qsgdefaultimagenode.cpp 25 KB
Newer Older
/****************************************************************************
**
** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
** This file is part of the QtQuick module of the Qt Toolkit.
** $QT_BEGIN_LICENSE:LGPL21$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia. For licensing terms and
** conditions see http://qt.digia.com/licensing. For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 or version 3 as published by the Free
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
** following information to ensure the GNU Lesser General Public License
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
** In addition, as a special exception, Digia gives you certain additional
** rights. These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** $QT_END_LICENSE$
**
****************************************************************************/

#include "qsgdefaultimagenode_p.h"
#include <private/qsgmaterialshader_p.h>
#include <QtCore/qvarlengtharray.h>
#include <QtCore/qmath.h>
#include <QtGui/qopenglfunctions.h>
#include <qsgtexturematerial.h>
#include <private/qsgtexturematerial_p.h>
#include <qsgmaterial.h>

QT_BEGIN_NAMESPACE

namespace
{
    struct SmoothVertex
    {
        float x, y, u, v;
        float dx, dy, du, dv;
    };

    const QSGGeometry::AttributeSet &smoothAttributeSet()
    {
        static QSGGeometry::Attribute data[] = {
            QSGGeometry::Attribute::create(0, 2, GL_FLOAT, true),
            QSGGeometry::Attribute::create(1, 2, GL_FLOAT, false),
            QSGGeometry::Attribute::create(2, 2, GL_FLOAT, false),
            QSGGeometry::Attribute::create(3, 2, GL_FLOAT, false)
        };
        static QSGGeometry::AttributeSet attrs = { 4, sizeof(SmoothVertex), data };
        return attrs;
    }
}

class SmoothTextureMaterialShader : public QSGTextureMaterialShader
{
public:
    SmoothTextureMaterialShader();

    virtual void updateState(const RenderState &state, QSGMaterial *newEffect, QSGMaterial *oldEffect);
    virtual char const *const *attributeNames() const;

protected:
    virtual void initialize();

    int m_pixelSizeLoc;
};


QSGSmoothTextureMaterial::QSGSmoothTextureMaterial()
{
    setFlag(RequiresFullMatrixExceptTranslate, true);
    setFlag(Blending, true);
}

void QSGSmoothTextureMaterial::setTexture(QSGTexture *texture)
QSGMaterialType *QSGSmoothTextureMaterial::type() const
{
    static QSGMaterialType type;
    return &type;
}

QSGMaterialShader *QSGSmoothTextureMaterial::createShader() const
{
    return new SmoothTextureMaterialShader;
}

SmoothTextureMaterialShader::SmoothTextureMaterialShader()
    : QSGTextureMaterialShader()
{
    setShaderSourceFile(QOpenGLShader::Vertex, QStringLiteral(":/scenegraph/shaders/smoothtexture.vert"));
    setShaderSourceFile(QOpenGLShader::Fragment, QStringLiteral(":/scenegraph/shaders/smoothtexture.frag"));
}

void SmoothTextureMaterialShader::updateState(const RenderState &state, QSGMaterial *newEffect, QSGMaterial *oldEffect)
{
    if (oldEffect == 0) {
        // The viewport is constant, so set the pixel size uniform only once.
        QRect r = state.viewportRect();
        program()->setUniformValue(m_pixelSizeLoc, 2.0f / r.width(), 2.0f / r.height());
    }
    QSGTextureMaterialShader::updateState(state, newEffect, oldEffect);
}

char const *const *SmoothTextureMaterialShader::attributeNames() const
{
    static char const *const attributes[] = {
        "vertex",
        "multiTexCoord",
        "vertexOffset",
        "texCoordOffset",
        0
    };
    return attributes;
}

void SmoothTextureMaterialShader::initialize()
{
    m_pixelSizeLoc = program()->uniformLocation("pixelSize");
    QSGTextureMaterialShader::initialize();
}

QSGDefaultImageNode::QSGDefaultImageNode()
    : m_innerSourceRect(0, 0, 1, 1)
    , m_subSourceRect(0, 0, 1, 1)
    , m_antialiasing(false)
    , m_mirror(false)
    , m_dirtyGeometry(false)
    , m_geometry(QSGGeometry::defaultAttributes_TexturedPoint2D(), 4)
{
    setMaterial(&m_materialO);
    setOpaqueMaterial(&m_material);
    setGeometry(&m_geometry);

