left_context)); vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); // Code each SB in the row for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { int dummy_rate; int64_t dummy_dist; BLOCK_SIZE i; MACROBLOCK *x = &cpi->mb;
2311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380
if (cpi->sf.adaptive_pred_interp_filter) { for (i = BLOCK_4X4; i < BLOCK_8X8; ++i) { const int num_4x4_w = num_4x4_blocks_wide_lookup[i]; const int num_4x4_h = num_4x4_blocks_high_lookup[i]; const int num_4x4_blk = MAX(4, num_4x4_w * num_4x4_h); for (x->sb_index = 0; x->sb_index < 4; ++x->sb_index) for (x->mb_index = 0; x->mb_index < 4; ++x->mb_index) for (x->b_index = 0; x->b_index < 16 / num_4x4_blk; ++x->b_index) get_block_context(x, i)->pred_interp_filter = SWITCHABLE; } } vp9_zero(cpi->mb.pred_mv); if ((cpi->sf.partition_search_type == SEARCH_PARTITION && cpi->sf.use_lastframe_partitioning) || cpi->sf.partition_search_type == FIXED_PARTITION || cpi->sf.partition_search_type == VAR_BASED_FIXED_PARTITION) { const int idx_str = cm->mode_info_stride * mi_row + mi_col; MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str; cpi->mb.source_variance = UINT_MAX; if (cpi->sf.partition_search_type == FIXED_PARTITION) { set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, cpi->sf.always_this_block_size); rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } else if (cpi->sf.partition_search_type == VAR_BASED_FIXED_PARTITION) { BLOCK_SIZE bsize; set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); bsize = get_rd_var_based_fixed_partition(cpi, mi_row, mi_col); set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, bsize); rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } else if (cpi->sf.partition_search_type == VAR_BASED_PARTITION) { choose_partitioning(cpi, tile, mi_row, mi_col); rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } else { if ((cm->current_video_frame % cpi->sf.last_partitioning_redo_frequency) == 0 || cm->prev_mi == 0 || cm->show_frame == 0 || cm->frame_type == KEY_FRAME || cpi->rc.is_src_frame_alt_ref || ((cpi->sf.use_lastframe_partitioning == LAST_FRAME_PARTITION_LOW_MOTION) && sb_has_motion(cm, prev_mi_8x8))) { // If required set upper and lower partition size limits if (cpi->sf.auto_min_max_partition_size) { set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); rd_auto_partition_range(cpi, tile, mi_row, mi_col, &cpi->sf.min_partition_size, &cpi->sf.max_partition_size); } rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, INT64_MAX); } else { copy_partitioning(cm, mi_8x8, prev_mi_8x8); rd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } } } else { // If required set upper and lower partition size limits if (cpi->sf.auto_min_max_partition_size) { set_offsets(cpi, tile, mi_row, mi_col, BLOCK_64X64); rd_auto_partition_range(cpi, tile, mi_row, mi_col, &cpi->sf.min_partition_size,
2381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450
&cpi->sf.max_partition_size); } rd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, INT64_MAX); } } } static void init_encode_frame_mb_context(VP9_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); x->act_zbin_adj = 0; cpi->seg0_idx = 0; xd->mode_info_stride = cm->mode_info_stride; // Copy data over into macro block data structures. vp9_setup_src_planes(x, cpi->Source, 0, 0); // TODO(jkoleszar): are these initializations required? vp9_setup_pre_planes(xd, 0, get_ref_frame_buffer(cpi, LAST_FRAME), 0, 0, NULL); vp9_setup_dst_planes(xd, get_frame_new_buffer(cm), 0, 0); vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); xd->mi_8x8[0]->mbmi.mode = DC_PRED; xd->mi_8x8[0]->mbmi.uv_mode = DC_PRED; vp9_zero(cm->counts.y_mode); vp9_zero(cm->counts.uv_mode); vp9_zero(cm->counts.inter_mode); vp9_zero(cm->counts.partition); vp9_zero(cm->counts.intra_inter); vp9_zero(cm->counts.comp_inter); vp9_zero(cm->counts.single_ref); vp9_zero(cm->counts.comp_ref); vp9_zero(cm->counts.tx); vp9_zero(cm->counts.skip); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(xd->above_context[0], 0, sizeof(*xd->above_context[0]) * 2 * aligned_mi_cols * MAX_MB_PLANE); vpx_memset(xd->above_seg_context, 0, sizeof(*xd->above_seg_context) * aligned_mi_cols); } static void switch_lossless_mode(VP9_COMP *cpi, int lossless) { if (lossless) { // printf("Switching to lossless\n"); cpi->mb.fwd_txm4x4 = vp9_fwht4x4; cpi->mb.e_mbd.itxm_add = vp9_iwht4x4_add; cpi->mb.optimize = 0; cpi->common.lf.filter_level = 0; cpi->zbin_mode_boost_enabled = 0; cpi->common.tx_mode = ONLY_4X4; } else { // printf("Not lossless\n"); cpi->mb.fwd_txm4x4 = vp9_fdct4x4; cpi->mb.e_mbd.itxm_add = vp9_idct4x4_add; } } static int check_dual_ref_flags(VP9_COMP *cpi) { const int ref_flags = cpi->ref_frame_flags;
