Newer
Older
// Check to see if the given partition size is allowed for a specified number
// of 8x8 block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize,
int rows_left, int cols_left,
int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
for (; bsize > 0; bsize -= 3) {
*bh = num_8x8_blocks_high_lookup[bsize];
*bw = num_8x8_blocks_wide_lookup[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_b64x64_partition(MODE_INFO *mi, int mis,
int bh_in, int bw_in, int row8x8_remaining, int col8x8_remaining,
BLOCK_SIZE bsize, MODE_INFO **mi_8x8) {
int bh = bh_in;
int r, c;
for (r = 0; r < MI_BLOCK_SIZE; r += bh) {
int bw = bw_in;
for (c = 0; c < MI_BLOCK_SIZE; c += bw) {
const int index = r * mis + c;
mi_8x8[index] = mi + index;
mi_8x8[index]->mbmi.sb_type = find_partition_size(bsize,
row8x8_remaining - r, col8x8_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given SB64
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(VP9_COMP *cpi, const TileInfo *const tile,
MODE_INFO **mi_8x8, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// Apply the requested partition size to the SB64 if it is all "in image"
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
int index = block_row * mis + block_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB64.
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw, row8x8_remaining,
col8x8_remaining, bsize, mi_8x8);
static void copy_partitioning(VP9_COMMON *cm, MODE_INFO **mi_8x8,
MODE_INFO **prev_mi_8x8) {
const int mis = cm->mi_stride;
int block_row, block_col;
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
MODE_INFO *const prev_mi = prev_mi_8x8[block_row * mis + block_col];
const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
if (prev_mi) {
const ptrdiff_t offset = prev_mi - cm->prev_mi;
mi_8x8[block_row * mis + block_col] = cm->mi + offset;
mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type;
}
}
}
}
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
static void constrain_copy_partitioning(VP9_COMP *const cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
MODE_INFO **prev_mi_8x8,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mi_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
MODE_INFO *const mi_upper_left = cm->mi + mi_row * mis + mi_col;
const int bh = num_8x8_blocks_high_lookup[bsize];
const int bw = num_8x8_blocks_wide_lookup[bsize];
int block_row, block_col;
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// If the SB64 if it is all "in image".
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) {
for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) {
const int index = block_row * mis + block_col;
MODE_INFO *prev_mi = prev_mi_8x8[index];
const BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0;
// Use previous partition if block size is not larger than bsize.
if (prev_mi && sb_type <= bsize) {
int block_row2, block_col2;
for (block_row2 = 0; block_row2 < bh; ++block_row2) {
for (block_col2 = 0; block_col2 < bw; ++block_col2) {
const int index2 = (block_row + block_row2) * mis +
block_col + block_col2;
prev_mi = prev_mi_8x8[index2];
if (prev_mi) {
const ptrdiff_t offset = prev_mi - cm->prev_mi;
mi_8x8[index2] = cm->mi + offset;
mi_8x8[index2]->mbmi.sb_type = prev_mi->mbmi.sb_type;
}
}
}
} else {
// Otherwise, use fixed partition of size bsize.
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = bsize;
}
}
}
} else {
// Else this is a partial SB64, copy previous partition.