#ifdef QSG_RUNTIME_DESCRIPTION
    qsgnode_set_description(this, QLatin1String("image"));
#endif
}

void QSGDefaultImageNode::setTargetRect(const QRectF &rect)
{
    if (rect == m_targetRect)
        return;
    m_targetRect = rect;
    m_dirtyGeometry = true;
}

void QSGDefaultImageNode::setInnerTargetRect(const QRectF &rect)
{
    if (rect == m_innerTargetRect)
        return;
    m_innerTargetRect = rect;
    m_dirtyGeometry = true;
}

void QSGDefaultImageNode::setInnerSourceRect(const QRectF &rect)
    if (rect == m_innerSourceRect)
        return;
    m_innerSourceRect = rect;
    m_dirtyGeometry = true;
}

void QSGDefaultImageNode::setSubSourceRect(const QRectF &rect)
{
    if (rect == m_subSourceRect)
        return;
    m_subSourceRect = rect;
    m_dirtyGeometry = true;
}

void QSGDefaultImageNode::setFiltering(QSGTexture::Filtering filtering)
{
    if (m_material.filtering() == filtering)
        return;

    m_material.setFiltering(filtering);
    m_materialO.setFiltering(filtering);
    m_smoothMaterial.setFiltering(filtering);
    markDirty(DirtyMaterial);
}


void QSGDefaultImageNode::setMipmapFiltering(QSGTexture::Filtering filtering)
{
    if (m_material.mipmapFiltering() == filtering)
        return;

    m_material.setMipmapFiltering(filtering);
    m_materialO.setMipmapFiltering(filtering);
    m_smoothMaterial.setMipmapFiltering(filtering);
    markDirty(DirtyMaterial);
}

void QSGDefaultImageNode::setVerticalWrapMode(QSGTexture::WrapMode wrapMode)
{
    if (m_material.verticalWrapMode() == wrapMode)
        return;

    m_material.setVerticalWrapMode(wrapMode);
    m_materialO.setVerticalWrapMode(wrapMode);
    m_smoothMaterial.setVerticalWrapMode(wrapMode);
    markDirty(DirtyMaterial);
}

void QSGDefaultImageNode::setHorizontalWrapMode(QSGTexture::WrapMode wrapMode)
{
    if (m_material.horizontalWrapMode() == wrapMode)
        return;

    m_material.setHorizontalWrapMode(wrapMode);
    m_materialO.setHorizontalWrapMode(wrapMode);
    m_smoothMaterial.setHorizontalWrapMode(wrapMode);
    markDirty(DirtyMaterial);
}


void QSGDefaultImageNode::setTexture(QSGTexture *texture)
{

    m_material.setTexture(texture);
    m_materialO.setTexture(texture);
    m_smoothMaterial.setTexture(texture);
    m_material.setFlag(QSGMaterial::Blending, texture->hasAlphaChannel());

    markDirty(DirtyMaterial);

    // Because the texture can be a different part of the atlas, we need to update it...
    m_dirtyGeometry = true;
}

void QSGDefaultImageNode::setAntialiasing(bool antialiasing)
{
    if (antialiasing == m_antialiasing)
    m_antialiasing = antialiasing;
    if (m_antialiasing) {
        setMaterial(&m_smoothMaterial);
        setOpaqueMaterial(0);
        setGeometry(new QSGGeometry(smoothAttributeSet(), 0));
        setFlag(OwnsGeometry, true);
    } else {
        setMaterial(&m_materialO);
        setOpaqueMaterial(&m_material);
        setGeometry(&m_geometry);
        setFlag(OwnsGeometry, false);
    }
    m_dirtyGeometry = true;
}

void QSGDefaultImageNode::setMirror(bool mirror)
{
    if (mirror == m_mirror)
        return;
    m_mirror = mirror;
    m_dirtyGeometry = true;
}


void QSGDefaultImageNode::update()
{
    if (m_dirtyGeometry)
        updateGeometry();
}