2451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520
if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { return 0; } else { return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) + !!(ref_flags & VP9_ALT_FLAG)) >= 2; } } static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) { int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { if (!mi_8x8[y * mis + x]->mbmi.skip) return 0; } } return 1; } static void reset_skip_txfm_size(VP9_COMMON *cm, TX_SIZE txfm_max) { int mi_row, mi_col; const int mis = cm->mode_info_stride; MODE_INFO **mi_ptr = cm->mi_grid_visible; for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) { for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) { if (mi_ptr[mi_col]->mbmi.tx_size > txfm_max) mi_ptr[mi_col]->mbmi.tx_size = txfm_max; } } } static MV_REFERENCE_FRAME get_frame_type(const VP9_COMP *cpi) { if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) return ALTREF_FRAME; else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) return LAST_FRAME; else return GOLDEN_FRAME; } static TX_MODE select_tx_mode(const VP9_COMP *cpi) { if (cpi->oxcf.lossless) { return ONLY_4X4; } else if (cpi->common.current_video_frame == 0) { return TX_MODE_SELECT; } else { if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { return ALLOW_32X32; } else if (cpi->sf.tx_size_search_method == USE_FULL_RD) { const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); return cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ? ALLOW_32X32 : TX_MODE_SELECT; } else { unsigned int total = 0; int i; for (i = 0; i < TX_SIZES; ++i) total += cpi->tx_stepdown_count[i]; if (total) { const double fraction = (double)cpi->tx_stepdown_count[0] / total; return fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT; } else { return cpi->common.tx_mode;
2521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590
} } } } // Start RTC Exploration typedef enum { BOTH_ZERO = 0, ZERO_PLUS_PREDICTED = 1, BOTH_PREDICTED = 2, NEW_PLUS_NON_INTRA = 3, BOTH_NEW = 4, INTRA_PLUS_NON_INTRA = 5, BOTH_INTRA = 6, INVALID_CASE = 9 } motion_vector_context; static void set_mode_info(MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, MB_PREDICTION_MODE mode) { mbmi->mode = mode; mbmi->uv_mode = mode; mbmi->mv[0].as_int = 0; mbmi->mv[1].as_int = 0; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; mbmi->tx_size = max_txsize_lookup[bsize]; mbmi->skip = 0; mbmi->sb_type = bsize; mbmi->segment_id = 0; } static void nonrd_pick_sb_modes(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, int mi_col, int *rate, int64_t *dist, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; set_offsets(cpi, tile, mi_row, mi_col, bsize); xd->mi_8x8[0]->mbmi.sb_type = bsize; if (!frame_is_intra_only(cm)) { vp9_pick_inter_mode(cpi, x, tile, mi_row, mi_col, rate, dist, bsize); } else { MB_PREDICTION_MODE intramode = DC_PRED; set_mode_info(&xd->mi_8x8[0]->mbmi, bsize, intramode); } duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); } static void fill_mode_info_sb(VP9_COMMON *cm, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, BLOCK_SIZE subsize) { MACROBLOCKD *xd = &x->e_mbd; int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4; PARTITION_TYPE partition = partition_lookup[bsl][subsize]; assert(bsize >= BLOCK_8X8); if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; switch (partition) { case PARTITION_NONE: set_modeinfo_offsets(cm, xd, mi_row, mi_col); *(xd->mi_8x8[0]) = (get_block_context(x, subsize))->mic; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); break; case PARTITION_VERT:
2591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660
*get_sb_index(x, subsize) = 0; set_modeinfo_offsets(cm, xd, mi_row, mi_col); *(xd->mi_8x8[0]) = (get_block_context(x, subsize))->mic; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); if (mi_col + hbs < cm->mi_cols) { *get_sb_index(x, subsize) = 1; set_modeinfo_offsets(cm, xd, mi_row, mi_col + hbs); *(xd->mi_8x8[0]) = (get_block_context(x, subsize))->mic; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col + hbs, bsize); } break; case PARTITION_HORZ: *get_sb_index(x, subsize) = 0; set_modeinfo_offsets(cm, xd, mi_row, mi_col); *(xd->mi_8x8[0]) = (get_block_context(x, subsize))->mic; duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); if (mi_row + hbs < cm->mi_rows) { *get_sb_index(x, subsize) = 1; set_modeinfo_offsets(cm, xd, mi_row + hbs, mi_col); *(xd->mi_8x8[0]) = (get_block_context(x, subsize))->mic; duplicate_mode_info_in_sb(cm, xd, mi_row + hbs, mi_col, bsize); } break; case PARTITION_SPLIT: *get_sb_index(x, subsize) = 0; fill_mode_info_sb(cm, x, mi_row, mi_col, subsize, *(get_sb_partitioning(x, subsize))); *get_sb_index(x, subsize) = 1; fill_mode_info_sb(cm, x, mi_row, mi_col + hbs, subsize, *(get_sb_partitioning(x, subsize))); *get_sb_index(x, subsize) = 2; fill_mode_info_sb(cm, x, mi_row + hbs, mi_col, subsize, *(get_sb_partitioning(x, subsize))); *get_sb_index(x, subsize) = 3; fill_mode_info_sb(cm, x, mi_row + hbs, mi_col + hbs, subsize, *(get_sb_partitioning(x, subsize))); break; default: break; } } static void nonrd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int ms = num_8x8_blocks_wide_lookup[bsize] / 2; TOKENEXTRA *tp_orig = *tp; PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize); int i; BLOCK_SIZE subsize; int this_rate, sum_rate = 0, best_rate = INT_MAX; int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX; int64_t sum_rd = 0; int do_split = bsize >= BLOCK_8X8; int do_rect = 1; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + ms >= cm->mi_rows); const int force_vert_split = (mi_col + ms >= cm->mi_cols); const int xss = x->e_mbd.plane[1].subsampling_x; const int yss = x->e_mbd.plane[1].subsampling_y; int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && yss <= xss && bsize >= BLOCK_8X8; int partition_vert_allowed = !force_horz_split && xss <= yss &&
2661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730
bsize >= BLOCK_8X8; (void) *tp_orig; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (x->ab_index != 0) { *rate = 0; *dist = 0; return; } } assert(num_8x8_blocks_wide_lookup[bsize] == num_8x8_blocks_high_lookup[bsize]); // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (cpi->sf.auto_min_max_partition_size) { partition_none_allowed &= (bsize <= cpi->sf.max_partition_size && bsize >= cpi->sf.min_partition_size); partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_horz_split); partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_vert_split); do_split &= bsize > cpi->sf.min_partition_size; } if (cpi->sf.use_square_partition_only) { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed)) do_split = 0; // PARTITION_NONE if (partition_none_allowed) { nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize); ctx->mic.mbmi = xd->mi_8x8[0]->mbmi; if (this_rate != INT_MAX) { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rate += x->partition_cost[pl][PARTITION_NONE]; sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist); if (sum_rd < best_rd) { int64_t stop_thresh = 4096; int64_t stop_thresh_rd; best_rate = this_rate; best_dist = this_dist; best_rd = sum_rd; if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = bsize; // Adjust threshold according to partition size. stop_thresh >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); stop_thresh_rd = RDCOST(x->rdmult, x->rddiv, 0, stop_thresh); // If obtained distortion is very small, choose current partition // and stop splitting. if (!x->e_mbd.lossless && best_rd < stop_thresh_rd) { do_split = 0; do_rect = 0; } } }
2731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800