const struct {
int row;
int col;
} coord_lookup[16] = {
// 32x32 index = 0
{0, 0}, {0, 2}, {2, 0}, {2, 2},
// 32x32 index = 1
{0, 4}, {0, 6}, {2, 4}, {2, 6},
// 32x32 index = 2
{4, 0}, {4, 2}, {6, 0}, {6, 2},
// 32x32 index = 3
{4, 4}, {4, 6}, {6, 4}, {6, 6},
};
static void set_source_var_based_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
int mi_row, int mi_col) {
VP9_COMMON *const cm = &cpi->common;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
MODE_INFO *mi_upper_left = cm->mi + mi_row * mis + mi_col;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
assert((row8x8_remaining > 0) && (col8x8_remaining > 0));
// In-image SB64
if ((col8x8_remaining >= MI_BLOCK_SIZE) &&
(row8x8_remaining >= MI_BLOCK_SIZE)) {
const int src_stride = x->plane[0].src.stride;
const int pre_stride = cpi->Last_Source->y_stride;
const uint8_t *src = x->plane[0].src.buf;
const int pre_offset = (mi_row * MI_SIZE) * pre_stride +
(mi_col * MI_SIZE);
const uint8_t *pre_src = cpi->Last_Source->y_buffer + pre_offset;
const unsigned int thr_32x32 = cpi->sf.source_var_thresh;
const unsigned int thr_64x64 = thr_32x32 << 1;
int i, j;
int index;
diff d32[4];
int use16x16 = 0;
for (i = 0; i < 4; i++) {
diff d16[4];
for (j = 0; j < 4; j++) {
int b_mi_row = coord_lookup[i * 4 + j].row;
int b_mi_col = coord_lookup[i * 4 + j].col;
int b_offset = b_mi_row * MI_SIZE * src_stride +
b_mi_col * MI_SIZE;
vp9_get16x16var(src + b_offset, src_stride,
pre_src + b_offset, pre_stride,
&d16[j].sse, &d16[j].sum);
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
d16[j].var = d16[j].sse -
(((uint32_t)d16[j].sum * d16[j].sum) >> 8);
index = b_mi_row * mis + b_mi_col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = BLOCK_16X16;
// TODO(yunqingwang): If d16[j].var is very large, use 8x8 partition
// size to further improve quality.
}
if (d16[0].var < thr_32x32 && d16[1].var < thr_32x32 &&
d16[2].var < thr_32x32 && d16[3].var < thr_32x32) {
d32[i].sse = d16[0].sse;
d32[i].sum = d16[0].sum;
for (j = 1; j < 4; j++) {
d32[i].sse += d16[j].sse;
d32[i].sum += d16[j].sum;
}
d32[i].var = d32[i].sse - (((int64_t)d32[i].sum * d32[i].sum) >> 10);
index = coord_lookup[i*4].row * mis + coord_lookup[i*4].col;
mi_8x8[index] = mi_upper_left + index;
mi_8x8[index]->mbmi.sb_type = BLOCK_32X32;
if (!((cm->current_video_frame - 1) %
cpi->sf.search_type_check_frequency))
cpi->use_large_partition_rate += 1;
} else {
use16x16 = 1;
}
}
if (!use16x16) {
if (d32[0].var < thr_64x64 && d32[1].var < thr_64x64 &&
d32[2].var < thr_64x64 && d32[3].var < thr_64x64) {
mi_8x8[0] = mi_upper_left;
mi_8x8[0]->mbmi.sb_type = BLOCK_64X64;
}
}
} else { // partial in-image SB64
int bh = num_8x8_blocks_high_lookup[BLOCK_16X16];
int bw = num_8x8_blocks_wide_lookup[BLOCK_16X16];
set_partial_b64x64_partition(mi_upper_left, mis, bh, bw,
row8x8_remaining, col8x8_remaining, BLOCK_16X16, mi_8x8);
static int is_background(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col) {
MACROBLOCK *x = &cpi->mb;
uint8_t *src, *pre;
int src_stride, pre_stride;
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
int this_sad = 0;
int threshold = 0;
// This assumes the input source frames are of the same dimension.