void QSGDefaultImageNode::preprocess()
{
    bool doDirty = false;
    QSGLayer *t = qobject_cast<QSGLayer *>(m_material.texture());
    if (t) {
        doDirty = t->updateTexture();
        updateGeometry();
    }
    bool alpha = m_material.flags() & QSGMaterial::Blending;
    if (m_material.texture() && alpha != m_material.texture()->hasAlphaChannel()) {
        m_material.setFlag(QSGMaterial::Blending, !alpha);
        doDirty = true;
    }

    if (doDirty)
        markDirty(DirtyMaterial);
}

inline static bool isPowerOfTwo(int x)
{
    // Assumption: x >= 1
    return x == (x & -x);
}

Martin Jones's avatar
Martin Jones committed
namespace {
    struct X { float x, tx; };
    struct Y { float y, ty; };
}

static inline void appendQuad(quint16 **indices, quint16 topLeft, quint16 topRight,
                              quint16 bottomLeft, quint16 bottomRight)
{
    *(*indices)++ = topLeft;
    *(*indices)++ = bottomLeft;
    *(*indices)++ = bottomRight;
    *(*indices)++ = bottomRight;
    *(*indices)++ = topRight;
    *(*indices)++ = topLeft;
}

void QSGDefaultImageNode::updateGeometry()
{
    Q_ASSERT(!m_targetRect.isEmpty());
    const QSGTexture *t = m_material.texture();
    if (!t) {
        QSGGeometry *g = geometry();
        g->allocate(4);
        g->setDrawingMode(GL_TRIANGLE_STRIP);
        memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
    } else {
        QRectF sourceRect = t->normalizedTextureSubRect();

        QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
                               sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
                               m_innerSourceRect.width() * sourceRect.width(),
                               m_innerSourceRect.height() * sourceRect.height());

        bool hasMargins = m_targetRect != m_innerTargetRect;
        int floorLeft = qFloor(m_subSourceRect.left());
        int ceilRight = qCeil(m_subSourceRect.right());
        int floorTop = qFloor(m_subSourceRect.top());
        int ceilBottom = qCeil(m_subSourceRect.bottom());
        int hTiles = ceilRight - floorLeft;
        int vTiles = ceilBottom - floorTop;

        bool hasTiles = hTiles != 1 || vTiles != 1;
        bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);
        bool wrapSupported = true;
Laszlo Agocs's avatar
Laszlo Agocs committed

        QOpenGLContext *ctx = QOpenGLContext::currentContext();
#ifndef QT_OPENGL_ES_2
        if (ctx->isOpenGLES())
Laszlo Agocs's avatar
Laszlo Agocs committed
        {
            bool npotSupported = ctx->functions()->hasOpenGLFeature(QOpenGLFunctions::NPOTTextureRepeat);
            QSize size = t->textureSize();
            const bool isNpot = !isPowerOfTwo(size.width()) || !isPowerOfTwo(size.height());
            wrapSupported = npotSupported || !isNpot;
        }

        // An image can be rendered as a single quad if:
        // - There are no margins, and either:
        //   - the image isn't repeated
        //   - the source rectangle fills the entire texture so that texture wrapping can be used,
        //     and NPOT is supported
        if (!hasMargins && (!hasTiles || (fullTexture && wrapSupported))) {
            QRectF sr;
            if (!fullTexture) {
                sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
                            innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
                            m_subSourceRect.width() * innerSourceRect.width(),
                            m_subSourceRect.height() * innerSourceRect.height());
            } else {
                sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
                            m_subSourceRect.width(), m_subSourceRect.height());
            }
            if (m_mirror) {
                qreal oldLeft = sr.left();
                sr.setLeft(sr.right());
                sr.setRight(oldLeft);
            }