if (!x->in_active_map) { do_split = 0; do_rect = 0; } } // store estimated motion vector store_pred_mv(x, ctx); // PARTITION_SPLIT sum_rd = 0; if (do_split) { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rate += x->partition_cost[pl][PARTITION_SPLIT]; subsize = get_subsize(bsize, PARTITION_SPLIT); for (i = 0; i < 4 && sum_rd < best_rd; ++i) { const int x_idx = (i & 1) * ms; const int y_idx = (i >> 1) * ms; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; *get_sb_index(x, subsize) = i; load_pred_mv(x, ctx); nonrd_pick_partition(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rate, &this_dist, 0, best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { best_rate = sum_rate; best_dist = sum_dist; best_rd = sum_rd; *(get_sb_partitioning(x, bsize)) = subsize; } else { // skip rectangular partition test when larger block size // gives better rd cost if (cpi->sf.less_rectangular_check) do_rect &= !partition_none_allowed; } } // PARTITION_HORZ if (partition_horz_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_HORZ); *get_sb_index(x, subsize) = 0; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) { *get_sb_index(x, subsize) = 1; load_pred_mv(x, ctx);
2801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870
nonrd_pick_sb_modes(cpi, tile, mi_row + ms, mi_col, &this_rate, &this_dist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rate += x->partition_cost[pl][PARTITION_HORZ]; sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { best_rd = sum_rd; best_rate = sum_rate; best_dist = sum_dist; *(get_sb_partitioning(x, bsize)) = subsize; } } // PARTITION_VERT if (partition_vert_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_VERT); *get_sb_index(x, subsize) = 0; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx); nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) { *get_sb_index(x, subsize) = 1; load_pred_mv(x, ctx); nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + ms, &this_rate, &this_dist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { int pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rate += x->partition_cost[pl][PARTITION_VERT]; sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { best_rate = sum_rate; best_dist = sum_dist; best_rd = sum_rd; *(get_sb_partitioning(x, bsize)) = subsize; } } *rate = best_rate; *dist = best_dist; if (best_rate == INT_MAX) return; // update mode info array
2871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940
fill_mode_info_sb(cm, x, mi_row, mi_col, bsize, *(get_sb_partitioning(x, bsize))); if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) { int output_enabled = (bsize == BLOCK_64X64); // Check the projected output rate for this SB against it's target // and and if necessary apply a Q delta using segmentation to get // closer to the target. if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) { vp9_select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, best_rate); } if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh, best_rate, best_dist); encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize); } if (bsize == BLOCK_64X64) { assert(tp_orig < *tp); assert(best_rate < INT_MAX); assert(best_dist < INT64_MAX); } else { assert(tp_orig == *tp); } } static void nonrd_use_partition(VP9_COMP *cpi, const TileInfo *const tile, MODE_INFO **mi_8x8, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int output_enabled, int *totrate, int64_t *totdist) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4; const int mis = cm->mode_info_stride; PARTITION_TYPE partition; BLOCK_SIZE subsize; int rate = INT_MAX; int64_t dist = INT64_MAX; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (bsize >= BLOCK_8X8) { subsize = mi_8x8[0]->mbmi.sb_type; } else { subsize = BLOCK_4X4; } partition = partition_lookup[bsl][subsize]; switch (partition) { case PARTITION_NONE: nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; break; case PARTITION_VERT: *get_sb_index(x, subsize) = 0; nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; if (mi_col + hbs < cm->mi_cols) { *get_sb_index(x, subsize) = 1; nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