src_stride = cpi->Source->y_stride;
src = cpi->Source->y_buffer + (mi_row * MI_SIZE) * src_stride +
(mi_col * MI_SIZE);
pre_stride = cpi->Last_Source->y_stride;
pre = cpi->Last_Source->y_buffer + (mi_row * MI_SIZE) * pre_stride +
(mi_col * MI_SIZE);
if (row8x8_remaining >= MI_BLOCK_SIZE &&
col8x8_remaining >= MI_BLOCK_SIZE) {
this_sad = cpi->fn_ptr[BLOCK_64X64].sdf(src, src_stride,
threshold = (1 << 12);
} else {
int r, c;
for (r = 0; r < row8x8_remaining; r += 2)
for (c = 0; c < col8x8_remaining; c += 2)
this_sad += cpi->fn_ptr[BLOCK_16X16].sdf(src, src_stride,
pre, pre_stride);
threshold = (row8x8_remaining * col8x8_remaining) << 6;
}
x->in_static_area = (this_sad < 2 * threshold);
return x->in_static_area;
static int sb_has_motion(const VP9_COMMON *cm, MODE_INFO **prev_mi_8x8,
const int motion_thresh) {
const int mis = cm->mi_stride;
int block_row, block_col;
if (cm->prev_mi) {
for (block_row = 0; block_row < 8; ++block_row) {
for (block_col = 0; block_col < 8; ++block_col) {
const MODE_INFO *prev_mi = prev_mi_8x8[block_row * mis + block_col];
if (abs(prev_mi->mbmi.mv[0].as_mv.row) > motion_thresh ||
abs(prev_mi->mbmi.mv[0].as_mv.col) > motion_thresh)
return 1;
}
}
}
}
return 0;
}
static void update_state_rt(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx,
int mi_row, int mi_col, int bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const struct segmentation *const seg = &cm->seg;
// For in frame adaptive Q, check for reseting the segment_id and updating
// the cyclic refresh map.
if ((cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) && seg->enabled) {
vp9_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi,
mi_row, mi_col, bsize, 1);
vp9_init_plane_quantizers(cpi, x);
}
vp9_update_mv_count(cm, xd);
if (cm->interp_filter == SWITCHABLE) {
const int pred_ctx = vp9_get_pred_context_switchable_interp(xd);
++cm->counts.switchable_interp[pred_ctx][mbmi->interp_filter];
}
static void encode_b_rt(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
update_state_rt(cpi, ctx, mi_row, mi_col, bsize);
encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize, ctx);
update_stats(cpi);
(*tp)->token = EOSB_TOKEN;
(*tp)++;
}
static void encode_sb_rt(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row, int mi_col,
int output_enabled, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bsl = b_width_log2(bsize), hbs = (1 << bsl) / 4;
int ctx;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (bsize >= BLOCK_8X8) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
const int idx_str = xd->mi_stride * mi_row + mi_col;
MODE_INFO ** mi_8x8 = cm->mi_grid_visible + idx_str;
ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
if (output_enabled && bsize != BLOCK_4X4)
cm->counts.partition[ctx][partition]++;
switch (partition) {
case PARTITION_NONE:
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->none);
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->vertical[0]);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
subsize, &pc_tree->vertical[1]);
encode_b_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
&pc_tree->horizontal[0]);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
subsize, &pc_tree->horizontal[1]);
}
break;
case PARTITION_SPLIT:
subsize = get_subsize(bsize, PARTITION_SPLIT);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col, output_enabled, subsize,
pc_tree->split[0]);
encode_sb_rt(cpi, tile, tp, mi_row, mi_col + hbs, output_enabled,
encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col, output_enabled,
encode_sb_rt(cpi, tile, tp, mi_row + hbs, mi_col + hbs, output_enabled,
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
static void rd_use_partition(VP9_COMP *cpi,
const TileInfo *const tile,
MODE_INFO **mi_8x8,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mis = cm->mi_stride;
const int mi_step = num_4x4_blocks_wide_lookup[bsize] / 2;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE subsize;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
int64_t last_part_dist = INT64_MAX;
int64_t last_part_rd = INT64_MAX;
int64_t none_dist = INT64_MAX;
int64_t chosen_dist = INT64_MAX;
int64_t chosen_rd = INT64_MAX;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
assert(num_4x4_blocks_wide_lookup[bsize] ==
num_4x4_blocks_high_lookup[bsize]);
pc_tree->partitioning = partition;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (bsize == BLOCK_16X16) {
