Newer
Older
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
*(get_sb_partitioning(x, bsize)));
if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
select_in_frame_q_segment(cpi, mi_row, mi_col, output_enabled, best_rate);
}
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
cpi->cyclic_refresh.projected_rate_sb = best_rate;
cpi->cyclic_refresh.projected_dist_sb = best_dist;
}
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize);
}
if (bsize == BLOCK_64X64) {
assert(tp_orig < *tp);
assert(best_rate < INT_MAX);
assert(best_dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void nonrd_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
TOKENEXTRA **tp,
int mi_row, int mi_col,
BLOCK_SIZE bsize, int output_enabled,
int *totrate, int64_t *totdist) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
const int mis = cm->mode_info_stride;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
subsize = mi_8x8[0]->mbmi.sb_type;
} else {
subsize = BLOCK_4X4;
}
partition = partition_lookup[bsl][subsize];
switch (partition) {
case PARTITION_NONE:
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
break;
case PARTITION_VERT:
*get_sb_index(x, subsize) = 0;
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
if (mi_col + hbs < cm->mi_cols) {
*get_sb_index(x, subsize) = 1;
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col + hbs,
&rate, &dist, subsize);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
}
break;
case PARTITION_HORZ:
*get_sb_index(x, subsize) = 0;
nonrd_pick_sb_modes(cpi, tile, mi_row, mi_col, totrate, totdist, subsize);
if (mi_row + hbs < cm->mi_rows) {
*get_sb_index(x, subsize) = 1;
nonrd_pick_sb_modes(cpi, tile, mi_row + hbs, mi_col,
&rate, &dist, subsize);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
*get_sb_index(x, subsize) = 0;
nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col,
subsize, output_enabled, totrate, totdist);
*get_sb_index(x, subsize) = 1;
nonrd_use_partition(cpi, tile, mi_8x8 + hbs, tp,
mi_row, mi_col + hbs, subsize, output_enabled,
&rate, &dist);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
*get_sb_index(x, subsize) = 2;
nonrd_use_partition(cpi, tile, mi_8x8 + hbs * mis, tp,
mi_row + hbs, mi_col, subsize, output_enabled,
&rate, &dist);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
*get_sb_index(x, subsize) = 3;
nonrd_use_partition(cpi, tile, mi_8x8 + hbs * mis + hbs, tp,
mi_row + hbs, mi_col + hbs, subsize, output_enabled,
&rate, &dist);
if (rate != INT_MAX && dist != INT64_MAX &&
*totrate != INT_MAX && *totdist != INT64_MAX) {
*totrate += rate;
*totdist += dist;
}
break;
default:
assert("Invalid partition type.");
}
if (bsize == BLOCK_64X64 && output_enabled) {
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
cpi->cyclic_refresh.projected_rate_sb = *totrate;
cpi->cyclic_refresh.projected_dist_sb = *totdist;
}
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, 1, bsize);
static void encode_nonrd_sb_row(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, TOKENEXTRA **tp) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int mi_col;
// Initialize the left context for the new SB row
vpx_memset(&cpi->left_context, 0, sizeof(cpi->left_context));
vpx_memset(xd->left_seg_context, 0, sizeof(xd->left_seg_context));
// Code each SB in the row
for (mi_col = tile->mi_col_start; mi_col < tile->mi_col_end;
mi_col += MI_BLOCK_SIZE) {
const int idx_str = cm->mode_info_stride * mi_row + mi_col;
MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str;
MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str;
BLOCK_SIZE bsize = cpi->sf.partition_search_type == FIXED_PARTITION ?
cpi->sf.always_this_block_size :
get_nonrd_var_based_fixed_partition(cpi, mi_row, mi_col);
// Set the partition type of the 64X64 block
switch (cpi->sf.partition_search_type) {
case VAR_BASED_PARTITION:
choose_partitioning(cpi, tile, mi_row, mi_col);
nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rate, &dummy_dist);
break;
case VAR_BASED_FIXED_PARTITION:
case FIXED_PARTITION:
set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, bsize);
nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64,
1, &dummy_rate, &dummy_dist);
break;
case REFERENCE_PARTITION:
if (cpi->sf.partition_check) {
vp9_zero(cpi->mb.pred_mv);
nonrd_pick_partition(cpi, tile, tp, mi_row, mi_col, BLOCK_64X64,
&dummy_rate, &dummy_dist, 1, INT64_MAX);
if (!sb_has_motion(cm, prev_mi_8x8))
copy_partitioning(cm, mi_8x8, prev_mi_8x8);
set_fixed_partitioning(cpi, tile, mi_8x8, mi_row, mi_col, bsize);
nonrd_use_partition(cpi, tile, mi_8x8, tp, mi_row, mi_col,
BLOCK_64X64, 1, &dummy_rate, &dummy_dist);
static void encode_frame_internal(VP9_COMP *cpi) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
vp9_zero(cm->counts.switchable_interp);
vp9_zero(cpi->tx_stepdown_count);
xd->mi_8x8 = cm->mi_grid_visible;
// required for vp9_frame_init_quantizer
xd->mi_8x8[0] = cm->mi;
vp9_zero(cpi->coef_counts);
vp9_zero(cm->counts.eob_branch);
// Set frame level transform size use case
cm->tx_mode = select_tx_mode(cpi);
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0
&& cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi);
vp9_initialize_me_consts(cpi, cm->base_qindex);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
init_encode_frame_mb_context(cpi);
// Build a frame level activity map
build_activity_map(cpi);
}
// Re-initialize encode frame context.
