Newer
Older
static void tree_to_node(void *data, BLOCK_SIZE bsize, vt_node *node) {
switch (bsize) {
case BLOCK_64X64: {
v64x64 *vt = (v64x64 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].vt.none;
break;
}
case BLOCK_32X32: {
v32x32 *vt = (v32x32 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].vt.none;
break;
}
case BLOCK_16X16: {
v16x16 *vt = (v16x16 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i].vt.none;
break;
}
case BLOCK_8X8: {
v8x8 *vt = (v8x8 *) data;
node->vt = &vt->vt;
for (i = 0; i < 4; i++)
node->split[i] = &vt->split[i];
break;
}
default:
node->vt = 0;
for (i = 0; i < 4; i++)
node->split[i] = 0;
assert(-1);
}
}
// Set variance values given sum square error, sum error, count.
static void fill_variance(var *v, int64_t s2, int64_t s, int c) {
v->sum_square_error = s2;
v->sum_error = s;
v->count = c;
* (v->sum_square_error - v->sum_error * v->sum_error / v->count)
}
// Combine 2 variance structures by summing the sum_error, sum_square_error,
// and counts and then calculating the new variance.
void sum_2_variances(var *r, var *a, var*b) {
fill_variance(r, a->sum_square_error + b->sum_square_error,
a->sum_error + b->sum_error, a->count + b->count);
}
static void fill_variance_tree(void *data, BLOCK_SIZE bsize) {
tree_to_node(data, bsize, &node);
sum_2_variances(&node.vt->horz[0], node.split[0], node.split[1]);
sum_2_variances(&node.vt->horz[1], node.split[2], node.split[3]);
sum_2_variances(&node.vt->vert[0], node.split[0], node.split[2]);
sum_2_variances(&node.vt->vert[1], node.split[1], node.split[3]);
sum_2_variances(&node.vt->none, &node.vt->vert[0], &node.vt->vert[1]);
}
#if PERFORM_RANDOM_PARTITIONING
static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO *m,
BLOCK_SIZE block_size, int mi_row,
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
int mi_col, int mi_size) {
VP9_COMMON * const cm = &cpi->common;
vt_node vt;
const int mis = cm->mode_info_stride;
int64_t threshold = 4 * cpi->common.base_qindex * cpi->common.base_qindex;
tree_to_node(data, block_size, &vt);
// split none is available only if we have more than half a block size
// in width and height inside the visible image
if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows &&
(rand() & 3) < 1) {
set_block_size(cm, m, block_size, mis, mi_row, mi_col);
return 1;
}
// vertical split is available on all but the bottom border
if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold
&& (rand() & 3) < 1) {
set_block_size(cm, m, get_subsize(block_size, PARTITION_VERT), mis, mi_row,
mi_col);
return 1;
}
// horizontal split is available on all but the right border
if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold
&& (rand() & 3) < 1) {
set_block_size(cm, m, get_subsize(block_size, PARTITION_HORZ), mis, mi_row,
mi_col);
return 1;
}
return 0;
}
static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO **m,
BLOCK_SIZE bsize, int mi_row,
int mi_col, int mi_size) {
VP9_COMMON * const cm = &cpi->common;
vt_node vt;
const int mis = cm->mode_info_stride;
int64_t threshold = 50 * cpi->common.base_qindex;
tree_to_node(data, bsize, &vt);
// split none is available only if we have more than half a block size
// in width and height inside the visible image
if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows
&& vt.vt->none.variance < threshold) {
set_block_size(cm, m, bsize, mis, mi_row, mi_col);
return 1;
}
// vertical split is available on all but the bottom border
if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold
&& vt.vt->vert[1].variance < threshold) {
set_block_size(cm, m, get_subsize(bsize, PARTITION_VERT), mis, mi_row,
// horizontal split is available on all but the right border
if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold
&& vt.vt->horz[1].variance < threshold) {
set_block_size(cm, m, get_subsize(bsize, PARTITION_HORZ), mis, mi_row,
mi_col);
return 1;
}
return 0;
}
static void choose_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8,
int mi_row, int mi_col) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK *x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
// TODO(JBB): More experimentation or testing of this threshold;
int64_t threshold = 4;
int i, j, k;
v64x64 vt;
unsigned char * s;
int sp;
int pixels_wide = 64, pixels_high = 64;
set_offsets(cpi, mi_row, mi_col, BLOCK_64X64);
if (xd->mb_to_right_edge < 0)
pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0)
pixels_high += (xd->mb_to_bottom_edge >> 3);
s = x->plane[0].src.buf;
sp = x->plane[0].src.stride;
// TODO(JBB): Clearly the higher the quantizer the fewer partitions we want
// but this needs more experimentation.
