Newer
Older
/****************************************************************************
**
** Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
** This file is part of the QtQuick module of the Qt Toolkit.
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia. For licensing terms and
** conditions see http://qt.digia.com/licensing. For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 or version 3 as published by the Free
** Software Foundation and appearing in the file LICENSE.LGPLv21 and
** LICENSE.LGPLv3 included in the packaging of this file. Please review the
** following information to ensure the GNU Lesser General Public License
** requirements will be met: https://www.gnu.org/licenses/lgpl.html and
** http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
** In addition, as a special exception, Digia gives you certain additional
** rights. These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qsgdefaultimagenode_p.h"
#include <private/qsgmaterialshader_p.h>
#include <QtCore/qvarlengtharray.h>
#include <QtCore/qmath.h>
#include <QtGui/qopenglfunctions.h>
#include <qsgtexturematerial.h>
#include <private/qsgtexturematerial_p.h>
#include <qsgmaterial.h>
namespace
{
struct SmoothVertex
{
float x, y, u, v;
float dx, dy, du, dv;
};
const QSGGeometry::AttributeSet &smoothAttributeSet()
{
static QSGGeometry::Attribute data[] = {
QSGGeometry::Attribute::create(0, 2, GL_FLOAT, true),
QSGGeometry::Attribute::create(1, 2, GL_FLOAT, false),
QSGGeometry::Attribute::create(2, 2, GL_FLOAT, false),
QSGGeometry::Attribute::create(3, 2, GL_FLOAT, false)
};
static QSGGeometry::AttributeSet attrs = { 4, sizeof(SmoothVertex), data };
return attrs;
}
}
class SmoothTextureMaterialShader : public QSGTextureMaterialShader
{
public:
SmoothTextureMaterialShader();
virtual void updateState(const RenderState &state, QSGMaterial *newEffect, QSGMaterial *oldEffect);
virtual char const *const *attributeNames() const;
protected:
virtual void initialize();
int m_pixelSizeLoc;
};
QSGSmoothTextureMaterial::QSGSmoothTextureMaterial()
{
setFlag(RequiresFullMatrixExceptTranslate, true);
setFlag(Blending, true);
}
void QSGSmoothTextureMaterial::setTexture(QSGTexture *texture)
{
m_texture = texture;
}
QSGMaterialType *QSGSmoothTextureMaterial::type() const
{
static QSGMaterialType type;
return &type;
}
QSGMaterialShader *QSGSmoothTextureMaterial::createShader() const
{
return new SmoothTextureMaterialShader;
}
SmoothTextureMaterialShader::SmoothTextureMaterialShader()
: QSGTextureMaterialShader()
{
setShaderSourceFile(QOpenGLShader::Vertex, QStringLiteral(":/scenegraph/shaders/smoothtexture.vert"));
setShaderSourceFile(QOpenGLShader::Fragment, QStringLiteral(":/scenegraph/shaders/smoothtexture.frag"));
}
void SmoothTextureMaterialShader::updateState(const RenderState &state, QSGMaterial *newEffect, QSGMaterial *oldEffect)
{
if (oldEffect == 0) {
// The viewport is constant, so set the pixel size uniform only once.
