Newer
Older
for (mb_col = pc->cur_tile_mb_col_start;
mb_col < pc->cur_tile_mb_col_end; mb_col += 4) {
dec_debug = (pc->current_video_frame == 11 && pc->show_frame &&
mb_row == 8 && mb_col == 0);
vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, bc);
set_refs(pbi, 64, mb_row, mb_col);
decode_superblock64(pbi, xd, mb_row, mb_col, bc);
xd->corrupted |= bool_error(bc);
for (j = 0; j < 4; j++) {
const int x_idx_sb = (j & 1) << 1, y_idx_sb = j & 2;
if (mb_row + y_idx_sb >= pc->mb_rows ||
mb_col + x_idx_sb >= pc->mb_cols) {
// MB lies outside frame, skip on to next
continue;
}
dec_debug = (pc->current_video_frame == 11 && pc->show_frame &&
mb_row + y_idx_sb == 8 && mb_col + x_idx_sb == 0);
if (dec_debug)
printf("Debug Decode SB32\n");
set_offsets(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb);
vp9_decode_mb_mode_mv(pbi,
xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc);
set_refs(pbi, 32, mb_row + y_idx_sb, mb_col + x_idx_sb);
decode_superblock32(pbi,
xd, mb_row + y_idx_sb, mb_col + x_idx_sb, bc);
xd->corrupted |= bool_error(bc);
int i;
// Process the 4 MBs within the SB in the order:
// top-left, top-right, bottom-left, bottom-right
for (i = 0; i < 4; i++) {
const int x_idx = x_idx_sb + (i & 1), y_idx = y_idx_sb + (i >> 1);
if (mb_row + y_idx >= pc->mb_rows ||
mb_col + x_idx >= pc->mb_cols) {
// MB lies outside frame, skip on to next
continue;
}
dec_debug = (pc->current_video_frame == 11 && pc->show_frame &&
mb_row + y_idx == 8 && mb_col + x_idx == 0);
if (dec_debug)
printf("Debug Decode MB\n");
set_offsets(pbi, 16, mb_row + y_idx, mb_col + x_idx);
xd->mb_index = i;
vp9_decode_mb_mode_mv(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc);
set_refs(pbi, 16, mb_row + y_idx, mb_col + x_idx);
decode_macroblock(pbi, xd, mb_row + y_idx, mb_col + x_idx, bc);
/* check if the boolean decoder has suffered an error */
xd->corrupted |= bool_error(bc);
}
}
static void setup_token_decoder(VP9D_COMP *pbi,
const unsigned char *cx_data,
BOOL_DECODER* const bool_decoder) {
const unsigned char *user_data_end = pbi->Source + pbi->source_sz;
const unsigned char *partition = cx_data;
ptrdiff_t bytes_left = user_data_end - partition;
ptrdiff_t partition_size = bytes_left;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(partition, partition_size, user_data_end)) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
}
if (vp9_start_decode(bool_decoder,
partition, (unsigned int)partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
vp9_setup_past_independence(pc, xd);
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
if (pc->frame_type != KEY_FRAME) {
pc->mcomp_filter_type = pc->use_bilinear_mc_filter ? BILINEAR : EIGHTTAP;
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0;
xd->fullpixel_mask = pc->full_pixel ? 0xfffffff8 : 0xffffffff;
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
#if CONFIG_CODE_NONZEROCOUNT
static void read_nzc_probs_common(VP9_COMMON *cm,
BOOL_DECODER* const bc,
int block_size) {
int c, r, b, t;
int tokens, nodes;
vp9_prob *nzc_probs;
vp9_prob upd;
if (!vp9_read_bit(bc)) return;
if (block_size == 32) {
tokens = NZC32X32_TOKENS;
nzc_probs = cm->fc.nzc_probs_32x32[0][0][0];
upd = NZC_UPDATE_PROB_32X32;
} else if (block_size == 16) {
tokens = NZC16X16_TOKENS;
nzc_probs = cm->fc.nzc_probs_16x16[0][0][0];
upd = NZC_UPDATE_PROB_16X16;
} else if (block_size == 8) {
tokens = NZC8X8_TOKENS;
nzc_probs = cm->fc.nzc_probs_8x8[0][0][0];
upd = NZC_UPDATE_PROB_8X8;
} else {
tokens = NZC4X4_TOKENS;
nzc_probs = cm->fc.nzc_probs_4x4[0][0][0];
upd = NZC_UPDATE_PROB_4X4;
}
nodes = tokens - 1;
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b;
int offset_nodes = offset * nodes;
for (t = 0; t < nodes; ++t) {
vp9_prob *p = &nzc_probs[offset_nodes + t];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