threshold = threshold * cpi->common.base_qindex * cpi->common.base_qindex;
d = vp9_64x64_zeros;
dp = 64;
const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, LAST_FRAME)];
YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx];
YV12_BUFFER_CONFIG *second_ref_fb = NULL;
setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col,
setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col,
xd->this_mi->mbmi.ref_frame[0] = LAST_FRAME;
xd->this_mi->mbmi.sb_type = BLOCK_64X64;
vp9_find_best_ref_mvs(xd,
mi_8x8[0]->mbmi.ref_mvs[mi_8x8[0]->mbmi.ref_frame[0]],
xd->this_mi->mbmi.mv[0] = nearest_mv;
vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64);
d = xd->plane[0].dst.buf;
dp = xd->plane[0].dst.stride;
}
// Fill in the entire tree of 8x8 variances for splits.
for (i = 0; i < 4; i++) {
const int x32_idx = ((i & 1) << 5);
const int y32_idx = ((i >> 1) << 5);
for (j = 0; j < 4; j++) {
const int x16_idx = x32_idx + ((j & 1) << 4);
const int y16_idx = y32_idx + ((j >> 1) << 4);
v16x16 *vst = &vt.split[i].split[j];
for (k = 0; k < 4; k++) {
int x_idx = x16_idx + ((k & 1) << 3);
int y_idx = y16_idx + ((k >> 1) << 3);
unsigned int sse = 0;
int sum = 0;
if (x_idx < pixels_wide && y_idx < pixels_high)
vp9_get_sse_sum_8x8(s + y_idx * sp + x_idx, sp,
d + y_idx * dp + x_idx, dp, &sse, &sum);
fill_variance(&vst->split[k].vt.none, sse, sum, 64);
}
}
}
// Fill the rest of the variance tree by summing the split partition
// values.
for (i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16);
fill_variance_tree(&vt.split[i], BLOCK_32X32);
fill_variance_tree(&vt, BLOCK_64X64);
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold, or we
// hit 8x8.
if (!set_vt_partitioning(cpi, &vt, mi_8x8, BLOCK_64X64, mi_row, mi_col,
4)) {
for (i = 0; i < 4; ++i) {
const int x32_idx = ((i & 1) << 2);
const int y32_idx = ((i >> 1) << 2);
if (!set_vt_partitioning(cpi, &vt.split[i], mi_8x8, BLOCK_32X32,
(mi_row + y32_idx), (mi_col + x32_idx), 2)) {
for (j = 0; j < 4; ++j) {
const int x16_idx = ((j & 1) << 1);
const int y16_idx = ((j >> 1) << 1);
if (!set_vt_partitioning(cpi, &vt.split[i].split[j], mi_8x8,
BLOCK_16X16,
(mi_row + y32_idx + y16_idx),
(mi_col + x32_idx + x16_idx), 1)) {
for (k = 0; k < 4; ++k) {
const int x8_idx = (k & 1);
const int y8_idx = (k >> 1);
set_block_size(cm, mi_8x8, BLOCK_8X8, mis,
(mi_row + y32_idx + y16_idx + y8_idx),
(mi_col + x32_idx + x16_idx + x8_idx));
}
}
}
static void rd_use_partition(VP9_COMP *cpi, MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD *xd = &cpi->mb.e_mbd;
const int mis = cm->mode_info_stride;
int bsl = b_width_log2(bsize);
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
int ms = num_4x4_blocks_wide / 2;
int mh = num_4x4_blocks_high / 2;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int last_part_rate = INT_MAX;
int64_t last_part_dist = INT_MAX;
int split_rate = INT_MAX;
int64_t split_dist = INT_MAX;
int none_rate = INT_MAX;
int64_t none_dist = INT_MAX;
int chosen_rate = INT_MAX;
int64_t chosen_dist = INT_MAX;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
subsize = get_subsize(bsize, partition);
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
} else {
*(get_sb_partitioning(x, bsize)) = subsize;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
x->fast_ms = 0;
x->subblock_ref = 0;