QRect r = state.viewportRect();
program()->setUniformValue(m_pixelSizeLoc, 2.0f / r.width(), 2.0f / r.height());
}
QSGTextureMaterialShader::updateState(state, newEffect, oldEffect);
}
char const *const *SmoothTextureMaterialShader::attributeNames() const
{
static char const *const attributes[] = {
"vertex",
"multiTexCoord",
"vertexOffset",
0
};
return attributes;
}
void SmoothTextureMaterialShader::initialize()
{
m_pixelSizeLoc = program()->uniformLocation("pixelSize");
QSGTextureMaterialShader::initialize();
}
: m_innerSourceRect(0, 0, 1, 1)
, m_subSourceRect(0, 0, 1, 1)
, m_antialiasing(false)
, m_dirtyGeometry(false)
, m_geometry(QSGGeometry::defaultAttributes_TexturedPoint2D(), 4)
{
setMaterial(&m_materialO);
setOpaqueMaterial(&m_material);
setGeometry(&m_geometry);
#ifdef QSG_RUNTIME_DESCRIPTION
qsgnode_set_description(this, QLatin1String("image"));
#endif
}
void QSGDefaultImageNode::setTargetRect(const QRectF &rect)
{
if (rect == m_targetRect)
return;
m_targetRect = rect;
m_dirtyGeometry = true;
}
void QSGDefaultImageNode::setInnerTargetRect(const QRectF &rect)
{
if (rect == m_innerTargetRect)
return;
m_innerTargetRect = rect;
m_dirtyGeometry = true;
}
void QSGDefaultImageNode::setInnerSourceRect(const QRectF &rect)
if (rect == m_innerSourceRect)
void QSGDefaultImageNode::setSubSourceRect(const QRectF &rect)
{
if (rect == m_subSourceRect)
return;
m_subSourceRect = rect;
m_dirtyGeometry = true;
}
void QSGDefaultImageNode::setFiltering(QSGTexture::Filtering filtering)
{
if (m_material.filtering() == filtering)
return;
m_material.setFiltering(filtering);
m_materialO.setFiltering(filtering);
m_smoothMaterial.setFiltering(filtering);
markDirty(DirtyMaterial);
}
void QSGDefaultImageNode::setMipmapFiltering(QSGTexture::Filtering filtering)
{
if (m_material.mipmapFiltering() == filtering)
return;
m_material.setMipmapFiltering(filtering);
m_materialO.setMipmapFiltering(filtering);
m_smoothMaterial.setMipmapFiltering(filtering);
markDirty(DirtyMaterial);
}
void QSGDefaultImageNode::setVerticalWrapMode(QSGTexture::WrapMode wrapMode)
{
if (m_material.verticalWrapMode() == wrapMode)
return;
m_material.setVerticalWrapMode(wrapMode);
m_materialO.setVerticalWrapMode(wrapMode);
m_smoothMaterial.setVerticalWrapMode(wrapMode);
markDirty(DirtyMaterial);
}
void QSGDefaultImageNode::setHorizontalWrapMode(QSGTexture::WrapMode wrapMode)
{
if (m_material.horizontalWrapMode() == wrapMode)
return;
m_material.setHorizontalWrapMode(wrapMode);
m_materialO.setHorizontalWrapMode(wrapMode);
m_smoothMaterial.setHorizontalWrapMode(wrapMode);
markDirty(DirtyMaterial);
}
void QSGDefaultImageNode::setTexture(QSGTexture *texture)
{
Q_ASSERT(texture);
m_material.setTexture(texture);
m_materialO.setTexture(texture);
m_smoothMaterial.setTexture(texture);
m_material.setFlag(QSGMaterial::Blending, texture->hasAlphaChannel());
markDirty(DirtyMaterial);
// Because the texture can be a different part of the atlas, we need to update it...