static void read_nzc_pcat_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) {
int c, t, b;
vp9_prob upd = NZC_UPDATE_PROB_PCAT;
if (!vp9_read_bit(bc)) {
return;
}
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (t = 0; t < NZC_TOKENS_EXTRA; ++t) {
int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA];
for (b = 0; b < bits; ++b) {
vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
static void read_nzc_probs(VP9_COMMON *cm,
BOOL_DECODER* const bc) {
read_nzc_probs_common(cm, bc, 4);
if (cm->txfm_mode != ONLY_4X4)
read_nzc_probs_common(cm, bc, 8);
if (cm->txfm_mode > ALLOW_8X8)
read_nzc_probs_common(cm, bc, 16);
if (cm->txfm_mode > ALLOW_16X16)
read_nzc_probs_common(cm, bc, 32);
#ifdef NZC_PCAT_UPDATE
read_nzc_pcat_probs(cm, bc);
#endif
}
#endif // CONFIG_CODE_NONZEROCOUNT
static void read_coef_probs_common(BOOL_DECODER* const bc,
vp9_coeff_probs *coef_probs,
int block_types) {
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
for (i = 0; i < block_types; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
if (l >= 3 && k == 0)
continue;
for (m = CONFIG_CODE_NONZEROCOUNT; m < entropy_nodes_update; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(bc, vp9_coef_update_prob[m])) {
*p = read_prob_diff_update(bc, *p);
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j);
#endif
static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) {
VP9_COMMON *const pc = &pbi->common;
read_coef_probs_common(bc, pc->fc.coef_probs_4x4, BLOCK_TYPES);
read_coef_probs_common(bc, pc->fc.coef_probs_8x8, BLOCK_TYPES);
read_coef_probs_common(bc, pc->fc.coef_probs_16x16, BLOCK_TYPES);
read_coef_probs_common(bc, pc->fc.coef_probs_32x32, BLOCK_TYPES);
static void update_frame_size(VP9D_COMP *pbi) {
VP9_COMMON *cm = &pbi->common;
/* our internal buffers are always multiples of 16 */
const int width = (cm->width + 15) & ~15;
const int height = (cm->height + 15) & ~15;
cm->mb_rows = height >> 4;
cm->mb_cols = width >> 4;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
}
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd,
BOOL_DECODER *header_bc) {
int i, j;
// Is segmentation enabled
xd->segmentation_enabled = vp9_read_bit(header_bc);
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly updated
// this frame.
xd->update_mb_segmentation_map = vp9_read_bit(header_bc);
// If so what method will be used.
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled. Read the probs used to
// decode the segment id for each macro block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) {
xd->mb_segment_tree_probs[i] = vp9_read_bit(header_bc) ?
(vp9_prob)vp9_read_literal(header_bc, 8) : 255;
}
// Read the prediction probs needed to decode the segment id
pc->temporal_update = vp9_read_bit(header_bc);
for (i = 0; i < PREDICTION_PROBS; i++) {
if (pc->temporal_update) {
pc->segment_pred_probs[i] = vp9_read_bit(header_bc) ?
(vp9_prob)vp9_read_literal(header_bc, 8) : 255;
} else {
pc->segment_pred_probs[i] = 255;
}
}
if (pc->temporal_update) {
int count[4];
const vp9_prob *p = xd->mb_segment_tree_probs;
vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs;
count[0] = p[0] * p[1];
count[1] = p[0] * (256 - p[1]);
count[2] = (256 - p[0]) * p[2];
count[3] = (256 - p[0]) * (256 - p[2]);
p_mod[0] = get_binary_prob(count[1], count[2] + count[3]);
p_mod[1] = get_binary_prob(count[0], count[2] + count[3]);
p_mod[2] = get_binary_prob(count[0] + count[1], count[3]);
p_mod[3] = get_binary_prob(count[0] + count[1], count[2]);
}
}
// Is the segment data being updated
xd->update_mb_segmentation_data = vp9_read_bit(header_bc);
if (xd->update_mb_segmentation_data) {
int data;
xd->mb_segment_abs_delta = vp9_read_bit(header_bc);
vp9_clearall_segfeatures(xd);
// For each segmentation...