if (cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (ms >> 1) < cm->mi_rows &&
mi_col + (ms >> 1) < cm->mi_cols) {
*(get_sb_partitioning(x, bsize)) = bsize;
pick_sb_modes(cpi, mi_row, mi_col, &none_rate, &none_dist, bsize,
get_block_context(x, bsize), INT64_MAX);
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
none_rate += x->partition_cost[pl][PARTITION_NONE];
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->mbmi.sb_type = bs_type;
*(get_sb_partitioning(x, bsize)) = subsize;
}
}
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
bsize, get_block_context(x, bsize), INT64_MAX);
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
subsize, get_block_context(x, subsize), INT64_MAX);
bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
pick_sb_modes(cpi, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize,
get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist,
subsize, get_block_context(x, subsize), INT64_MAX);
bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
pick_sb_modes(cpi, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize,
get_block_context(x, subsize), INT64_MAX);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
// Split partition.
last_part_rate = 0;
last_part_dist = 0;
int x_idx = (i & 1) * (ms >> 1);
int y_idx = (i >> 1) * (ms >> 1);
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
rd_use_partition(cpi, mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
i != 3);
if (rt == INT_MAX || dt == INT_MAX) {
last_part_rate = INT_MAX;
last_part_dist = INT_MAX;
break;
}
last_part_rate += rt;
last_part_dist += dt;
}
break;
default:
assert(0);
}
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
if (last_part_rate < INT_MAX)
last_part_rate += x->partition_cost[pl][partition];
if (cpi->sf.adjust_partitioning_from_last_frame
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows)
&& (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
split_rate = 0;
split_dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2);
int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2);
int rt = 0;
int64_t dt = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows)
|| (mi_col + x_idx >= cm->mi_cols))
continue;
*get_sb_index(xd, split_subsize) = i;
*get_sb_partitioning(x, bsize) = split_subsize;
*get_sb_partitioning(x, split_subsize) = split_subsize;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
split_subsize, get_block_context(x, split_subsize),
INT64_MAX);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (rt == INT_MAX || dt == INT_MAX) {
split_rate = INT_MAX;
split_dist = INT_MAX;
break;
}
if (i != 3)
encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize);
split_rate += rt;
split_dist += dt;
set_partition_seg_context(cm, xd, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, bsize);
split_rate += x->partition_cost[pl][PARTITION_NONE];
}
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
if (split_rate < INT_MAX) {
split_rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rate = split_rate;
chosen_dist = split_dist;
}
}
// If last_part is better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist)
< RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) {
mi_8x8[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = subsize;
chosen_rate = last_part_rate;
chosen_dist = last_part_dist;
}
// If none was better set the partitioning to that...