init_encode_frame_mb_context(cpi);
vp9_zero(cpi->rd_comp_pred_diff);
vp9_zero(cpi->rd_filter_diff);
vp9_zero(cpi->rd_tx_select_diff);
vp9_zero(cpi->rd_tx_select_threshes);
set_prev_mi(cm);
if (cpi->sf.use_nonrd_pick_mode) {
// Initialize internal buffer pointers for rtc coding, where non-RD
// mode decision is used and hence no buffer pointer swap needed.
int i;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
PICK_MODE_CONTEXT *ctx = &cpi->mb.sb64_context;
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff_pbuf[i][0];
p[i].qcoeff = ctx->qcoeff_pbuf[i][0];
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][0];
p[i].eobs = ctx->eobs_pbuf[i][0];
}
vp9_zero(x->zcoeff_blk);
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
{
// Take tiles into account and give start/end MB
int tile_col, tile_row;
TOKENEXTRA *tp = cpi->tok;
const int tile_cols = 1 << cm->log2_tile_cols;
const int tile_rows = 1 << cm->log2_tile_rows;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile;
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_tile_init(&tile, cm, tile_row, tile_col);
for (mi_row = tile.mi_row_start;
mi_row < tile.mi_row_end; mi_row += MI_BLOCK_SIZE) {
if (cpi->sf.use_nonrd_pick_mode && cm->frame_type != KEY_FRAME)
encode_nonrd_sb_row(cpi, &tile, mi_row, &tp);
encode_rd_sb_row(cpi, &tile, mi_row, &tp);
cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old);
assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols));
}
}
}
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer);
}
if (cpi->sf.skip_encode_sb) {
int j;
unsigned int intra_count = 0, inter_count = 0;
for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) {
intra_count += cm->counts.intra_inter[j][0];
inter_count += cm->counts.intra_inter[j][1];
}
cpi->sf.skip_encode_frame = (intra_count << 2) < inter_count &&
cm->frame_type != KEY_FRAME &&
cm->show_frame;
} else {
cpi->sf.skip_encode_frame = 0;
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
void vp9_encode_frame(VP9_COMP *cpi) {
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
if (!frame_is_intra_only(cm)) {
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[LAST_FRAME])) {
cm->allow_comp_inter_inter = 0;
} else {
cm->allow_comp_inter_inter = 1;
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
}
if (cpi->sf.frame_parameter_update) {
int i;
REFERENCE_MODE reference_mode;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
const int64_t *mode_thresh = cpi->rd_prediction_type_threshes[frame_type];
const int64_t *filter_thresh = cpi->rd_filter_threshes[frame_type];
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3 || !cm->allow_comp_inter_inter)
reference_mode = SINGLE_REFERENCE;
else if (mode_thresh[COMPOUND_REFERENCE] > mode_thresh[SINGLE_REFERENCE] &&
mode_thresh[COMPOUND_REFERENCE] >
mode_thresh[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) &&
cpi->static_mb_pct == 100)
reference_mode = COMPOUND_REFERENCE;
else if (mode_thresh[SINGLE_REFERENCE] > mode_thresh[REFERENCE_MODE_SELECT])
reference_mode = SINGLE_REFERENCE;
if (cm->interp_filter == SWITCHABLE) {
if (frame_type != ALTREF_FRAME &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP] &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[EIGHTTAP_SHARP] &&
filter_thresh[EIGHTTAP_SMOOTH] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP_SMOOTH;
} else if (filter_thresh[EIGHTTAP_SHARP] > filter_thresh[EIGHTTAP] &&
filter_thresh[EIGHTTAP_SHARP] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP_SHARP;
} else if (filter_thresh[EIGHTTAP] > filter_thresh[SWITCHABLE - 1]) {
cm->interp_filter = EIGHTTAP;
}
cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i) {
const int diff = (int) (cpi->rd_comp_pred_diff[i] / cm->MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
const int64_t diff = cpi->rd_filter_diff[i] / cm->MBs;
cpi->rd_filter_threshes[frame_type][i] =
(cpi->rd_filter_threshes[frame_type][i] + diff) / 2;
}
for (i = 0; i < TX_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += cm->counts.comp_inter[i][0];
comp_count_zero += cm->counts.comp_inter[i][1];
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
count4x4 += cm->counts.tx.p32x32[i][TX_4X4];
count4x4 += cm->counts.tx.p16x16[i][TX_4X4];
count4x4 += cm->counts.tx.p8x8[i][TX_4X4];
count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8];
count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8];
count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8];
count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16];
count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16];
count32x32 += cm->counts.tx.p32x32[i][TX_32X32];
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_txfm_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_txfm_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_txfm_size(cm, TX_16X16);
cpi->mb.e_mbd.lossless = cpi->oxcf.lossless;
cm->reference_mode = SINGLE_REFERENCE;
// Force the usage of the BILINEAR interp_filter.