m_dirtyGeometry = true;
}
void QSGDefaultImageNode::setAntialiasing(bool antialiasing)
{
if (antialiasing == m_antialiasing)
m_antialiasing = antialiasing;
if (m_antialiasing) {
setMaterial(&m_smoothMaterial);
setOpaqueMaterial(0);
setGeometry(new QSGGeometry(smoothAttributeSet(), 0));
setFlag(OwnsGeometry, true);
} else {
setMaterial(&m_materialO);
setOpaqueMaterial(&m_material);
setGeometry(&m_geometry);
setFlag(OwnsGeometry, false);
}
m_dirtyGeometry = true;
}
void QSGDefaultImageNode::setMirror(bool mirror)
{
if (mirror == m_mirror)
return;
m_mirror = mirror;
m_dirtyGeometry = true;
}
void QSGDefaultImageNode::update()
{
if (m_dirtyGeometry)
updateGeometry();
}
void QSGDefaultImageNode::preprocess()
{
bool doDirty = false;
Simon Hausmann
committed
QSGLayer *t = qobject_cast<QSGLayer *>(m_material.texture());
if (t) {
doDirty = t->updateTexture();
updateGeometry();
}
bool alpha = m_material.flags() & QSGMaterial::Blending;
if (m_material.texture() && alpha != m_material.texture()->hasAlphaChannel()) {
m_material.setFlag(QSGMaterial::Blending, !alpha);
doDirty = true;
}
if (doDirty)
markDirty(DirtyMaterial);
}
inline static bool isPowerOfTwo(int x)
{
// Assumption: x >= 1
return x == (x & -x);
}
namespace {
struct X { float x, tx; };
struct Y { float y, ty; };
}
static inline void appendQuad(quint16 **indices, quint16 topLeft, quint16 topRight,
quint16 bottomLeft, quint16 bottomRight)
{
*(*indices)++ = topLeft;
*(*indices)++ = bottomLeft;
*(*indices)++ = bottomRight;
*(*indices)++ = bottomRight;
*(*indices)++ = topRight;
*(*indices)++ = topLeft;
}
void QSGDefaultImageNode::updateGeometry()
{
Q_ASSERT(!m_targetRect.isEmpty());
const QSGTexture *t = m_material.texture();
if (!t) {
QSGGeometry *g = geometry();
g->allocate(4);
g->setDrawingMode(GL_TRIANGLE_STRIP);
memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
QRectF sourceRect = t->normalizedTextureSubRect();
QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
m_innerSourceRect.width() * sourceRect.width(),
m_innerSourceRect.height() * sourceRect.height());
bool hasMargins = m_targetRect != m_innerTargetRect;
int floorLeft = qFloor(m_subSourceRect.left());
int ceilRight = qCeil(m_subSourceRect.right());
int floorTop = qFloor(m_subSourceRect.top());
int ceilBottom = qCeil(m_subSourceRect.bottom());
int hTiles = ceilRight - floorLeft;
int vTiles = ceilBottom - floorTop;
bool hasTiles = hTiles != 1 || vTiles != 1;
bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);
QOpenGLContext *ctx = QOpenGLContext::currentContext();
#ifndef QT_OPENGL_ES_2
{
bool npotSupported = ctx->functions()->hasOpenGLFeature(QOpenGLFunctions::NPOTTextureRepeat);
QSize size = t->textureSize();
const bool isNpot = !isPowerOfTwo(size.width()) || !isPowerOfTwo(size.height());
wrapSupported = npotSupported || !isNpot;
}
// An image can be rendered as a single quad if:
// - There are no margins, and either:
// - the image isn't repeated
// - the source rectangle fills the entire texture so that texture wrapping can be used,
// and NPOT is supported
if (!hasMargins && (!hasTiles || (fullTexture && wrapSupported))) {
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
QRectF sr;
if (!fullTexture) {
sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
m_subSourceRect.width() * innerSourceRect.width(),
m_subSourceRect.height() * innerSourceRect.height());
} else {
sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
m_subSourceRect.width(), m_subSourceRect.height());
}
if (m_mirror) {
qreal oldLeft = sr.left();
sr.setLeft(sr.right());
sr.setRight(oldLeft);
}
if (m_antialiasing) {
QSGGeometry *g = geometry();
Q_ASSERT(g != &m_geometry);
g->allocate(8, 14);
g->setDrawingMode(GL_TRIANGLE_STRIP);
SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
? m_targetRect.width() : m_targetRect.height()) * 0.5f;
float sx = float(sr.width() / m_targetRect.width());
float sy = float(sr.height() / m_targetRect.height());
for (int d = -1; d <= 1; d += 2) {
for (int j = 0; j < 2; ++j) {
for (int i = 0; i < 2; ++i, ++vertices) {
vertices->x = m_targetRect.x() + i * m_targetRect.width();