set_offsets(cpi, tile, mi_row, mi_col, bsize);
x->mb_energy = vp9_block_energy(cpi, x, bsize);
} else {
x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
if (!x->in_active_map) {
do_partition_search = 0;
if (mi_row + (mi_step >> 1) < cm->mi_rows &&
mi_col + (mi_step >> 1) < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
bs_type = mi_8x8[0]->mbmi.sb_type = bsize;
subsize = bsize;
partition = PARTITION_NONE;
}
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + (mi_step >> 1) < cm->mi_rows &&
mi_col + (mi_step >> 1) < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &none_rate, &none_dist, bsize,
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (none_rate < INT_MAX) {
none_rate += cpi->partition_cost[pl][PARTITION_NONE];
none_rd = RDCOST(x->rdmult, x->rddiv, none_rate, none_dist);
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
mi_8x8[0]->mbmi.sb_type = bs_type;
pc_tree->partitioning = partition;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, bsize, ctx, INT64_MAX, 0);
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, subsize, &pc_tree->horizontal[0],
INT64_MAX, 0);
bsize >= BLOCK_8X8 && mi_row + (mi_step >> 1) < cm->mi_rows) {
PICK_MODE_CONTEXT *ctx = &pc_tree->horizontal[0];
update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
rd_pick_sb_modes(cpi, tile, mi_row + (mi_step >> 1), mi_col, &rt, &dt,
subsize, &pc_tree->horizontal[1], INT64_MAX, 1);
if (rt == INT_MAX || dt == INT64_MAX) {
last_part_rate += rt;
last_part_dist += dt;
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, subsize, &pc_tree->vertical[0],
INT64_MAX, 0);
bsize >= BLOCK_8X8 && mi_col + (mi_step >> 1) < cm->mi_cols) {
PICK_MODE_CONTEXT *ctx = &pc_tree->vertical[0];
update_state(cpi, ctx, mi_row, mi_col, subsize, 0);
encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize, ctx);
rd_pick_sb_modes(cpi, tile, mi_row, mi_col + (mi_step >> 1), &rt, &dt,
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
INT64_MAX, 1);
if (rt == INT_MAX || dt == INT64_MAX) {
last_part_rate += rt;
last_part_dist += dt;
if (bsize == BLOCK_8X8) {
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &last_part_rate,
&last_part_dist, subsize, pc_tree->leaf_split[0],
INT64_MAX, 0);
break;
}
last_part_rate = 0;
last_part_dist = 0;
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
rd_use_partition(cpi, tile, mi_8x8 + jj * bss * mis + ii * bss, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt,
if (rt == INT_MAX || dt == INT64_MAX) {
last_part_rate += rt;
last_part_dist += dt;
}
break;
default:
assert(0);
}
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (last_part_rate < INT_MAX) {
last_part_rate += cpi->partition_cost[pl][partition];
last_part_rd = RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist);
}
if (do_partition_search
&& cpi->sf.adjust_partitioning_from_last_frame
&& cpi->sf.partition_search_type == SEARCH_PARTITION
&& partition != PARTITION_SPLIT && bsize > BLOCK_8X8
&& (mi_row + mi_step < cm->mi_rows ||
mi_row + (mi_step >> 1) == cm->mi_rows)
&& (mi_col + mi_step < cm->mi_cols ||
mi_col + (mi_step >> 1) == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
chosen_rate = 0;
chosen_dist = 0;
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * (mi_step >> 1);
int y_idx = (i >> 1) * (mi_step >> 1);
int rt = 0;
int64_t dt = 0;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile, mi_row + y_idx, mi_col + x_idx, &rt, &dt,
split_subsize, &pc_tree->split[i]->none,
INT64_MAX, i);
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (rt == INT_MAX || dt == INT64_MAX) {
chosen_rate += rt;
chosen_dist += dt;
encode_sb(cpi, tile, tp, mi_row + y_idx, mi_col + x_idx, 0,
split_subsize, pc_tree->split[i]);
pl = partition_plane_context(xd, mi_row + y_idx, mi_col + x_idx,
chosen_rate += cpi->partition_cost[pl][PARTITION_NONE];
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
if (chosen_rate < INT_MAX) {
chosen_rate += cpi->partition_cost[pl][PARTITION_SPLIT];
chosen_rd = RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist);
// If last_part is better set the partitioning to that.
if (last_part_rd < chosen_rd) {
mi_8x8[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = partition;
chosen_rate = last_part_rate;
chosen_dist = last_part_dist;
// If none was better set the partitioning to that.
