Newer
Older
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
}
static void encode_sb64(VP9_COMP *cpi,
int mb_row,
int mb_col,
TOKENEXTRA **tp, int is_sb[4]) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
cpi->sb64_count[is_sb[0] == 2]++;
if (is_sb[0] == 2) {
set_offsets(cpi, mb_row, mb_col, 64);
update_state(cpi, &x->sb64_context, 64, 1);
encode_superblock64(cpi, tp,
update_stats(cpi, mb_row, mb_col);
(*tp)->Token = EOSB_TOKEN;
(*tp)++;
if (mb_row < cm->mb_rows)
cpi->tplist[mb_row].stop = *tp;
} else {
int i;
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
if (mb_row + y_idx * 2 >= cm->mb_rows ||
mb_col + x_idx * 2 >= cm->mb_cols) {
// MB lies outside frame, move on
continue;
}
xd->sb_index = i;
encode_sb(cpi, mb_row + 2 * y_idx, mb_col + 2 * x_idx, 1, tp,
static void encode_sb_row(VP9_COMP *cpi,
int mb_row,
TOKENEXTRA **tp,
int *totalrate) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int mb_col;
// Initialize the left context for the new SB row
vpx_memset(cm->left_context, 0, sizeof(cm->left_context));
for (mb_col = cm->cur_tile_mb_col_start;
mb_col < cm->cur_tile_mb_col_end; mb_col += 4) {
int i;
int sb32_rate = 0, sb32_dist = 0;
int is_sb[4];
int sb64_rate = INT_MAX, sb64_dist;
ENTROPY_CONTEXT_PLANES l[4], a[4];
TOKENEXTRA *tp_orig = *tp;
memcpy(&a, cm->above_context + mb_col, sizeof(a));
memcpy(&l, cm->left_context, sizeof(l));
for (i = 0; i < 4; i++) {
const int x_idx = (i & 1) << 1, y_idx = i & 2;
int mb_rate = 0, mb_dist = 0;
int sb_rate = INT_MAX, sb_dist;
int splitmodes_used = 0;
int sb32_skip = 0;
if (mb_row + y_idx >= cm->mb_rows || mb_col + x_idx >= cm->mb_cols)
continue;
xd->sb_index = i;
splitmodes_used = pick_mb_modes(cpi, mb_row + y_idx, mb_col + x_idx,
tp, &mb_rate, &mb_dist);
mb_rate += vp9_cost_bit(cm->sb32_coded, 0);
if (cpi->sf.splitmode_breakout) {
sb32_skip = splitmodes_used;
sb64_skip += splitmodes_used;
}
if ( !sb32_skip &&
!(((cm->mb_cols & 1) && mb_col + x_idx == cm->mb_cols - 1) ||
((cm->mb_rows & 1) && mb_row + y_idx == cm->mb_rows - 1))) {
/* Pick a mode assuming that it applies to all 4 of the MBs in the SB */
pick_sb_modes(cpi, mb_row + y_idx, mb_col + x_idx,
tp, &sb_rate, &sb_dist);
sb_rate += vp9_cost_bit(cm->sb32_coded, 1);
}
/* Decide whether to encode as a SB or 4xMBs */
if (sb_rate < INT_MAX &&
RDCOST(x->rdmult, x->rddiv, sb_rate, sb_dist) <
RDCOST(x->rdmult, x->rddiv, mb_rate, mb_dist)) {
is_sb[i] = 1;
sb32_rate += sb_rate;
sb32_dist += sb_dist;
is_sb[i] = 0;
sb32_rate += mb_rate;
sb32_dist += mb_dist;
// If we used 16x16 instead of 32x32 then skip 64x64 (if enabled).