2941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010
&rate, &dist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; if (rate != INT_MAX && dist != INT64_MAX && *totrate != INT_MAX && *totdist != INT64_MAX) { *totrate += rate; *totdist += dist; } } break; case PARTITION_HORZ: *get_sb_index(x, subsize) = 0; nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; if (mi_row + hbs < cm->mi_rows) { *get_sb_index(x, subsize) = 1; nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col, &rate, &dist, subsize); (get_block_context(x, subsize))->mic.mbmi = xd->mi_8x8[0]->mbmi; if (rate != INT_MAX && dist != INT64_MAX && *totrate != INT_MAX && *totdist != INT64_MAX) { *totrate += rate; *totdist += dist; } } break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); *get_sb_index(x, subsize) = 0; nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, subsize, output_enabled, totrate, totdist); *get_sb_index(x, subsize) = 1; nonrd_use_partition(cpi, tile, mi_8x8 + hbs, tp, mi_row, mi_col + hbs, subsize, output_enabled, &rate, &dist); if (rate != INT_MAX && dist != INT64_MAX && *totrate != INT_MAX && *totdist != INT64_MAX) { *totrate += rate; *totdist += dist; } *get_sb_index(x, subsize) = 2; nonrd_use_partition(cpi, tile, mi_8x8 + hbs * mis, tp, mi_row + hbs, mi_col, subsize, output_enabled, &rate, &dist); if (rate != INT_MAX && dist != INT64_MAX && *totrate != INT_MAX && *totdist != INT64_MAX) { *totrate += rate; *totdist += dist; } *get_sb_index(x, subsize) = 3; nonrd_use_partition(cpi, tile, mi_8x8 + hbs * mis + hbs, tp, mi_row + hbs, mi_col + hbs, subsize, output_enabled, &rate, &dist); if (rate != INT_MAX && dist != INT64_MAX && *totrate != INT_MAX && *totdist != INT64_MAX) { *totrate += rate; *totdist += dist; } break; default: assert("Invalid partition type."); } if (bsize == BLOCK_64X64 && output_enabled) { if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh, *totrate, *totdist); encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize); } }
3011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile, int mi_row, TOKENEXTRA **tp) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; int mi_col; // Initialize the left context for the new SB row vpx_memset(&xd->left_context, 0, sizeof(xd->left_context)); vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context)); // Code each SB in the row for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end; mi_col += MI_BLOCK_SIZE) { int dummy_rate = 0; int64_t dummy_dist = 0; const int idx_str = cm->mode_info_stride * mi_row + mi_col; MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str; BLOCK_SIZE bsize = cpi->sf.partition_search_type == FIXED_PARTITION ? cpi->sf.always_this_block_size : get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col); cpi->mb.source_variance = UINT_MAX; vp9_zero(cpi->mb.pred_mv); // Set the partition type of the 64X64 block switch (cpi->sf.partition_search_type) { case VAR_BASED_PARTITION: choose_partitioning(cpi, tile, mi_row, mi_col); nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rate, &dummy_dist); break; case VAR_BASED_FIXED_PARTITION: case FIXED_PARTITION: set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, bsize); nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rate, &dummy_dist); break; case REFERENCE_PARTITION: if (cpi->sf.partition_check || sb_has_motion(cm, prev_mi_8x8)) { nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, INT64_MAX); } else { copy_partitioning(cm, mi_8x8, prev_mi_8x8); nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, 1, &dummy_rate, &dummy_dist); } break; default: assert(0); } } } // end RTC play code static void encode_frame_internal(VP9_COMP *cpi) { int mi_row; MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; // fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n", // cpi->common.current_video_frame, cpi->common.show_frame, // cm->frame_type); vp9_zero(cm->counts.switchable_interp); vp9_zero(cpi->tx_stepdown_count); xd->mi_8x8 = cm->mi_grid_visible;
3081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150