cm->interp_filter = BILINEAR;
encode_frame_internal(cpi);
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi) {
const MB_PREDICTION_MODE y_mode = mi->mbmi.mode;
const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h)
for (idx = 0; idx < 2; idx += num_4x4_w)
++counts->y_mode[0][mi->bmi[idy * 2 + idx].as_mode];
++counts->y_mode[size_group_lookup[bsize]][y_mode];
++counts->uv_mode[y_mode][uv_mode];
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
const int64_t act = *(x->mb_activity_ptr);
const int64_t a = act + 4 * cpi->activity_avg;
const int64_t b = 4 * act + cpi->activity_avg;
x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1;
x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b);
static int get_zbin_mode_boost(const MB_MODE_INFO *mbmi, int enabled) {
if (enabled) {
if (is_inter_block(mbmi)) {
if (mbmi->mode == ZEROMV) {
return mbmi->ref_frame[0] != LAST_FRAME ? GF_ZEROMV_ZBIN_BOOST
: LF_ZEROMV_ZBIN_BOOST;
} else {
return mbmi->sb_type < BLOCK_8X8 ? SPLIT_MV_ZBIN_BOOST
: MV_ZBIN_BOOST;
}
} else {
return INTRA_ZBIN_BOOST;
}
} else {
return 0;
}
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled,
int mi_row, int mi_col, BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi_8x8;
MODE_INFO *mi = mi_8x8[0];
PICK_MODE_CONTEXT *ctx = get_block_context(x, bsize);
unsigned int segment_id = mbmi->segment_id;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
x->skip_recode = !x->select_txfm_size && mbmi->sb_type >= BLOCK_8X8 &&
(cpi->oxcf.aq_mode != COMPLEXITY_AQ &&
cpi->oxcf.aq_mode != CYCLIC_REFRESH_AQ) &&
!cpi->sf.use_nonrd_pick_mode &&
!cpi->sf.use_uv_intra_rd_estimate &&
!cpi->sf.skip_encode_sb;
x->skip_optimize = ctx->is_coded;
ctx->is_coded = 1;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame &&
x->q_index < QIDX_SKIP_THRESH);
if (x->skip_encode)
return;
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
xd->interp_kernel = vp9_get_interp_kernel(mbmi->interp_filter);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = get_zbin_mode_boost(mbmi,
cpi->zbin_mode_boost_enabled);
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
vp9_encode_intra_block_plane(x, MAX(bsize, BLOCK_8X8), plane);
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
int ref;
const int is_compound = has_second_ref(mbmi);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi,
mbmi->ref_frame[ref]);
vp9_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8));
if (!x->skip) {
mbmi->skip = 1;
vp9_encode_sb(x, MAX(bsize, BLOCK_8X8));
vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8));
} else {
mbmi->skip = 1;
if (output_enabled)
cm->counts.skip[vp9_get_skip_context(xd)][1]++;
reset_skip_context(xd, MAX(bsize, BLOCK_8X8));
}
if (cm->tx_mode == TX_MODE_SELECT &&
mbmi->sb_type >= BLOCK_8X8 &&
vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) {
++get_tx_counts(max_txsize_lookup[bsize], vp9_get_tx_size_context(xd),
&cm->counts.tx)[mbmi->tx_size];
TX_SIZE tx_size;
// The new intra coding scheme requires no change of transform size
tx_size = MIN(tx_mode_to_biggest_tx_size[cm->tx_mode],
max_txsize_lookup[bsize]);
tx_size = (bsize >= BLOCK_8X8) ? mbmi->tx_size : TX_4X4;
for (y = 0; y < mi_height; y++)
for (x = 0; x < mi_width; x++)
if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows)
mi_8x8[mis * y + x]->mbmi.tx_size = tx_size;