vertices->y = m_targetRect.y() + j * m_targetRect.height();
vertices->u = sr.x() + i * sr.width();
vertices->v = sr.y() + j * sr.height();
vertices->dx = (i == 0 ? delta : -delta) * d;
vertices->dy = (j == 0 ? delta : -delta) * d;
vertices->du = (d < 0 ? 0 : vertices->dx * sx);
vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
}
}
}
Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
static const quint16 indices[] = {
0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
4, 6, 5, 7
};
Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
} else {
m_geometry.allocate(4);
m_geometry.setDrawingMode(GL_TRIANGLE_STRIP);
QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
}
} else {
int hCells = hTiles;
int vCells = vTiles;
if (m_innerTargetRect.width() == 0)
hCells = 0;
if (m_innerTargetRect.left() != m_targetRect.left())
++hCells;
if (m_innerTargetRect.right() != m_targetRect.right())
++hCells;
if (m_innerTargetRect.height() == 0)
vCells = 0;
if (m_innerTargetRect.top() != m_targetRect.top())
++vCells;
if (m_innerTargetRect.bottom() != m_targetRect.bottom())
++vCells;
QVarLengthArray<X, 32> xData(2 * hCells);
QVarLengthArray<Y, 32> yData(2 * vCells);
X *xs = xData.data();
Y *ys = yData.data();
if (m_innerTargetRect.left() != m_targetRect.left()) {
xs[0].x = m_targetRect.left();
xs[0].tx = sourceRect.left();
xs[1].x = m_innerTargetRect.left();
xs[1].tx = innerSourceRect.left();
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
if (m_innerTargetRect.width() != 0) {
xs[0].x = m_innerTargetRect.left();
xs[0].tx = innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width();
++xs;
float b = m_innerTargetRect.width() / m_subSourceRect.width();
float a = m_innerTargetRect.x() - m_subSourceRect.x() * b;
for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
xs[0].x = xs[1].x = a + b * i;
xs[0].tx = innerSourceRect.right();
xs[1].tx = innerSourceRect.left();
xs += 2;
}
xs[0].x = m_innerTargetRect.right();
xs[0].tx = innerSourceRect.x() + (m_subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
++xs;
}
if (m_innerTargetRect.right() != m_targetRect.right()) {
xs[0].x = m_innerTargetRect.right();
xs[0].tx = innerSourceRect.right();
xs[1].x = m_targetRect.right();
xs[1].tx = sourceRect.right();
xs += 2;
}
Q_ASSERT(xs == xData.data() + xData.size());
if (m_mirror) {
float leftPlusRight = m_targetRect.left() + m_targetRect.right();
int count = xData.size();
xs = xData.data();
for (int i = 0; i < count >> 1; ++i)
qSwap(xs[i], xs[count - 1 - i]);
for (int i = 0; i < count; ++i)
xs[i].x = leftPlusRight - xs[i].x;
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
if (m_innerTargetRect.top() != m_targetRect.top()) {
ys[0].y = m_targetRect.top();
ys[0].ty = sourceRect.top();
ys[1].y = m_innerTargetRect.top();
ys[1].ty = innerSourceRect.top();
ys += 2;
}
if (m_innerTargetRect.height() != 0) {
ys[0].y = m_innerTargetRect.top();
ys[0].ty = innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height();
++ys;
float b = m_innerTargetRect.height() / m_subSourceRect.height();
float a = m_innerTargetRect.y() - m_subSourceRect.y() * b;
for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
ys[0].y = ys[1].y = a + b * i;
ys[0].ty = innerSourceRect.bottom();
ys[1].ty = innerSourceRect.top();
ys += 2;
}
ys[0].y = m_innerTargetRect.bottom();
ys[0].ty = innerSourceRect.y() + (m_subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
++ys;
}
if (m_innerTargetRect.bottom() != m_targetRect.bottom()) {
ys[0].y = m_innerTargetRect.bottom();
ys[0].ty = innerSourceRect.bottom();
ys[1].y = m_targetRect.bottom();
ys[1].ty = sourceRect.bottom();
ys += 2;
}
Q_ASSERT(ys == yData.data() + yData.size());
if (m_antialiasing) {
QSGGeometry *g = geometry();
Q_ASSERT(g != &m_geometry);
g->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
hCells * vCells * 6 + (hCells + vCells) * 12);
g->setDrawingMode(GL_TRIANGLES);
SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
quint16 *indices = g->indexDataAsUShort();
// The deltas are how much the fuzziness can reach into the image.