// required for vp9_frame_init_quantizer xd->mi_8x8[0] = cm->mi; vp9_zero(cm->counts.mv); vp9_zero(cpi->coef_counts); vp9_zero(cm->counts.eob_branch); // Set frame level transform size use case cm->tx_mode = select_tx_mode(cpi); cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless); vp9_frame_init_quantizer(cpi); vp9_initialize_rd_consts(cpi); vp9_initialize_me_consts(cpi, cm->base_qindex); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Initialize encode frame context. init_encode_frame_mb_context(cpi); // Build a frame level activity map build_activity_map(cpi); } // Re-initialize encode frame context. init_encode_frame_mb_context(cpi); vp9_zero(cpi->rd_comp_pred_diff); vp9_zero(cpi->rd_filter_diff); vp9_zero(cpi->rd_tx_select_diff); vp9_zero(cpi->rd_tx_select_threshes); set_prev_mi(cm); if (cpi->sf.use_nonrd_pick_mode) { // Initialize internal buffer pointers for rtc coding, where non-RD // mode decision is used and hence no buffer pointer swap needed. int i; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; PICK_MODE_CONTEXT *ctx = &cpi->mb.sb64_context; for (i = 0; i < MAX_MB_PLANE; ++i) { p[i].coeff = ctx->coeff_pbuf[i][0]; p[i].qcoeff = ctx->qcoeff_pbuf[i][0]; pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0]; p[i].eobs = ctx->eobs_pbuf[i][0]; } vp9_zero(x->zcoeff_blk); } { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); { // Take tiles into account and give start/end MB int tile_col, tile_row; TOKENEXTRA *tp = cpi->tok; const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; for (tile_row = 0; tile_row < tile_rows; tile_row++) { for (tile_col = 0; tile_col < tile_cols; tile_col++) { TileInfo tile; TOKENEXTRA *tp_old = tp;
3151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220
// For each row of SBs in the frame vp9_tile_init(&tile, cm, tile_row, tile_col); for (mi_row = tile.mi_row_start; mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) { if (cpi->sf.use_nonrd_pick_mode && cm->frame_type != KEY_FRAME) encode_nonrd_sb_row(cpi, &tile, mi_row, &tp); else encode_rd_sb_row(cpi, &tile, mi_row, &tp); } cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old); assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols)); } } } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer); } if (cpi->sf.skip_encode_sb) { int j; unsigned int intra_count = 0, inter_count = 0; for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) { intra_count += cm->counts.intra_inter[j][0]; inter_count += cm->counts.intra_inter[j][1]; } cpi->sf.skip_encode_frame = (intra_count << 2) < inter_count && cm->frame_type != KEY_FRAME && cm->show_frame; } else { cpi->sf.skip_encode_frame = 0; } #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } void vp9_encode_frame(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; // In the longer term the encoder should be generalized to match the // decoder such that we allow compound where one of the 3 buffers has a // different sign bias and that buffer is then the fixed ref. However, this // requires further work in the rd loop. For now the only supported encoder // side behavior is where the ALT ref buffer has opposite sign bias to // the other two. if (!frame_is_intra_only(cm)) { if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) || (cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[LAST_FRAME])) { cm->allow_comp_inter_inter = 0; } else { cm->allow_comp_inter_inter = 1; cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } } if (cpi->sf.frame_parameter_update) { int i; REFERENCE_MODE reference_mode; /* * This code does a single RD pass over the whole frame assuming * either compound, single or hybrid prediction as per whatever has * worked best for that type of frame in the past. * It also predicts whether another coding mode would have worked
3221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290
