Newer
Older
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
#include "vp8/common/header.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/reconintra4x4.h"
#include "vp8/common/recon.h"
#include "vp8/common/reconinter.h"
#include "vp8/common/invtrans.h"
#include "vp8/common/alloccommon.h"
#include "vp8/common/entropymode.h"
#include "vp8/common/quant_common.h"
#include "vpx_scale/vpxscale.h"
#include "vpx_scale/yv12extend.h"
#include "dequantize.h"
#include "dboolhuff.h"
#include "vp8/common/entropy.h"
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
#define COEFCOUNT_TESTING
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
i = inv_recenter_nonneg(v + 1, m);
} else {
i = n - 1 - inv_recenter_nonneg(v + 1, n - 1 - m);
}
return i;
static vp8_prob read_prob_diff_update(vp8_reader *const bc, int oldp) {
int delp = vp8_decode_term_subexp(bc, SUBEXP_PARAM, 255);
return (vp8_prob)inv_remap_prob(delp, oldp);
void vp8cx_init_de_quantizer(VP8D_COMP *pbi) {
int i;
int Q;
VP8_COMMON *const pc = & pbi->common;
for (Q = 0; Q < QINDEX_RANGE; Q++) {
pc->Y1dequant[Q][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q);
pc->Y2dequant[Q][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q);
pc->UVdequant[Q][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
int rc = vp8_default_zig_zag1d[i];
pc->Y1dequant[Q][rc] = (short)vp8_ac_yquant(Q);
pc->Y2dequant[Q][rc] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q);
pc->UVdequant[Q][rc] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q);
void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) {
int i;
int QIndex;
VP8_COMMON *const pc = & pbi->common;
int segment_id = xd->mode_info_context->mbmi.segment_id;
// Set the Q baseline allowing for any segment level adjustment
if (segfeature_active(xd, segment_id, SEG_LVL_ALT_Q)) {
/* Abs Value */
if (xd->mb_segment_abs_delta == SEGMENT_ABSDATA)
QIndex = get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
/* Delta Value */
else {
QIndex = pc->base_qindex +
get_segdata(xd, segment_id, SEG_LVL_ALT_Q);
QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; /* Clamp to valid range */
/* Set up the block level dequant pointers */
for (i = 0; i < 16; i++) {
xd->block[i].dequant = pc->Y1dequant[QIndex];
}
#if CONFIG_HYBRIDTRANSFORM
xd->q_index = QIndex;
#endif
if (!QIndex) {
pbi->common.rtcd.idct.idct1 = vp8_short_inv_walsh4x4_1_x8_c;
pbi->common.rtcd.idct.idct16 = vp8_short_inv_walsh4x4_x8_c;
pbi->common.rtcd.idct.idct1_scalar_add = vp8_dc_only_inv_walsh_add_c;
pbi->common.rtcd.idct.iwalsh1 = vp8_short_inv_walsh4x4_1_lossless_c;
pbi->common.rtcd.idct.iwalsh16 = vp8_short_inv_walsh4x4_lossless_c;
pbi->dequant.idct_add = vp8_dequant_idct_add_lossless_c;
pbi->dequant.dc_idct_add = vp8_dequant_dc_idct_add_lossless_c;
pbi->dequant.dc_idct_add_y_block = vp8_dequant_dc_idct_add_y_block_lossless_c;
pbi->dequant.idct_add_y_block = vp8_dequant_idct_add_y_block_lossless_c;
pbi->dequant.idct_add_uv_block = vp8_dequant_idct_add_uv_block_lossless_c;
} else {
pbi->common.rtcd.idct.idct1 = vp8_short_idct4x4llm_1_c;
pbi->common.rtcd.idct.idct16 = vp8_short_idct4x4llm_c;
pbi->common.rtcd.idct.idct1_scalar_add = vp8_dc_only_idct_add_c;
pbi->common.rtcd.idct.iwalsh1 = vp8_short_inv_walsh4x4_1_c;
pbi->common.rtcd.idct.iwalsh16 = vp8_short_inv_walsh4x4_c;
pbi->dequant.idct_add = vp8_dequant_idct_add_c;
pbi->dequant.dc_idct_add = vp8_dequant_dc_idct_add_c;
pbi->dequant.dc_idct_add_y_block = vp8_dequant_dc_idct_add_y_block_c;
pbi->dequant.idct_add_y_block = vp8_dequant_idct_add_y_block_c;
pbi->dequant.idct_add_uv_block = vp8_dequant_idct_add_uv_block_c;
}
for (i = 16; i < 24; i++) {
xd->block[i].dequant = pc->UVdequant[QIndex];
}
}
#if CONFIG_RUNTIME_CPU_DETECT
#define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x)
#else
#define RTCD_VTABLE(x) NULL
#endif
/* skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it
* to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy.