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);
                g->allocate(8, 14);
                g->setDrawingMode(GL_TRIANGLE_STRIP);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                        ? m_targetRect.width() : m_targetRect.height()) * 0.5f;
                float sx = float(sr.width() / m_targetRect.width());
                float sy = float(sr.height() / m_targetRect.height());
                for (int d = -1; d <= 1; d += 2) {
                    for (int j = 0; j < 2; ++j) {
                        for (int i = 0; i < 2; ++i, ++vertices) {
                            vertices->x = m_targetRect.x() + i * m_targetRect.width();
                            vertices->y = m_targetRect.y() + j * m_targetRect.height();
                            vertices->u = sr.x() + i * sr.width();
                            vertices->v = sr.y() + j * sr.height();
                            vertices->dx = (i == 0 ? delta : -delta) * d;
                            vertices->dy = (j == 0 ? delta : -delta) * d;
                            vertices->du = (d < 0 ? 0 : vertices->dx * sx);
                            vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
                        }
                    }
                }
                Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
                static const quint16 indices[] = {
                    0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
                    4, 6, 5, 7
                };
                Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
                memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
            } else {
                m_geometry.allocate(4);
                m_geometry.setDrawingMode(GL_TRIANGLE_STRIP);
                QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
            }
        } else {
            int hCells = hTiles;
            int vCells = vTiles;
            if (m_innerTargetRect.width() == 0)
                hCells = 0;
            if (m_innerTargetRect.left() != m_targetRect.left())
                ++hCells;
            if (m_innerTargetRect.right() != m_targetRect.right())
                ++hCells;
            if (m_innerTargetRect.height() == 0)
                vCells = 0;
            if (m_innerTargetRect.top() != m_targetRect.top())
                ++vCells;
            if (m_innerTargetRect.bottom() != m_targetRect.bottom())
                ++vCells;
            QVarLengthArray<X, 32> xData(2 * hCells);
            QVarLengthArray<Y, 32> yData(2 * vCells);
            X *xs = xData.data();
            Y *ys = yData.data();

            if (m_innerTargetRect.left() != m_targetRect.left()) {
                xs[0].x = m_targetRect.left();
                xs[0].tx = sourceRect.left();
                xs[1].x = m_innerTargetRect.left();
                xs[1].tx = innerSourceRect.left();
            if (m_innerTargetRect.width() != 0) {
                xs[0].x = m_innerTargetRect.left();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width();
                ++xs;
                float b = m_innerTargetRect.width() / m_subSourceRect.width();
                float a = m_innerTargetRect.x() - m_subSourceRect.x() * b;
                for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
                    xs[0].x = xs[1].x = a + b * i;
                    xs[0].tx = innerSourceRect.right();
                    xs[1].tx = innerSourceRect.left();
                    xs += 2;
                }
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.x() + (m_subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
                ++xs;
            }
            if (m_innerTargetRect.right() != m_targetRect.right()) {
                xs[0].x = m_innerTargetRect.right();
                xs[0].tx = innerSourceRect.right();
                xs[1].x = m_targetRect.right();
                xs[1].tx = sourceRect.right();
                xs += 2;
            }
            Q_ASSERT(xs == xData.data() + xData.size());
            if (m_mirror) {
                float leftPlusRight = m_targetRect.left() + m_targetRect.right();
                int count = xData.size();
                xs = xData.data();
                for (int i = 0; i < count >> 1; ++i)
                    qSwap(xs[i], xs[count - 1 - i]);
                for (int i = 0; i < count; ++i)
                    xs[i].x = leftPlusRight - xs[i].x;
            if (m_innerTargetRect.top() != m_targetRect.top()) {
                ys[0].y = m_targetRect.top();
                ys[0].ty = sourceRect.top();
                ys[1].y = m_innerTargetRect.top();
                ys[1].ty = innerSourceRect.top();
                ys += 2;
            }
            if (m_innerTargetRect.height() != 0) {
                ys[0].y = m_innerTargetRect.top();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height();
                ++ys;
                float b = m_innerTargetRect.height() / m_subSourceRect.height();
                float a = m_innerTargetRect.y() - m_subSourceRect.y() * b;
                for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
                    ys[0].y = ys[1].y = a + b * i;
                    ys[0].ty = innerSourceRect.bottom();
                    ys[1].ty = innerSourceRect.top();
                    ys += 2;
                }
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.y() + (m_subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
                ++ys;
            }
            if (m_innerTargetRect.bottom() != m_targetRect.bottom()) {
                ys[0].y = m_innerTargetRect.bottom();
                ys[0].ty = innerSourceRect.bottom();
                ys[1].y = m_targetRect.bottom();
                ys[1].ty = sourceRect.bottom();
                ys += 2;
            }
            Q_ASSERT(ys == yData.data() + yData.size());

            if (m_antialiasing) {
                QSGGeometry *g = geometry();
                Q_ASSERT(g != &m_geometry);

                g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
                            hCells * vCells * 6 + (hCells + vCells) * 12);
                g->setDrawingMode(GL_TRIANGLES);
                SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
                memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
                quint16 *indices = g->indexDataAsUShort();