if (cpi->sf.mb16_breakout) {
++sb64_skip;
}
/* Encode SB using best computed mode(s) */
// FIXME(rbultje): there really shouldn't be any need to encode_mb/sb
// for each level that we go up, we can just keep tokens and recon
// pixels of the lower level; also, inverting SB/MB order (big->small
// instead of small->big) means we can use as threshold for small, which
// may enable breakouts if RD is not good enough (i.e. faster)
encode_sb(cpi, mb_row + y_idx, mb_col + x_idx, 0, tp, is_sb[i]);
memcpy(cm->above_context + mb_col, &a, sizeof(a));
memcpy(cm->left_context, &l, sizeof(l));
sb32_rate += vp9_cost_bit(cm->sb64_coded, 0);
if (!sb64_skip &&
!(((cm->mb_cols & 3) && mb_col + 3 >= cm->mb_cols) ||
((cm->mb_rows & 3) && mb_row + 3 >= cm->mb_rows))) {
pick_sb64_modes(cpi, mb_row, mb_col, tp, &sb64_rate, &sb64_dist);
sb64_rate += vp9_cost_bit(cm->sb64_coded, 1);
if (sb64_rate < INT_MAX &&
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
is_sb[0] = 2;
*totalrate += sb64_rate;
encode_sb64(cpi, mb_row, mb_col, tp, is_sb);
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count));
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
xd->pre = cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]];
vp9_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp9_build_block_offsets(x);
vp9_setup_block_dptrs(&x->e_mbd);
vp9_setup_block_ptrs(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->count_mb_ref_frame_usage)
vp9_zero(cpi->bmode_count)
vp9_zero(cpi->ymode_count)
vp9_zero(cpi->i8x8_mode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cpi->sub_mv_ref_count)
vp9_zero(cpi->mbsplit_count)
vp9_zero(cpi->common.fc.mv_ref_ct)
vp9_zero(cpi->sb_ymode_count)
vp9_zero(cpi->sb32_count);
vp9_zero(cpi->sb64_count);
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(cpi->interintra_count);
vp9_zero(cpi->interintra_select_count);
#endif
vpx_memset(cm->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
xd->fullpixel_mask = cm->full_pixel ? 0xfffffff8 : 0xffffffff;
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4;
cpi->mb.optimize = 0;
cpi->common.filter_level = 0;
cpi->zbin_mode_boost_enabled = FALSE;
cpi->common.txfm_mode = ONLY_4X4;
} else {
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4;
static void encode_frame_internal(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
// Compute a modified set of reference frame probabilities to use when
// prediction fails. These are based on the current general estimates for
// this frame which may be updated with each iteration of the recode loop.
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
totalrate = 0;
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0;
cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0;
vp9_zero(cpi->switchable_interp_count);
vp9_zero(cpi->best_switchable_interp_count);
xd->mode_info_context = cm->mi;
xd->prev_mode_info_context = cm->prev_mi;
vp9_zero(cpi->coef_counts_4x4);
vp9_zero(cpi->coef_counts_8x8);
vp9_zero(cpi->coef_counts_16x16);
#if CONFIG_CODE_NONZEROCOUNT
vp9_zero(cm->fc.nzc_counts_4x4);
vp9_zero(cm->fc.nzc_counts_8x8);
vp9_zero(cm->fc.nzc_counts_16x16);
vp9_zero(cm->fc.nzc_counts_32x32);
vp9_zero(cm->fc.nzc_pcat_counts);
#if CONFIG_NEW_MVREF
vp9_zero(cpi->mb_mv_ref_count);
#endif
// force lossless mode
if (cm->base_qindex <= 4)
cm->base_qindex = 0;
cpi->mb.e_mbd.lossless = (cm->base_qindex == 0 &&
cm->y1dc_delta_q == 0 &&
cm->uvdc_delta_q == 0 &&
cm->uvac_delta_q == 0);
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff));
vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count));
vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count));
vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p));
vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p));
vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p));
vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff));
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
// Take tiles into account and give start/end MB
int tile_col, tile_row;
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_get_tile_col_offsets(cm, tile_col);
for (mb_row = cm->cur_tile_mb_row_start;
mb_row < cm->cur_tile_mb_row_end; mb_row += 4) {
encode_sb_row(cpi, mb_row, &tp, &totalrate);
}
cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old);
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
static int check_dual_ref_flags(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) {
if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) &&
vp9_check_segref(xd, 1, LAST_FRAME))
if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) &&
vp9_check_segref(xd, 1, GOLDEN_FRAME))
if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) &&
vp9_check_segref(xd, 1, ALTREF_FRAME))
return (!!(ref_flags & VP9_GOLD_FLAG) +
!!(ref_flags & VP9_LAST_FLAG) +
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
Ronald S. Bultje
committed
}
static void reset_skip_txfm_size_mb(VP9_COMP *cpi,
MODE_INFO *mi, TX_SIZE txfm_max) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mbmi->txfm_size > txfm_max) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = mbmi->segment_id;
xd->mode_info_context = mi;