*/
static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) {
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_sbuv_s)(xd);
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_sby_s)(xd);
} else {
#endif
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv_s)(xd);
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby_s)(xd);
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
} else {
#endif
vp8_build_1st_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
if (xd->mode_info_context->mbmi.second_ref_frame) {
vp8_build_2nd_inter16x16_predictors_mb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
}
}
static void decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd,
int eobtotal = 0;
MB_PREDICTION_MODE mode;
int i;
int tx_type;
#if CONFIG_SUPERBLOCKS
VP8_COMMON *pc = &pbi->common;
int orig_skip_flag = xd->mode_info_context->mbmi.mb_skip_coeff;
#endif
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
#if CONFIG_TX16X16
if (xd->mode_info_context->mbmi.mode <= TM_PRED ||
xd->mode_info_context->mbmi.mode == NEWMV ||
xd->mode_info_context->mbmi.mode == ZEROMV ||
xd->mode_info_context->mbmi.mode == NEARMV ||
xd->mode_info_context->mbmi.mode == NEARESTMV)
xd->mode_info_context->mbmi.txfm_size = TX_16X16;
else if (pbi->common.txfm_mode == ALLOW_8X8 &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != B_PRED)
#else
if (pbi->common.txfm_mode == ALLOW_8X8 &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != B_PRED)
#endif
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
} else {
#if CONFIG_TX16X16
if (xd->mode_info_context->mbmi.mode <= TM_PRED ||
xd->mode_info_context->mbmi.mode == NEWMV ||
xd->mode_info_context->mbmi.mode == ZEROMV ||
xd->mode_info_context->mbmi.mode == NEARMV ||
xd->mode_info_context->mbmi.mode == NEARESTMV) {
xd->mode_info_context->mbmi.txfm_size = TX_16X16;
} else if (pbi->common.txfm_mode == ALLOW_8X8 &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != B_PRED &&
xd->mode_info_context->mbmi.mode != SPLITMV) {
#else
if (pbi->common.txfm_mode == ALLOW_8X8 &&
xd->mode_info_context->mbmi.mode != I8X8_PRED &&
xd->mode_info_context->mbmi.mode != B_PRED &&
xd->mode_info_context->mbmi.mode != SPLITMV) {
#endif
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
}
else {
#if CONFIG_HYBRIDTRANSFORM8X8
if (xd->mode_info_context->mbmi.mode == I8X8_PRED) {
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
}
#endif
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
xd->mode_info_context->mbmi.txfm_size = TX_8X8;
}
#endif
tx_type = xd->mode_info_context->mbmi.txfm_size;
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp8_reset_mb_tokens_context(xd);
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
xd->above_context++;
xd->left_context++;
vp8_reset_mb_tokens_context(xd);
xd->above_context--;
xd->left_context--;
}
#endif
} else if (!vp8dx_bool_error(xd->current_bc)) {
for (i = 0; i < 25; i++) {
xd->block[i].eob = 0;
xd->eobs[i] = 0;
#if CONFIG_TX16X16
if (tx_type == TX_16X16)
eobtotal = vp8_decode_mb_tokens_16x16(pbi, xd);
else
#endif
if (tx_type == TX_8X8)
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd);
else
eobtotal = vp8_decode_mb_tokens(pbi, xd);
if (dec_debug) {
printf("\nTokens (%d)\n", eobtotal);
for (i = 0; i < 400; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
#if CONFIG_SWITCHABLE_INTERP
if (pbi->common.frame_type != KEY_FRAME)
vp8_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
#endif
if (eobtotal == 0 && mode != B_PRED && mode != SPLITMV
&& mode != I8X8_PRED
&& !vp8dx_bool_error(xd->current_bc)
) {
/* Special case: Force the loopfilter to skip when eobtotal and
* mb_skip_coeff are zero.