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
// For each of the segments features...
for (j = 0; j < SEG_LVL_MAX; j++) {
// Is the feature enabled
if (vp9_read_bit(header_bc)) {
// Update the feature data and mask
vp9_enable_segfeature(xd, i, j);
data = vp9_decode_unsigned_max(header_bc,
vp9_seg_feature_data_max(j));
// Is the segment data signed..
if (vp9_is_segfeature_signed(j)) {
if (vp9_read_bit(header_bc))
data = -data;
}
} else {
data = 0;
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
}
static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd,
BOOL_DECODER *header_bc) {
int i;
pc->filter_type = (LOOPFILTERTYPE) vp9_read_bit(header_bc);
pc->filter_level = vp9_read_literal(header_bc, 6);
pc->sharpness_level = vp9_read_literal(header_bc, 3);
#if CONFIG_LOOP_DERING
if (vp9_read_bit(header_bc))
pc->dering_enabled = 1 + vp9_read_literal(header_bc, 4);
else
pc->dering_enabled = 0;
#endif
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_read_bit(header_bc);
if (xd->mode_ref_lf_delta_enabled) {
// Do the deltas need to be updated
xd->mode_ref_lf_delta_update = vp9_read_bit(header_bc);
if (xd->mode_ref_lf_delta_update) {
// Send update
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(header_bc)) {
// sign = vp9_read_bit( &header_bc );
xd->ref_lf_deltas[i] = (signed char)vp9_read_literal(header_bc, 6);
if (vp9_read_bit(header_bc))
xd->ref_lf_deltas[i] = -xd->ref_lf_deltas[i]; // Apply sign
}
}
// Send update
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(header_bc)) {
// sign = vp9_read_bit( &header_bc );
xd->mode_lf_deltas[i] = (signed char)vp9_read_literal(header_bc, 6);
if (vp9_read_bit(header_bc))
xd->mode_lf_deltas[i] = -xd->mode_lf_deltas[i]; // Apply sign
}
}
}
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const unsigned char **p_data_end) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data = (const uint8_t *)pbi->Source;
const uint8_t *data_end = data + pbi->source_sz;
int mb_row, i, corrupt_tokens = 0;
// printf("Decoding frame %d\n", pc->current_video_frame);
/* start with no corruption of current frame */
xd->corrupted = 0;
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
scaling_active = (data[0] >> 5) & 1;
if (!read_is_valid(data, first_partition_length_in_bytes, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
/* vet via sync code */
/* When error concealment is enabled we should only check the sync
* code if we have enough bits available
*/
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data += 3;
}
{
const int width = pc->width;
const int height = pc->height;
/* If error concealment is enabled we should only parse the new size
* if we have enough data. Otherwise we will end up with the wrong
* size.
*/
if (scaling_active && data + 4 < data_end) {
pc->display_width = read_le16(data + 0);
pc->display_height = read_le16(data + 2);
data += 4;
}
if (data + 4 < data_end) {
pc->width = read_le16(data + 0);
pc->height = read_le16(data + 2);
data += 4;
}
if (!scaling_active) {
pc->display_width = pc->width;
pc->display_height = pc->height;
if (width != pc->width || height != pc->height) {
if (pc->width <= 0) {
pc->width = width;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
}
if (pc->height <= 0) {
pc->height = height;
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
}
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, pc->width, pc->height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = pc->width;
pbi->initial_height = pc->height;
if (pc->width > pbi->initial_width) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
}
if (pc->height > pbi->initial_height) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
update_frame_size(pbi);
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->width == 0 || pc->height == 0) {
/* Reset the frame pointers to the current frame size */
vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx],
if (vp9_start_decode(&header_bc, data,
(unsigned int)first_partition_length_in_bytes))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
setup_segmentation(pc, xd, &header_bc);
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
} else {
for (i = 0; i < PREDICTION_PROBS; i++) {
if (vp9_read_bit(&header_bc))
pc->ref_pred_probs[i] = (vp9_prob)vp9_read_literal(&header_bc, 8);
pc->sb64_coded = vp9_read_literal(&header_bc, 8);
pc->sb32_coded = vp9_read_literal(&header_bc, 8);
xd->lossless = vp9_read_bit(&header_bc);
if (xd->lossless) {
pc->txfm_mode = ONLY_4X4;
// Read the loop filter level and type
pc->txfm_mode = vp9_read_literal(&header_bc, 2);
if (pc->txfm_mode == 3)
pc->txfm_mode += vp9_read_bit(&header_bc);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_literal(&header_bc, 8);
pc->prob_tx[1] = vp9_read_literal(&header_bc, 8);
pc->prob_tx[2] = vp9_read_literal(&header_bc, 8);
}
setup_loopfilter(pc, xd, &header_bc);
int q_update = 0;
pc->base_qindex = vp9_read_literal(&header_bc, QINDEX_BITS);
/* AC 1st order Q = default */
pc->y1dc_delta_q = get_delta_q(&header_bc, pc->y1dc_delta_q, &q_update);
pc->uvdc_delta_q = get_delta_q(&header_bc, pc->uvdc_delta_q, &q_update);
pc->uvac_delta_q = get_delta_q(&header_bc, pc->uvac_delta_q, &q_update);
vp9_init_de_quantizer(pbi);
/* MB level dequantizer setup */
mb_init_dequantizer(pbi, &pbi->mb);
}
/* Determine if the golden frame or ARF buffer should be updated and how.