assert((vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) ||
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
(cm->mb_no_coeff_skip && mbmi->mb_skip_coeff));
mbmi->txfm_size = txfm_max;
}
}
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi[y * mis + x].mbmi.mb_skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
TX_SIZE txfm_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
mi[y * mis + x].mbmi.txfm_size = txfm_size;
}
}
static void reset_skip_txfm_size_sb32(VP9_COMP *cpi, MODE_INFO *mi,
int mis, TX_SIZE txfm_max,
int mb_rows_left, int mb_cols_left) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mbmi->txfm_size > txfm_max) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = mbmi->segment_id;
const int ymbs = MIN(2, mb_rows_left);
const int xmbs = MIN(2, mb_cols_left);
xd->mode_info_context = mi;
assert((vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) ||
(cm->mb_no_coeff_skip && get_skip_flag(mi, mis, ymbs, xmbs)));
set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max);
}
}
static void reset_skip_txfm_size_sb64(VP9_COMP *cpi, MODE_INFO *mi,
int mis, TX_SIZE txfm_max,
int mb_rows_left, int mb_cols_left) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mbmi->txfm_size > txfm_max) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = mbmi->segment_id;
const int ymbs = MIN(4, mb_rows_left);
const int xmbs = MIN(4, mb_cols_left);
xd->mode_info_context = mi;
assert((vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) ||
(cm->mb_no_coeff_skip && get_skip_flag(mi, mis, ymbs, xmbs)));
set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max);
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
const int mis = cm->mode_info_stride;
MODE_INFO *mi, *mi_ptr = cm->mi;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) {
mi = mi_ptr;
for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 4, mi += 4) {
if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) {
reset_skip_txfm_size_sb64(cpi, mi, mis, txfm_max,
cm->mb_rows - mb_row, cm->mb_cols - mb_col);
int i;
for (i = 0; i < 4; i++) {
const int x_idx_sb = (i & 1) << 1, y_idx_sb = i & 2;
MODE_INFO *sb_mi = mi + y_idx_sb * mis + x_idx_sb;
if (mb_row + y_idx_sb >= cm->mb_rows ||
mb_col + x_idx_sb >= cm->mb_cols)
continue;
if (sb_mi->mbmi.sb_type) {
reset_skip_txfm_size_sb32(cpi, sb_mi, mis, txfm_max,
cm->mb_rows - mb_row - y_idx_sb,
cm->mb_cols - mb_col - x_idx_sb);
int m;
for (m = 0; m < 4; m++) {
const int x_idx = x_idx_sb + (m & 1), y_idx = y_idx_sb + (m >> 1);
MODE_INFO *mb_mi;
if (mb_col + x_idx >= cm->mb_cols ||
mb_row + y_idx >= cm->mb_rows)
continue;
mb_mi = mi + y_idx * mis + x_idx;
assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16);
reset_skip_txfm_size_mb(cpi, mb_mi, txfm_max);
}
}
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
int i, frame_type, pred_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][0] &&
cpi->rd_prediction_type_threshes[frame_type][2] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */
if (cpi->oxcf.lossless) {
txfm_type = ONLY_4X4;
/* FIXME (rbultje): this code is disabled until we support cost updates
* while a frame is being encoded; the problem is that each time we
* "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities
* for 16x16 (and 8x8) start lagging behind, thus leading to them lagging
* further behind and not being chosen for subsequent frames either. This
* is essentially a local minimum problem that we can probably fix by
* estimating real costs more closely within a frame, perhaps by re-
* calculating costs on-the-fly as frame encoding progresses. */
if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = TX_MODE_SELECT;
} else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
&& cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
) {
txfm_type = ONLY_4X4;
} else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = ALLOW_16X16;
} else
txfm_type = ALLOW_8X8;
#else
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >=
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
#endif
cpi->common.txfm_mode = txfm_type;
if (txfm_type != TX_MODE_SELECT) {
cpi->common.prob_tx[0] = 128;
cpi->common.prob_tx[1] = 128;
}
cpi->common.comp_pred_mode = pred_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < NB_TXFM_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZE_MAX_SB - 1), 0);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
single_count_zero += cpi->single_pred_count[i];
comp_count_zero += cpi->comp_pred_count[i];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
}
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4];
const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8];
const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8];
const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16];
const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16];
const int count32x32 = cpi->txfm_count_32x32p[TX_32X32];
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
reset_skip_txfm_size(cpi, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
reset_skip_txfm_size(cpi, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_16X16;
reset_skip_txfm_size(cpi, TX_16X16);
// Update interpolation filter strategy for next frame.