* */
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
#if CONFIG_SUPERBLOCKS
if (!xd->mode_info_context->mbmi.encoded_as_sb || orig_skip_flag)
#endif
{
skip_recon_mb(pbi, xd);
return;
}
if (dec_debug) {
int i, j;
printf("Generating predictors\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++) printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
}
}
// moved to be performed before detokenization
// if (xd->segmentation_enabled)
// mb_init_dequantizer(pbi, xd);
#if CONFIG_HYBRIDTRANSFORM
// parse transform types for intra 4x4 mode
QIndex = xd->q_index;
active_ht = (QIndex < ACTIVE_HT);
if (mode == B_PRED) {
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
if(active_ht)
txfm_map(b, b_mode);
/* do prediction */
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_sby_s)(xd);
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_sbuv_s)(xd);
} else
#endif
if (mode != I8X8_PRED) {
RECON_INVOKE(&pbi->common.rtcd.recon, build_intra_predictors_mbuv)(xd);
if (mode != B_PRED) {
RECON_INVOKE(&pbi->common.rtcd.recon,
build_intra_predictors_mby)(xd);
}
// Intra-modes requiring recon data from top-right
// MB have been temporarily disabled.
else {
vp8_intra_prediction_down_copy(xd);
}
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_build_inter32x32_predictors_sb(xd, xd->dst.y_buffer,
xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.y_stride, xd->dst.uv_stride);
} else
#endif
vp8_build_inter_predictors_mb(xd);
}
/* dequantization and idct */
if (mode == I8X8_PRED) {
for (i = 0; i < 4; i++) {
int ib = vp8_i8x8_block[i];
#if CONFIG_HYBRIDTRANSFORM8X8
int idx = (ib & 0x02) ? (ib + 2) : ib;
short *q = xd->block[idx].qcoeff;
short *dq = xd->block[0].dequant;
unsigned char *pre = xd->block[ib].predictor;
unsigned char *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->dst.y_stride;
tx_type = TX_4X4;
xd->mode_info_context->mbmi.txfm_size = TX_4X4;
#endif
b = &xd->block[ib];
i8x8mode = b->bmi.as_mode.first;
RECON_INVOKE(RTCD_VTABLE(recon), intra8x8_predict)
(b, i8x8mode, b->predictor);
#if CONFIG_HYBRIDTRANSFORM8X8
txfm_map(b, pred_mode_conv(i8x8mode));
vp8_ht_dequant_idct_add_8x8_c(b->bmi.as_mode.tx_type,
q, dq, pre, dst, 16, stride);
for (j = 0; j < 4; j++) {
b = &xd->block[ib + iblock[j]];
if (xd->eobs[ib + iblock[j]] > 1) {
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
} else {
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
b = &xd->block[16 + i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
b = &xd->block[20 + i];
RECON_INVOKE(RTCD_VTABLE(recon), intra_uv4x4_predict)
(b, i8x8mode, b->predictor);
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 8, b->dst_stride);
} else if (mode == B_PRED) {
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_COMP_INTRA_PRED
int b_mode2 = xd->mode_info_context->bmi[i].as_mode.second;
RECON_INVOKE(RTCD_VTABLE(recon), intra4x4_predict)
(b, b_mode, b->predictor);
#if CONFIG_COMP_INTRA_PRED
} else {
RECON_INVOKE(RTCD_VTABLE(recon), comp_intra4x4_predict)
(b, b_mode, b_mode2, b->predictor);
}
#if CONFIG_HYBRIDTRANSFORM
if(active_ht)
vp8_ht_dequant_idct_add_c( (TX_TYPE)b->bmi.as_mode.tx_type, b->qcoeff,
b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
else
vp8_dequant_idct_add_c(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
#else
if (xd->eobs[i] > 1)
{
DEQUANT_INVOKE(&pbi->dequant, idct_add)
(b->qcoeff, b->dequant, b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
}
else
{
IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)
(b->qcoeff[0] * b->dequant[0], b->predictor,
*(b->base_dst) + b->dst, 16, b->dst_stride);
((int *)b->qcoeff)[0] = 0;
} else if (mode == SPLITMV) {
DEQUANT_INVOKE(&pbi->dequant, idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs);
} else {
BLOCKD *b = &xd->block[24];
#if CONFIG_TX16X16
if (tx_type == TX_16X16) {
vp8_dequant_idct_add_16x16_c(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
16, xd->dst.y_stride);
}
else
#endif
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
#if CONFIG_SUPERBLOCKS
void *orig = xd->mode_info_context;
int n, num = xd->mode_info_context->mbmi.encoded_as_sb ? 4 : 1;