* better that this coding mode. If that is the case, it remembers * that for subsequent frames. * It does the same analysis for transform size selection also. */ const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); const int64_t *mode_thresh = cpi->rd_prediction_type_threshes[frame_type]; const int64_t *filter_thresh = cpi->rd_filter_threshes[frame_type]; /* prediction (compound, single or hybrid) mode selection */ if (frame_type == 3 || !cm->allow_comp_inter_inter) reference_mode = SINGLE_REFERENCE; else if (mode_thresh[COMPOUND_REFERENCE] > mode_thresh[SINGLE_REFERENCE] && mode_thresh[COMPOUND_REFERENCE] > mode_thresh[REFERENCE_MODE_SELECT] && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) reference_mode = COMPOUND_REFERENCE; else if (mode_thresh[SINGLE_REFERENCE] > mode_thresh[REFERENCE_MODE_SELECT]) reference_mode = SINGLE_REFERENCE; else reference_mode = REFERENCE_MODE_SELECT; if (cm->interp_filter == SWITCHABLE) { if (frame_type != ALTREF_FRAME && filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP] && filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP_SHARP] && filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[SWITCHABLE - 1]) { cm->interp_filter = EIGHTTAP_SMOOTH; } else if (filter_thresh[EIGHTTAP_SHARP] > filter_thresh[EIGHTTAP] && filter_thresh[EIGHTTAP_SHARP] > filter_thresh[SWITCHABLE - 1]) { cm->interp_filter = EIGHTTAP_SHARP; } else if (filter_thresh[EIGHTTAP] > filter_thresh[SWITCHABLE - 1]) { cm->interp_filter = EIGHTTAP; } } cpi->mb.e_mbd.lossless = cpi->oxcf.lossless; cm->reference_mode = reference_mode; encode_frame_internal(cpi); for (i = 0; i < REFERENCE_MODES; ++i) { const int diff = (int) (cpi->rd_comp_pred_diff[i] / cm->MBs); cpi->rd_prediction_type_threshes[frame_type][i] += diff; cpi->rd_prediction_type_threshes[frame_type][i] >>= 1; } for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { const int64_t diff = cpi->rd_filter_diff[i] / cm->MBs; cpi->rd_filter_threshes[frame_type][i] = (cpi->rd_filter_threshes[frame_type][i] + diff) / 2; } for (i = 0; i < TX_MODES; ++i) { int64_t pd = cpi->rd_tx_select_diff[i]; int diff; if (i == TX_MODE_SELECT) pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0); diff = (int) (pd / cm->MBs); cpi->rd_tx_select_threshes[frame_type][i] += diff; cpi->rd_tx_select_threshes[frame_type][i] /= 2; } if (cm->reference_mode == REFERENCE_MODE_SELECT) { int single_count_zero = 0; int comp_count_zero = 0; for (i = 0; i < COMP_INTER_CONTEXTS; i++) { single_count_zero += cm->counts.comp_inter[i][0]; comp_count_zero += cm->counts.comp_inter[i][1];
3291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360
} if (comp_count_zero == 0) { cm->reference_mode = SINGLE_REFERENCE; vp9_zero(cm->counts.comp_inter); } else if (single_count_zero == 0) { cm->reference_mode = COMPOUND_REFERENCE; vp9_zero(cm->counts.comp_inter); } } if (cm->tx_mode == TX_MODE_SELECT) { int count4x4 = 0; int count8x8_lp = 0, count8x8_8x8p = 0; int count16x16_16x16p = 0, count16x16_lp = 0; int count32x32 = 0; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { count4x4 += cm->counts.tx.p32x32[i][TX_4X4]; count4x4 += cm->counts.tx.p16x16[i][TX_4X4]; count4x4 += cm->counts.tx.p8x8[i][TX_4X4]; count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8]; count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8]; count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8]; count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16]; count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16]; count32x32 += cm->counts.tx.p32x32[i][TX_32X32]; } if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && count32x32 == 0) { cm->tx_mode = ALLOW_8X8; reset_skip_txfm_size(cm, TX_8X8); } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { cm->tx_mode = ONLY_4X4; reset_skip_txfm_size(cm, TX_4X4); } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { cm->tx_mode = ALLOW_32X32; } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { cm->tx_mode = ALLOW_16X16; reset_skip_txfm_size(cm, TX_16X16); } } } else { cpi->mb.e_mbd.lossless = cpi->oxcf.lossless; cm->reference_mode = SINGLE_REFERENCE; // Force the usage of the BILINEAR interp_filter. cm->interp_filter = BILINEAR; encode_frame_internal(cpi); } } static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) { const MB_PREDICTION_MODE y_mode = mi->mbmi.mode; const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode; const BLOCK_SIZE bsize = mi->mbmi.sb_type; if (bsize < BLOCK_8X8) { int idx, idy; const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_h) for (idx = 0; idx < 2; idx += num_4x4_w) ++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode]; } else { ++counts->y_mode[size_group_lookup[bsize]][y_mode]; }