* For all non key frames the GF and ARF refresh flags and sign bias
* flags must be set explicitly.
*/
if (pc->frame_type == KEY_FRAME) {
pc->active_ref_idx[0] = pc->new_fb_idx;
pc->active_ref_idx[1] = pc->new_fb_idx;
pc->active_ref_idx[2] = pc->new_fb_idx;
} else {
/* Should the GF or ARF be updated from the current frame */
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
/* Select active reference frames */
for (i = 0; i < 3; i++) {
int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num];
}
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
// Is high precision mv allowed
xd->allow_high_precision_mv = (unsigned char)vp9_read_bit(&header_bc);
pc->mcomp_filter_type = vp9_read_bit(&header_bc) ? SWITCHABLE :
vp9_read_literal(&header_bc, 2);
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
/* To enable choice of different interploation filters */
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
if (!pc->error_resilient_mode) {
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_entropy_probs = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx],
sizeof(pc->fc));
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; i++) {
for (j = 0; j < 4; j++) {
if (vp9_read(&header_bc, 252)) {
pc->fc.vp9_mode_contexts[i][j] =
(vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
}
}
#if CONFIG_MODELCOEFPROB && ADJUST_KF_COEF_PROBS
if (pc->frame_type == KEY_FRAME)
vp9_adjust_default_coef_probs(pc);
#endif
#if CONFIG_NEW_MVREF
// If Key frame reset mv ref id probabilities to defaults
if (pc->frame_type != KEY_FRAME) {
// Read any mv_ref index probability updates
int i, j;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
// Skip the dummy entry for intra ref frame.
if (i == INTRA_FRAME) {
continue;
}
// Read any updates to probabilities
for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j) {
if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB)) {
xd->mb_mv_ref_probs[i][j] =
(vp9_prob)vp9_read_literal(&header_bc, 8);
}
}
}
}
#endif
vp9_copy(pbi->common.fc.pre_coef_probs_4x4,
pbi->common.fc.coef_probs_4x4);
vp9_copy(pbi->common.fc.pre_coef_probs_8x8,
vp9_copy(pbi->common.fc.pre_coef_probs_16x16,
vp9_copy(pbi->common.fc.pre_coef_probs_32x32,
pbi->common.fc.coef_probs_32x32);
vp9_copy(pbi->common.fc.pre_ymode_prob, pbi->common.fc.ymode_prob);
vp9_copy(pbi->common.fc.pre_sb_ymode_prob, pbi->common.fc.sb_ymode_prob);
vp9_copy(pbi->common.fc.pre_uv_mode_prob, pbi->common.fc.uv_mode_prob);
vp9_copy(pbi->common.fc.pre_bmode_prob, pbi->common.fc.bmode_prob);
vp9_copy(pbi->common.fc.pre_i8x8_mode_prob, pbi->common.fc.i8x8_mode_prob);
vp9_copy(pbi->common.fc.pre_sub_mv_ref_prob, pbi->common.fc.sub_mv_ref_prob);
vp9_copy(pbi->common.fc.pre_mbsplit_prob, pbi->common.fc.mbsplit_prob);
#if CONFIG_COMP_INTERINTRA_PRED
pbi->common.fc.pre_interintra_prob = pbi->common.fc.interintra_prob;
#endif
pbi->common.fc.pre_nmvc = pbi->common.fc.nmvc;
#if CONFIG_CODE_NONZEROCOUNT
vp9_copy(pbi->common.fc.pre_nzc_probs_4x4,
pbi->common.fc.nzc_probs_4x4);
vp9_copy(pbi->common.fc.pre_nzc_probs_8x8,
pbi->common.fc.nzc_probs_8x8);
vp9_copy(pbi->common.fc.pre_nzc_probs_16x16,
pbi->common.fc.nzc_probs_16x16);
vp9_copy(pbi->common.fc.pre_nzc_probs_32x32,
pbi->common.fc.nzc_probs_32x32);
vp9_copy(pbi->common.fc.pre_nzc_pcat_probs,
pbi->common.fc.nzc_pcat_probs);
vp9_zero(pbi->common.fc.coef_counts_4x4);
vp9_zero(pbi->common.fc.coef_counts_8x8);
vp9_zero(pbi->common.fc.coef_counts_16x16);