if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter))
void vp9_setup_block_ptrs(MACROBLOCK *x) {
x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
void vp9_build_block_offsets(MACROBLOCK *x) {
vp9_build_block_doffsets(&x->e_mbd);
for (br = 0; br < 4; br++) {
for (bc = 0; bc < 4; bc++) {
BLOCK *this_block = &x->block[block];
// this_block->base_src = &x->src.y_buffer;
// this_block->src_stride = x->src.y_stride;
// this_block->src = 4 * br * this_block->src_stride + 4 * bc;
this_block->base_src = &x->src.y_buffer;
this_block->src_stride = x->src.y_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// u blocks
for (br = 0; br < 2; br++) {
for (bc = 0; bc < 2; bc++) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
// v blocks
for (br = 0; br < 2; br++) {
for (bc = 0; bc < 2; bc++) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) {
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
++ uv_modes_y[m][uvm];
if (m == B_PRED) {
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
do {
++ bct[xd->block[b].bmi.as_mode.first];
} while (++b < 16);
}
if (m == I8X8_PRED) {
i8x8_modes[xd->block[0].bmi.as_mode.first]++;
i8x8_modes[xd->block[2].bmi.as_mode.first]++;
i8x8_modes[xd->block[8].bmi.as_mode.first]++;
i8x8_modes[xd->block[10].bmi.as_mode.first]++;
}
if (m != I8X8_PRED)
++cpi->y_uv_mode_count[m][uvm];
else {
cpi->i8x8_mode_count[xd->block[0].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[2].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[8].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[10].bmi.as_mode.first]++;
}
if (m == B_PRED) {
int b = 0;
do {
int m = xd->block[b].bmi.as_mode.first;
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
++cpi->bmode_count[m];
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
static void update_sb64_skip_coeff_state(VP9_COMP *cpi,
ENTROPY_CONTEXT_PLANES ta[16],
ENTROPY_CONTEXT_PLANES tl[16],
TOKENEXTRA *t[16],
TOKENEXTRA **tp,
int skip[16], int output_enabled) {
MACROBLOCK *const x = &cpi->mb;
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
if (x->e_mbd.mode_info_context->mbmi.txfm_size == TX_32X32) {
TOKENEXTRA tokens[4][1024+512];
int n_tokens[4], n;
// if there were no skips, we don't need to do anything
if (!skip[0] && !skip[1] && !skip[2] && !skip[3])
return;
// if we don't do coeff skipping for this frame, we don't
// need to do anything here
if (!cpi->common.mb_no_coeff_skip)
return;
// if all 4 MBs skipped coeff coding, nothing to be done
if (skip[0] && skip[1] && skip[2] && skip[3])
return;
// so the situation now is that we want to skip coeffs
// for some MBs, but not all, and we didn't code EOB
// coefficients for them. However, the skip flag for this
// SB will be 0 overall, so we need to insert EOBs in the
// middle of the token tree. Do so here.