                // The deltas are how much the fuzziness can reach into the image.
                // Only the border vertices are moved by the vertex shader, so the fuzziness
                // can't reach further into the image than the closest interior vertices.
                float leftDx = xData.at(1).x - xData.at(0).x;
                float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
                float topDy = yData.at(1).y - yData.at(0).y;
                float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;

                float leftDu = xData.at(1).tx - xData.at(0).tx;
                float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
                float topDv = yData.at(1).ty - yData.at(0).ty;
                float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;

                if (hCells == 1) {
                    leftDx = rightDx *= 0.5f;
                    leftDu = rightDu *= 0.5f;
                }
                if (vCells == 1) {
                    topDy = bottomDy *= 0.5f;
                    topDv = bottomDv *= 0.5f;
                }
                // This delta is how much the fuzziness can reach out from the image.
                float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
                                    ? m_targetRect.width() : m_targetRect.height()) * 0.5f;

                quint16 index = 0;
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    bool isTop = j == 0;
                    bool isBottom = j == vCells - 1;
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        bool isLeft = i == 0;
                        bool isRight = i == hCells - 1;

                        SmoothVertex *v = vertices + index;

                        quint16 topLeft = index;
                        for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 topRight = index;
                        for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[0].y;
                            v->v = ys[0].ty;
                        }

                        quint16 bottomLeft = index;
                        for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[0].x;
                            v->u = xs[0].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        quint16 bottomRight = index;
                        for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
                            v->x = xs[1].x;
                            v->u = xs[1].tx;
                            v->y = ys[1].y;
                            v->v = ys[1].ty;
                        }

                        appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);

                        if (isTop) {
                            vertices[topLeft].dy = vertices[topRight].dy = topDy;
                            vertices[topLeft].dv = vertices[topRight].dv = topDv;
                            vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
                            appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
                        }

                        if (isBottom) {
                            vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
                            vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
                            vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
                            appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
                        }

                        if (isLeft) {
                            vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
                            vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
                            vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
                            appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
                        }

                        if (isRight) {
                            vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
                            vertices[topRight].du = vertices[bottomRight].du = -rightDu;
                            vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
                            appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
                        }
                    }
                }
                Q_ASSERT(index == g->vertexCount());
                Q_ASSERT(indices - g->indexCount() == g->indexData());
            } else {
                m_geometry.allocate(hCells * vCells * 4, hCells * vCells * 6);
                m_geometry.setDrawingMode(GL_TRIANGLES);
                QSGGeometry::TexturedPoint2D *vertices = m_geometry.vertexDataAsTexturedPoint2D();
                ys = yData.data();
                for (int j = 0; j < vCells; ++j, ys += 2) {
                    xs = xData.data();
                    for (int i = 0; i < hCells; ++i, xs += 2) {
                        vertices[0].x = vertices[2].x = xs[0].x;
                        vertices[0].tx = vertices[2].tx = xs[0].tx;
                        vertices[1].x = vertices[3].x = xs[1].x;
                        vertices[1].tx = vertices[3].tx = xs[1].tx;

                        vertices[0].y = vertices[1].y = ys[0].y;
                        vertices[0].ty = vertices[1].ty = ys[0].ty;
                        vertices[2].y = vertices[3].y = ys[1].y;
                        vertices[2].ty = vertices[3].ty = ys[1].ty;

                        vertices += 4;
                    }
                quint16 *indices = m_geometry.indexDataAsUShort();
                for (int i = 0; i < 4 * vCells * hCells; i += 4)
                    appendQuad(&indices, i, i + 1, i + 2, i + 3);
    }
    markDirty(DirtyGeometry);
    m_dirtyGeometry = false;
}

QT_END_NAMESPACE