// Only the border vertices are moved by the vertex shader, so the fuzziness
// can't reach further into the image than the closest interior vertices.
float leftDx = xData.at(1).x - xData.at(0).x;
float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
float topDy = yData.at(1).y - yData.at(0).y;
float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;
float leftDu = xData.at(1).tx - xData.at(0).tx;
float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
float topDv = yData.at(1).ty - yData.at(0).ty;
float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;
if (hCells == 1) {
leftDx = rightDx *= 0.5f;
leftDu = rightDu *= 0.5f;
}
if (vCells == 1) {
topDy = bottomDy *= 0.5f;
topDv = bottomDv *= 0.5f;
}
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
// This delta is how much the fuzziness can reach out from the image.
float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
? m_targetRect.width() : m_targetRect.height()) * 0.5f;
quint16 index = 0;
ys = yData.data();
for (int j = 0; j < vCells; ++j, ys += 2) {
xs = xData.data();
bool isTop = j == 0;
bool isBottom = j == vCells - 1;
for (int i = 0; i < hCells; ++i, xs += 2) {
bool isLeft = i == 0;
bool isRight = i == hCells - 1;
SmoothVertex *v = vertices + index;
quint16 topLeft = index;
for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
v->x = xs[0].x;
v->u = xs[0].tx;
v->y = ys[0].y;
v->v = ys[0].ty;
}
quint16 topRight = index;
for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
v->x = xs[1].x;
v->u = xs[1].tx;
v->y = ys[0].y;
v->v = ys[0].ty;
}
quint16 bottomLeft = index;
for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
v->x = xs[0].x;
v->u = xs[0].tx;
v->y = ys[1].y;
v->v = ys[1].ty;
}
quint16 bottomRight = index;
for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
v->x = xs[1].x;
v->u = xs[1].tx;
v->y = ys[1].y;
v->v = ys[1].ty;
}
appendQuad(&indices, topLeft, topRight, bottomLeft, bottomRight);
if (isTop) {
vertices[topLeft].dy = vertices[topRight].dy = topDy;
vertices[topLeft].dv = vertices[topRight].dv = topDv;
vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
appendQuad(&indices, topLeft + 1, topRight + 1, topLeft, topRight);
}
if (isBottom) {
vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
appendQuad(&indices, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
}
if (isLeft) {
vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
appendQuad(&indices, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
}
if (isRight) {
vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
vertices[topRight].du = vertices[bottomRight].du = -rightDu;
vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
appendQuad(&indices, topRight, topRight + 1, bottomRight, bottomRight + 1);
}
}
}
Q_ASSERT(index == g->vertexCount());
Q_ASSERT(indices - g->indexCount() == g->indexData());
} else {
m_geometry.allocate(hCells * vCells * 4, hCells * vCells * 6);
m_geometry.setDrawingMode(GL_TRIANGLES);
QSGGeometry::TexturedPoint2D *vertices = m_geometry.vertexDataAsTexturedPoint2D();
ys = yData.data();
for (int j = 0; j < vCells; ++j, ys += 2) {
xs = xData.data();
for (int i = 0; i < hCells; ++i, xs += 2) {
vertices[0].x = vertices[2].x = xs[0].x;
vertices[0].tx = vertices[2].tx = xs[0].tx;
vertices[1].x = vertices[3].x = xs[1].x;
vertices[1].tx = vertices[3].tx = xs[1].tx;
vertices[0].y = vertices[1].y = ys[0].y;
vertices[0].ty = vertices[1].ty = ys[0].ty;
vertices[2].y = vertices[3].y = ys[1].y;
vertices[2].ty = vertices[3].ty = ys[1].ty;
vertices += 4;
}
quint16 *indices = m_geometry.indexDataAsUShort();
for (int i = 0; i < 4 * vCells * hCells; i += 4)
appendQuad(&indices, i, i + 1, i + 2, i + 3);
}
markDirty(DirtyGeometry);
m_dirtyGeometry = false;
}
QT_END_NAMESPACE