for (n = 0; n < 4; n++) {
if (n < 3) {
n_tokens[n] = t[n + 1] - t[n];
} else {
n_tokens[n] = *tp - t[3];
}
if (n_tokens[n]) {
memcpy(tokens[n], t[n], n_tokens[n] * sizeof(*t[0]));
}
}
// reset pointer, stuff EOBs where necessary
*tp = t[0];
for (n = 0; n < 4; n++) {
if (skip[n]) {
x->e_mbd.above_context = &ta[n * 2];
x->e_mbd.left_context = &tl[n * 2];
vp9_stuff_sb(cpi, &x->e_mbd, tp, !output_enabled);
} else {
if (n_tokens[n]) {
memcpy(*tp, tokens[n], sizeof(*t[0]) * n_tokens[n]);
}
(*tp) += n_tokens[n];
}
}
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
TOKENEXTRA tokens[16][16 * 25];
int n_tokens[16], n;
// if there were no skips, we don't need to do anything
if (!skip[ 0] && !skip[ 1] && !skip[ 2] && !skip[ 3] &&
!skip[ 4] && !skip[ 5] && !skip[ 6] && !skip[ 7] &&
!skip[ 8] && !skip[ 9] && !skip[10] && !skip[11] &&
!skip[12] && !skip[13] && !skip[14] && !skip[15])
return;
// if we don't do coeff skipping for this frame, we don't
// need to do anything here
if (!cpi->common.mb_no_coeff_skip)
return;
// if all 4 MBs skipped coeff coding, nothing to be done
if (skip[ 0] && skip[ 1] && skip[ 2] && skip[ 3] &&
skip[ 4] && skip[ 5] && skip[ 6] && skip[ 7] &&
skip[ 8] && skip[ 9] && skip[10] && skip[11] &&
skip[12] && skip[13] && skip[14] && skip[15])
return;
// so the situation now is that we want to skip coeffs
// for some MBs, but not all, and we didn't code EOB
// coefficients for them. However, the skip flag for this
// SB will be 0 overall, so we need to insert EOBs in the
// middle of the token tree. Do so here.
for (n = 0; n < 16; n++) {
if (n < 15) {
n_tokens[n] = t[n + 1] - t[n];
} else {
n_tokens[n] = *tp - t[15];
}
if (n_tokens[n]) {
memcpy(tokens[n], t[n], n_tokens[n] * sizeof(*t[0]));
}
}
// reset pointer, stuff EOBs where necessary
*tp = t[0];
for (n = 0; n < 16; n++) {
if (skip[n]) {
x->e_mbd.above_context = &ta[n];
x->e_mbd.left_context = &tl[n];
vp9_stuff_mb(cpi, &x->e_mbd, tp, !output_enabled);
} else {
if (n_tokens[n]) {
memcpy(*tp, tokens[n], sizeof(*t[0]) * n_tokens[n]);
}
(*tp) += n_tokens[n];
}
}
}
}
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
#if CONFIG_CODE_NONZEROCOUNT
static void gather_nzcs_mb16(VP9_COMMON *const cm,
MACROBLOCKD *xd) {
int i;
vpx_memset(xd->mode_info_context->mbmi.nzcs, 0,
384 * sizeof(xd->mode_info_context->mbmi.nzcs[0]));
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_4X4:
for (i = 0; i < 24; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_8X8:
for (i = 0; i < 16; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
if (xd->mode_info_context->mbmi.mode == I8X8_PRED ||
xd->mode_info_context->mbmi.mode == SPLITMV) {
for (i = 16; i < 24; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
} else {
for (i = 16; i < 24; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
}
break;
case TX_16X16:
xd->mode_info_context->mbmi.nzcs[0] = xd->nzcs[0];
for (i = 16; i < 24; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
default:
break;
}
}
static void gather_nzcs_sb32(VP9_COMMON *const cm,
MACROBLOCKD *xd) {
int i, j;
MODE_INFO *m = xd->mode_info_context;
int mis = cm->mode_info_stride;
vpx_memset(m->mbmi.nzcs, 0,
384 * sizeof(xd->mode_info_context->mbmi.nzcs[0]));
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_4X4:
for (i = 0; i < 96; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_8X8:
for (i = 0; i < 96; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_16X16:
for (i = 0; i < 96; i += 16) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_32X32:
xd->mode_info_context->mbmi.nzcs[0] = xd->nzcs[0];
for (i = 64; i < 96; i += 16) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
default:
break;
}
for (i = 0; i < 2; ++i)
for (j = 0; j < 2; ++j) {
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,