for (n = 0; n < num; n++) {
if (n != 0) {
for (i = 0; i < 25; i++) {
xd->block[i].eob = 0;
xd->eobs[i] = 0;
}
xd->above_context = pc->above_context + mb_col + (n & 1);
xd->left_context = pc->left_context + (n >> 1);
xd->mode_info_context = orig;
xd->mode_info_context += (n & 1);
xd->mode_info_context += (n >> 1) * pc->mode_info_stride;
if (!orig_skip_flag) {
eobtotal = vp8_decode_mb_tokens_8x8(pbi, xd);
if (eobtotal == 0) // skip loopfilter
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
} else {
vp8_reset_mb_tokens_context(xd);
}
}
if (xd->mode_info_context->mbmi.mb_skip_coeff)
continue; // only happens for SBs, which are already in dest buffer
#endif
if (dec_debug) {
int j;
printf("DQcoeff Haar\n");
for (j = 0; j < 16; j++) {
printf("%d ", b->dqcoeff[j]);
printf("\n");
}
#endif
IDCT_INVOKE(RTCD_VTABLE(idct), ihaar2)(&b->dqcoeff[0], b->diff, 8);
((int *)b->qcoeff)[0] = 0;// 2nd order block are set to 0 after inverse transform
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
vp8_dequant_dc_idct_add_y_block_8x8_inplace_c(xd->qcoeff,
xd->block[0].dequant,
xd->dst.y_buffer + (n >> 1) * 16 * xd->dst.y_stride + (n & 1) * 16,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
// do UV inline also
vp8_dequant_idct_add_uv_block_8x8_inplace_c(xd->qcoeff + 16 * 16,
xd->block[16].dequant,
xd->dst.u_buffer + (n >> 1) * 8 * xd->dst.uv_stride + (n & 1) * 8,
xd->dst.v_buffer + (n >> 1) * 8 * xd->dst.uv_stride + (n & 1) * 8,
xd->dst.uv_stride, xd->eobs + 16, xd);
} else
#endif
DEQUANT_INVOKE(&pbi->dequant, dc_idct_add_y_block_8x8)(xd->qcoeff,
xd->block[0].dequant, xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff, xd);
#if CONFIG_SUPERBLOCKS
}
xd->mode_info_context = orig;
#endif
} else {
DEQUANT_INVOKE(&pbi->dequant, block)(b);
if (xd->eobs[24] > 1) {
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
((int *)b->qcoeff)[1] = 0;
((int *)b->qcoeff)[2] = 0;
((int *)b->qcoeff)[3] = 0;
((int *)b->qcoeff)[4] = 0;
((int *)b->qcoeff)[5] = 0;
((int *)b->qcoeff)[6] = 0;
((int *)b->qcoeff)[7] = 0;
} else {
IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff);
((int *)b->qcoeff)[0] = 0;
}
DEQUANT_INVOKE(&pbi->dequant, dc_idct_add_y_block)
(xd->qcoeff, xd->block[0].dequant,
xd->predictor, xd->dst.y_buffer,
xd->dst.y_stride, xd->eobs, xd->block[24].diff);
#if CONFIG_SUPERBLOCKS
if (!xd->mode_info_context->mbmi.encoded_as_sb) {
#endif
if (tx_type == TX_8X8
#if CONFIG_TX16X16
|| tx_type == TX_16X16
#endif
)
DEQUANT_INVOKE(&pbi->dequant, idct_add_uv_block_8x8) //
(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16, xd); //
else if (xd->mode_info_context->mbmi.mode != I8X8_PRED)
DEQUANT_INVOKE(&pbi->dequant, idct_add_uv_block)
(xd->qcoeff + 16 * 16, xd->block[16].dequant,
xd->predictor + 16 * 16, xd->dst.u_buffer, xd->dst.v_buffer,
xd->dst.uv_stride, xd->eobs + 16);
static int get_delta_q(vp8_reader *bc, int prev, int *q_update) {
int ret_val = 0;
if (vp8_read_bit(bc)) {
ret_val = vp8_read_literal(bc, 4);
/* Trigger a quantizer update if the delta-q value has changed */
if (ret_val != prev)
*q_update = 1;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
/* Decode a row of Superblocks (2x2 region of MBs) */
decode_sb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mbrow, MACROBLOCKD *xd) {
int i;
int sb_col;
int mb_row, mb_col;
int recon_yoffset, recon_uvoffset;
int ref_fb_idx = pc->lst_fb_idx;
int dst_fb_idx = pc->new_fb_idx;
int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride;
int row_delta[4] = { 0, +1, 0, -1};
int col_delta[4] = { +1, -1, +1, +1};
int sb_cols = (pc->mb_cols + 1) >> 1;
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
mb_row = mbrow;
mb_col = 0;
for (sb_col = 0; sb_col < sb_cols; sb_col++) {
MODE_INFO *mi = xd->mode_info_context;
#if CONFIG_SUPERBLOCKS
if (pbi->interleaved_decoding)
mi->mbmi.encoded_as_sb = vp8_read(&pbi->bc, pc->sb_coded);
#endif
// Process the 4 MBs within the SB in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
int dy = row_delta[i];
int dx = col_delta[i];
int offset_extended = dy * xd->mode_info_stride + dx;