if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)
> RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) {
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
chosen_rate = none_rate;
chosen_dist = none_dist;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if ( bsize == BLOCK_64X64)
assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX);
if (do_recon)
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
*rate = chosen_rate;
*dist = chosen_dist;
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8,
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64
};
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8,
BLOCK_SIZE * min_block_size,
BLOCK_SIZE * max_block_size ) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO * mi = mi_8x8[index+j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
*min_block_size = MIN(*min_block_size, sb_type);
*max_block_size = MAX(*max_block_size, sb_type);
}
index += xd->mode_info_stride;
}
}
// Look at neighboring blocks and set a min and max partition size based on
static void rd_auto_partition_range(VP9_COMP *cpi, int row, int col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO ** mi_8x8 = xd->mi_8x8;
const int left_in_image = xd->left_available && mi_8x8[-1];
const int above_in_image = xd->up_available &&
mi_8x8[-xd->mode_info_stride];
MODE_INFO ** above_sb64_mi_8x8;
MODE_INFO ** left_sb64_mi_8x8;
// Frequency check
if (cpi->sf.auto_min_max_partition_count <= 0) {
cpi->sf.auto_min_max_partition_count =
cpi->sf.auto_min_max_partition_interval;
*min_block_size = BLOCK_4X4;
*max_block_size = BLOCK_64X64;
} else {
--cpi->sf.auto_min_max_partition_count;
// Set default values if no left or above neighbour
if (!left_in_image && !above_in_image) {
*min_block_size = BLOCK_4X4;
*max_block_size = BLOCK_64X64;
} else {
VP9_COMMON *const cm = &cpi->common;
int row8x8_remaining = cm->cur_tile_mi_row_end - row;
int col8x8_remaining = cm->cur_tile_mi_col_end - col;
int bh, bw;
// Default "min to max" and "max to min"
*min_block_size = BLOCK_64X64;
*max_block_size = BLOCK_4X4;
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, left_sb64_mi_8x8,
min_block_size, max_block_size);
}
// Find the min and max partition sizes used in the above SB64 taking
// the values found for left as a starting point.
if (above_in_image) {
above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, above_sb64_mi_8x8,
min_block_size, max_block_size);
}
// Give a bit of leaway either side of the observed min and max
*min_block_size = min_partition_size[*min_block_size];
*max_block_size = max_partition_size[*max_block_size];
// Check border cases where max and min from neighbours may not be legal.
*max_block_size = find_partition_size(*max_block_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
*min_block_size = MIN(*min_block_size, *max_block_size);
}
static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) {
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Only use 8x8 result for non HD videos.
// int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0;
int use_8x8 = 1;
if (cm->frame_type && !cpi->is_src_frame_alt_ref &&
((use_8x8 && bsize == BLOCK_16X16) ||
bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) {
int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0;
PICK_MODE_CONTEXT *block_context = NULL;
if (bsize == BLOCK_16X16) {
block_context = x->sb8x8_context[xd->sb_index][xd->mb_index];
} else if (bsize == BLOCK_32X32) {
block_context = x->mb_context[xd->sb_index];
} else if (bsize == BLOCK_64X64) {
block_context = x->sb32_context;
}
if (block_context) {
ref0 = block_context[0].mic.mbmi.ref_frame[0];
ref1 = block_context[1].mic.mbmi.ref_frame[0];
ref2 = block_context[2].mic.mbmi.ref_frame[0];
ref3 = block_context[3].mic.mbmi.ref_frame[0];
}
// Currently, only consider 4 inter reference frames.
if (ref0 && ref1 && ref2 && ref3) {
int d01, d23, d02, d13;
// Motion vectors for the four subblocks.
int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row;
int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col;
int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row;
int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col;
int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row;
int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col;
int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row;
int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col;
// Adjust sign if ref is alt_ref.
if (cm->ref_frame_sign_bias[ref0]) {
mvr0 *= -1;
mvc0 *= -1;
}
if (cm->ref_frame_sign_bias[ref1]) {
mvr1 *= -1;
mvc1 *= -1;
}
if (cm->ref_frame_sign_bias[ref2]) {
mvr2 *= -1;
mvc2 *= -1;
}
if (cm->ref_frame_sign_bias[ref3]) {
mvr3 *= -1;
mvc3 *= -1;
}
// Calculate mv distances.
d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1));
d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3));
d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2));
d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3));
if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH &&
d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) {
// Set fast motion search level.
x->fast_ms = 1;
if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 &&
d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) {
// Set fast motion search level.
x->fast_ms = 2;
if (!d01 && !d23 && !d02 && !d13) {
x->fast_ms = 3;
x->subblock_ref = ref0;
}
}
}
}
}
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, int64_t best_rd) {
VP9_COMMON * const cm = &cpi->common;
MACROBLOCK * const x = &cpi->mb;
MACROBLOCKD * const xd = &x->e_mbd;
const int ms = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
BLOCK_SIZE subsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + ms >= cm->mi_rows);
const int force_vert_split = (mi_col + ms >= cm->mi_cols);
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && bsize >= BLOCK_8X8;
int partition_split_done = 0;
if (bsize < BLOCK_8X8) {
// When ab_index = 0 all sub-blocks are handled, so for ab_index != 0
// there is nothing to be done.