3361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430
++counts->uv_mode[y_mode][uv_mode]; } // Experimental stub function to create a per MB zbin adjustment based on // some previously calculated measure of MB activity. static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->act_zbin_adj = *(x->mb_activity_ptr); #else // Apply the masking to the RD multiplier. const int64_t act = *(x->mb_activity_ptr); const int64_t a = act + 4 * cpi->activity_avg; const int64_t b = 4 * act + cpi->activity_avg; if (act > cpi->activity_avg) x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1; else x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b); #endif } static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) { if (enabled) { if (is_inter_block(mbmi)) { if (mbmi->mode == ZEROMV) { return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST : LF_ZEROMV_ZBIN_BOOST; } else { return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST : MV_ZBIN_BOOST; } } else { return INTRA_ZBIN_BOOST; } } else { return 0; } } static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO **mi_8x8 = xd->mi_8x8; MODE_INFO *mi = mi_8x8[0]; MB_MODE_INFO *mbmi = &mi->mbmi; PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize); unsigned int segment_id = mbmi->segment_id; const int mis = cm->mode_info_stride; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 && cpi->oxcf.aq_mode != COMPLEXITY_AQ && cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ && cpi->sf.allow_skip_recode; x->skip_optimize = ctx->is_coded; ctx->is_coded = 1; x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame && x->q_index < QIDX_SKIP_THRESH); if (x->skip_encode) return; if (cm->frame_type == KEY_FRAME) { if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
3431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500
adjust_act_zbin(cpi, x); vp9_update_zbin_extra(cpi, x); } } else { set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); xd->interp_kernel = vp9_get_interp_kernel(mbmi->interp_filter); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Adjust the zbin based on this MB rate. adjust_act_zbin(cpi, x); } // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to suppress noise cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi, cpi->zbin_mode_boost_enabled); vp9_update_zbin_extra(cpi, x); } if (!is_inter_block(mbmi)) { int plane; mbmi->skip = 1; for (plane = 0; plane < MAX_MB_PLANE; ++plane) vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane); if (output_enabled) sum_intra_stats(&cm->counts, mi); vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8)); } else { int ref; const int is_compound = has_second_ref(mbmi); for (ref = 0; ref < 1 + is_compound; ++ref) { YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, &xd->block_refs[ref]->sf); } vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8)); if (!x->skip) { mbmi->skip = 1; vp9_encode_sb(x, MAX(bsize, BLOCK_8X8)); vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8)); } else { mbmi->skip = 1; if (output_enabled) cm->counts.skip[vp9_get_skip_context(xd)][1]++; reset_skip_context(xd, MAX(bsize, BLOCK_8X8)); } } if (output_enabled) { if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 && !(is_inter_block(mbmi) && (mbmi->skip || vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) { ++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd), &cm->counts.tx)[mbmi->tx_size]; } else { int x, y; TX_SIZE tx_size; // The new intra coding scheme requires no change of transform size if (is_inter_block(&mi->mbmi)) { tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode], max_txsize_lookup[bsize]); } else { tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4; } for (y = 0; y < mi_height; y++)
3501350235033504350535063507
for (x = 0; x < mi_width; x++) if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) mi_8x8[mis * y + x]->mbmi.tx_size = tx_size; } } }