vp9_zero(pbi->common.fc.coef_counts_32x32);
vp9_zero(pbi->common.fc.eob_branch_counts);
vp9_zero(pbi->common.fc.sb_ymode_counts);
vp9_zero(pbi->common.fc.uv_mode_counts);
vp9_zero(pbi->common.fc.bmode_counts);
vp9_zero(pbi->common.fc.i8x8_mode_counts);
vp9_zero(pbi->common.fc.sub_mv_ref_counts);
vp9_zero(pbi->common.fc.mbsplit_counts);
vp9_zero(pbi->common.fc.NMVcount);
vp9_zero(pbi->common.fc.mv_ref_ct);
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(pbi->common.fc.interintra_counts);
#endif
#if CONFIG_CODE_NONZEROCOUNT
vp9_zero(pbi->common.fc.nzc_counts_4x4);
vp9_zero(pbi->common.fc.nzc_counts_8x8);
vp9_zero(pbi->common.fc.nzc_counts_16x16);
vp9_zero(pbi->common.fc.nzc_counts_32x32);
vp9_zero(pbi->common.fc.nzc_pcat_counts);
#if CONFIG_CODE_NONZEROCOUNT
read_nzc_probs(&pbi->common, &header_bc);
#endif
/* Initialize xd pointers. Any reference should do for xd->pre, so use 0. */
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]],
sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx],
sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp9_setup_block_dptrs(xd);
vp9_build_block_doffsets(xd);
/* clear out the coeff buffer */
vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff));
pc->mb_no_coeff_skip = (int)vp9_read_bit(&header_bc);
vp9_decode_mode_mvs_init(pbi, &header_bc);
const uint8_t *data_ptr = data + first_partition_length_in_bytes;
int tile_row, tile_col, delta_log2_tiles;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(&header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
pc->log2_tile_rows = vp9_read_bit(&header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(&header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
vpx_memset(pc->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
if (pbi->oxcf.inv_tile_order) {
const uint8_t *data_ptr2[4][1 << 6];
BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak);
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_le32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], &residual_bc);
/* Decode a row of superblocks */
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, pc, mb_row, xd, &residual_bc);
}
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = residual_bc;
}
}
residual_bc = bc_bak;
} else {
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1)
setup_token_decoder(pbi, data_ptr + 4, &residual_bc);
else
setup_token_decoder(pbi, data_ptr, &residual_bc);
/* Decode a row of superblocks */
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, pc, mb_row, xd, &residual_bc);
}
if (tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1) {
int size = read_le32(data_ptr);
// keep track of the last coded dimensions
pc->last_width = pc->width;
pc->last_height = pc->height;
// Collect information about decoder corruption.
// 1. Check first boolean decoder for errors.
// 2. Check the macroblock information
pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc) |
corrupt_tokens;
if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
#if CONFIG_CODE_NONZEROCOUNT
vp9_adapt_nzc_probs(pc);
#endif
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(&pbi->common);
}
vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc,
sizeof(pc->fc));
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
/* Find the end of the coded buffer */
while (residual_bc.count > CHAR_BIT
&& residual_bc.count < VP9_BD_VALUE_SIZE) {
residual_bc.count -= CHAR_BIT;
residual_bc.user_buffer--;
}
*p_data_end = residual_bc.user_buffer;