Newer
Older
void vp9_encode_frame(VP9_COMP *cpi) {
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
if (!frame_is_intra_only(cm)) {
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
if (cpi->sf.frame_parameter_update) {
int i;
REFERENCE_MODE reference_mode;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
const int64_t *mode_thresh = cpi->rd_prediction_type_threshes[frame_type];
const int64_t *filter_thresh = cpi->rd_filter_threshes[frame_type];
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3 || !cm->allow_comp_inter_inter)
reference_mode = SINGLE_REFERENCE;
else if (mode_thresh[COMPOUND_REFERENCE] > mode_thresh[SINGLE_REFERENCE] &&
mode_thresh[COMPOUND_REFERENCE] >
mode_thresh[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) &&
cpi->static_mb_pct == 100)
reference_mode = COMPOUND_REFERENCE;
else if (mode_thresh[SINGLE_REFERENCE] > mode_thresh[REFERENCE_MODE_SELECT])
reference_mode = SINGLE_REFERENCE;
if (cm->interp_filter == SWITCHABLE) {
if (frame_type != ALTREF_FRAME &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP] &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP_SHARP] &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP_SMOOTH;
} else if (filter_thresh[EIGHTTAP_SHARP] > filter_thresh[EIGHTTAP] &&
filter_thresh[EIGHTTAP_SHARP] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP_SHARP;
} else if (filter_thresh[EIGHTTAP] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP;
}
cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i) {
const int diff = (int) (cpi->rd_comp_pred_diff[i] / cm->MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
const int64_t diff = cpi->rd_filter_diff[i] / cm->MBs;
cpi->rd_filter_threshes[frame_type][i] =
(cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
}
for (i = 0; i < TX_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += cm->counts.comp_inter[i][0];
comp_count_zero += cm->counts.comp_inter[i][1];
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_txfm_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_txfm_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_txfm_size(cm, TX_16X16);
cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
cm->reference_mode = SINGLE_REFERENCE;
// Force the usage of the BILINEAR interp_filter.
cm->interp_filter = BILINEAR;
encode_frame_internal(cpi);
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h)
for (idx = 0; idx < 2; idx += num_4x4_w)
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
++counts->y_mode[size_group_lookup[bsize]][y_mode];
++counts->uv_mode[y_mode][uv_mode];
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
const int64_t act = *(x->mb_activity_ptr);
const int64_t a = act + 4 * cpi->activity_avg;
const int64_t b = 4 * act + cpi->activity_avg;
x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
if (enabled) {
if (is_inter_block(mbmi)) {
if (mbmi->mode == ZEROMV) {
return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
: LF_ZEROMV_ZBIN_BOOST;
} else {
return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
: MV_ZBIN_BOOST;
}
} else {
return INTRA_ZBIN_BOOST;
}
} else {
return 0;
}
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi_8x8;
MODE_INFO *mi = mi_8x8[0];
PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize);
unsigned int segment_id = mbmi->segment_id;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 &&
(cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) &&
!cpi->sf.use_nonrd_pick_mode;
x->skip_optimize = ctx->is_coded;
ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
x->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode)
return;
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
xd->interp_kernel = vp9_get_interp_kernel(mbmi->interp_filter);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
cpi->zbin_mode_boost_enabled);
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
int ref;
const int is_compound = has_second_ref(mbmi);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
mbmi->ref_frame[ref]);
vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
if (!x->skip) {
mbmi->skip = 1;
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
mbmi->skip = 1;
if (output_enabled)
cm->counts.skip[vp9_get_skip_context(xd)][1]++;
reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
}
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
&cm->counts.tx)[mbmi->tx_size];
TX_SIZE tx_size;
// The new intra coding scheme requires no change of transform size
tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
max_txsize_lookup[bsize]);
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;