if ((mb_row >= pc->mb_rows) || (mb_col >= pc->mb_cols)) {
// MB lies outside frame, skip on to next
mb_row += dy;
mb_col += dx;
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
dec_debug = (pc->current_video_frame == 0 && mb_row == 0 && mb_col == 0);
// Set above context pointer
xd->above_context = pc->above_context + mb_col;
/* Distance of Mb to the various image edges.
* These are specified to 8th pel as they are always compared to
* values that are in 1/8th pel units
*/
xd->mb_to_top_edge = -((mb_row * 16)) << 3;
xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3;
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3;
xd->up_available = (mb_row != 0);
xd->left_available = (mb_col != 0);
recon_yoffset = (mb_row * recon_y_stride * 16) + (mb_col * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8) + (mb_col * 8);
xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
#if CONFIG_SUPERBLOCKS
if (i)
mi->mbmi.encoded_as_sb = 0;
#endif
if(pbi->interleaved_decoding)
vpx_decode_mb_mode_mv(pbi, xd, mb_row, mb_col);
update_blockd_bmi(xd);
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = pc->gld_fb_idx;
else
ref_fb_idx = pc->alt_fb_idx;
xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset;
xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset;
xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset;
if (xd->mode_info_context->mbmi.second_ref_frame) {
int second_ref_fb_idx;
/* Select the appropriate reference frame for this MB */
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = pc->lst_fb_idx;
else if (xd->mode_info_context->mbmi.second_ref_frame ==
GOLDEN_FRAME)
second_ref_fb_idx = pc->gld_fb_idx;
else
second_ref_fb_idx = pc->alt_fb_idx;
xd->second_pre.y_buffer =
pc->yv12_fb[second_ref_fb_idx].y_buffer + recon_yoffset;
xd->second_pre.u_buffer =
pc->yv12_fb[second_ref_fb_idx].u_buffer + recon_uvoffset;
xd->second_pre.v_buffer =
pc->yv12_fb[second_ref_fb_idx].v_buffer + recon_uvoffset;
}
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
/* propagate errors from reference frames */
xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted;
}
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
mi[1] = mi[0];
mi[pc->mode_info_stride] = mi[0];
mi[pc->mode_info_stride + 1] = mi[0];
}
#endif
decode_macroblock(pbi, xd, mb_col);
#if CONFIG_SUPERBLOCKS
if (xd->mode_info_context->mbmi.encoded_as_sb) {
mi[1].mbmi.txfm_size = mi[0].mbmi.txfm_size;
mi[pc->mode_info_stride].mbmi.txfm_size = mi[0].mbmi.txfm_size;
mi[pc->mode_info_stride + 1].mbmi.txfm_size = mi[0].mbmi.txfm_size;
}
#endif
/* check if the boolean decoder has suffered an error */
xd->corrupted |= vp8dx_bool_error(xd->current_bc);
#if CONFIG_SUPERBLOCKS
if (mi->mbmi.encoded_as_sb) {
assert(!i);
mb_col += 2;
xd->mode_info_context += 2;
xd->prev_mode_info_context += 2;
break;
}
#endif
// skip to next MB
xd->mode_info_context += offset_extended;
xd->prev_mode_info_context += offset_extended;
/* skip prediction column */
xd->mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
xd->prev_mode_info_context += 1 - (pc->mb_cols & 0x1) + xd->mode_info_stride;
static unsigned int read_partition_size(const unsigned char *cx_size) {
const unsigned int size =
cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16);
return size;
static int read_is_valid(const unsigned char *start,
size_t len,
const unsigned char *end) {
return (start + len > start && start + len <= end);
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
const unsigned char *cx_data) {
VP8_COMMON *pc = &pbi->common;
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
vp8_reader *bool_decoder;
const unsigned char *partition;
ptrdiff_t partition_size;
ptrdiff_t bytes_left;
// Dummy read for now
vp8_read_literal(&pbi->bc, 2);
// Set up pointers to token partition
partition = cx_data;
bool_decoder = &pbi->bc2;
bytes_left = user_data_end - partition;
partition_size = bytes_left;
/* Validate the calculated partition length. If the buffer
* described by the partition can't be fully read, then restrict
* it to the portion that can be (for EC mode) or throw an error.