if (xd->ab_index != 0) {
*rate = 0;
*dist = 0;
return;
}
assert(mi_height_log2(bsize) == mi_width_log2(bsize));
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
bsize >= cpi->sf.min_partition_size);
partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_vert_split);
do_split &= bsize > cpi->sf.min_partition_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
unsigned int source_variancey;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
source_variancey = get_sby_perpixel_variance(cpi, x, bsize);
if (source_variancey < cpi->sf.disable_split_var_thresh) {
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
do_rect = 0;
}
// PARTITION_NONE
if (partition_none_allowed) {
pick_sb_modes(cpi, mi_row, mi_col, &this_rate, &this_dist, bsize,
get_block_context(x, bsize), best_rd);
if (this_rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
this_rate += x->partition_cost[pl][PARTITION_NONE];
}
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {
int64_t stop_thresh = 2048;
best_rate = this_rate;
best_dist = this_dist;
best_rd = sum_rd;
if (bsize >= BLOCK_8X8)
*(get_sb_partitioning(x, bsize)) = bsize;
// Adjust threshold according to partition size.
stop_thresh >>= 8 - (b_width_log2_lookup[bsize] +
b_height_log2_lookup[bsize]);
// If obtained distortion is very small, choose current partition
// and stop splitting.
if (this_dist < stop_thresh) {
do_split = 0;
do_rect = 0;
}
}
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search)
store_pred_mv(x, get_block_context(x, bsize));
// PARTITION_SPLIT
sum_rd = 0;
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_split) {
subsize = get_subsize(bsize, PARTITION_SPLIT);
for (i = 0; i < 4 && sum_rd < best_rd; ++i) {
const int x_idx = (i & 1) * ms;
const int y_idx = (i >> 1) * ms;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
rd_pick_partition(cpi, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rate, &this_dist, i != 3, best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && i == 4) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_SPLIT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
} else {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check)
do_rect &= !partition_none_allowed;
}
}
partition_split_done = 1;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
x->fast_ms = 0;
x->subblock_ref = 0;
if (partition_split_done &&
cpi->sf.using_small_partition_info) {
compute_fast_motion_search_level(cpi, bsize);
}
// PARTITION_HORZ
if (partition_horz_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row + ms, mi_col, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
if (sum_rd < best_rd) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_HORZ];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rd = sum_rd;
best_rate = sum_rate;
best_dist = sum_dist;
*(get_sb_partitioning(x, bsize)) = subsize;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
}
// PARTITION_VERT
if (partition_vert_allowed && do_rect) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize,
get_block_context(x, subsize), best_rd);
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) {
update_state(cpi, get_block_context(x, subsize), subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize);
if (cpi->sf.adaptive_motion_search)
load_pred_mv(x, get_block_context(x, bsize));
pick_sb_modes(cpi, mi_row, mi_col + ms, &this_rate,
&this_dist, subsize, get_block_context(x, subsize),
best_rd - sum_rd);
if (this_rate == INT_MAX) {
sum_rd = INT64_MAX;
} else {
sum_rate += this_rate;
sum_dist += this_dist;
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
}
if (sum_rd < best_rd) {
set_partition_seg_context(cm, xd, mi_row, mi_col);
pl = partition_plane_context(xd, bsize);
sum_rate += x->partition_cost[pl][PARTITION_VERT];
sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist);
if (sum_rd < best_rd) {
best_rate = sum_rate;
best_dist = sum_dist;
best_rd = sum_rd;
*(get_sb_partitioning(x, bsize)) = subsize;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
*rate = best_rate;
*dist = best_dist;
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon)
encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize);
if (bsize == BLOCK_64X64) {
assert(best_rate < INT_MAX);
assert(best_dist < INT_MAX);