*/
if (!read_is_valid(partition, partition_size, user_data_end)) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp8dx_start_decode(bool_decoder, partition, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
static void init_frame(VP8D_COMP *pbi) {
VP8_COMMON *const pc = & pbi->common;
MACROBLOCKD *const xd = & pbi->mb;
if (pc->frame_type == KEY_FRAME) {
/* Various keyframe initializations */
vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
vpx_memcpy(pc->fc.mvc_hp, vp8_default_mv_context_hp,
sizeof(vp8_default_mv_context_hp));
vp8_default_coef_probs(pc);
vp8_kf_default_bmode_probs(pc->kf_bmode_prob);
// Reset the segment feature data to the default stats:
// Features disabled, 0, with delta coding (Default state).
clearall_segfeatures(xd);
/* reset the mode ref deltasa for loop filter */
vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas));
vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas));
/* All buffers are implicitly updated on key frames. */
pc->refresh_golden_frame = 1;
pc->refresh_alt_ref_frame = 1;
pc->copy_buffer_to_gf = 0;
pc->copy_buffer_to_arf = 0;
/* Note that Golden and Altref modes cannot be used on a key frame so
* ref_frame_sign_bias[] is undefined and meaningless
*/
pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0;
pc->ref_frame_sign_bias[ALTREF_FRAME] = 0;
vp8_init_mode_contexts(&pbi->common);
vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc));
vpx_memcpy(&pc->lfc_a, &pc->fc, sizeof(pc->fc));
vpx_memcpy(pbi->common.fc.vp8_mode_contexts,
pbi->common.fc.mode_context,
sizeof(pbi->common.fc.mode_context));
} else {
if (!pc->use_bilinear_mc_filter)
pc->mcomp_filter_type = EIGHTTAP;
else
pc->mcomp_filter_type = BILINEAR;
/* To enable choice of different interpolation filters */
vp8_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0; /* init without corruption */
xd->fullpixel_mask = 0xffffffff;
if (pc->full_pixel)
xd->fullpixel_mask = 0xfffffff8;
static void read_coef_probs2(VP8D_COMP *pbi) {
const vp8_prob grpupd = 192;
int i, j, k, l;
vp8_reader *const bc = & pbi->bc;
VP8_COMMON *const pc = & pbi->common;
for (l = 0; l < ENTROPY_NODES; l++) {
if (vp8_read(bc, grpupd)) {
// printf("Decoding %d\n", l);
for (i = 0; i < BLOCK_TYPES; i++)
for (j = !i; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l;
int u = vp8_read(bc, COEF_UPDATE_PROB);
if (u) *p = read_prob_diff_update(bc, *p);
}
}
}
}
if (pbi->common.txfm_mode == ALLOW_8X8) {
for (l = 0; l < ENTROPY_NODES; l++) {
if (vp8_read(bc, grpupd)) {
for (i = 0; i < BLOCK_TYPES_8X8; i++)
for (j = !i; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++) {
if (k >= 3 && ((i == 0 && j == 1) ||
(i > 0 && j == 0)))
continue;
{
vp8_prob *const p = pc->fc.coef_probs_8x8 [i][j][k] + l;
int u = vp8_read(bc, COEF_UPDATE_PROB_8X8);
if (u) *p = read_prob_diff_update(bc, *p);
}