if (bsize >= BLOCK_8X8)
pc_tree->partitioning = PARTITION_NONE;
chosen_rate = none_rate;
chosen_dist = none_dist;
}
restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if ( bsize == BLOCK_64X64)
assert(chosen_rate < INT_MAX && chosen_dist < INT64_MAX);
if (do_recon) {
int output_enabled = (bsize == BLOCK_64X64);
// Check the projected output rate for this SB against it's target
// and and if necessary apply a Q delta using segmentation to get
// closer to the target.
if ((cpi->oxcf.aq_mode == COMPLEXITY_AQ) && cm->seg.update_map) {
vp9_select_in_frame_q_segment(cpi, mi_row, mi_col,
output_enabled, chosen_rate);
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ)
vp9_cyclic_refresh_set_rate_and_dist_sb(cpi->cyclic_refresh,
chosen_rate, chosen_dist);
encode_sb(cpi, tile, tp, mi_row, mi_col, output_enabled, bsize,
pc_tree);
*rate = chosen_rate;
*dist = chosen_dist;
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16,
BLOCK_16X16, BLOCK_32X32, BLOCK_32X32,
BLOCK_32X32, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64,
BLOCK_64X64
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a 64x64 SB but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one sb64.
static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8,
BLOCK_SIZE * min_block_size,
BLOCK_SIZE * max_block_size ) {
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
int sb_width_in_blocks = MI_BLOCK_SIZE;
int sb_height_in_blocks = MI_BLOCK_SIZE;
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < sb_height_in_blocks; ++i) {
for (j = 0; j < sb_width_in_blocks; ++j) {
MODE_INFO * mi = mi_8x8[index+j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0;
*min_block_size = MIN(*min_block_size, sb_type);
*max_block_size = MAX(*max_block_size, sb_type);
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4,
BLOCK_8X8, BLOCK_8X8, BLOCK_8X8,
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32,
BLOCK_64X64
};
// Look at neighboring blocks and set a min and max partition size based on
static void rd_auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO **mi = xd->mi;
const int left_in_image = xd->left_available && mi[-1];
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
const int row8x8_remaining = tile->mi_row_end - mi_row;
const int col8x8_remaining = tile->mi_col_end - mi_col;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_64X64;
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
min_size = BLOCK_64X64;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
get_sb_partition_size_range(cpi, prev_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the left SB64
if (left_in_image) {
MODE_INFO **left_sb64_mi = &mi[-MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, left_sb64_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
MODE_INFO **above_sb64_mi = &mi[-xd->mi_stride * MI_BLOCK_SIZE];
get_sb_partition_size_range(cpi, above_sb64_mi, &min_size, &max_size);
}
// adjust observed min and max
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size,
row8x8_remaining, col8x8_remaining,
&bh, &bw);
min_size = MIN(min_size, max_size);
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (cpi->sf.use_square_partition_only &&
next_square_size[max_size] < min_size) {
min_size = next_square_size[max_size];
*min_block_size = min_size;
*max_block_size = max_size;
static void auto_partition_range(VP9_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->mb.e_mbd;
MODE_INFO **mi_8x8 = xd->mi;
const int left_in_image = xd->left_available && mi_8x8[-1];
const int above_in_image = xd->up_available &&
mi_8x8[-xd->mi_stride];
int row8x8_remaining = tile->mi_row_end - mi_row;
int col8x8_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_32X32;
BLOCK_SIZE max_size = BLOCK_8X8;
int bsl = mi_width_log2_lookup[BLOCK_64X64];
const int search_range_ctrl = (((mi_row + mi_col) >> bsl) +
get_chessboard_index(cm)) % 2;
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
// Trap case where we do not have a prediction.
if (search_range_ctrl &&
(left_in_image || above_in_image || cm->frame_type != KEY_FRAME)) {
int block;
MODE_INFO **mi;
BLOCK_SIZE sb_type;
// Find the min and max partition sizes used in the left SB64.
if (left_in_image) {
MODE_INFO *cur_mi;
mi = &mi_8x8[-1];
for (block = 0; block < MI_BLOCK_SIZE; ++block) {
cur_mi = mi[block * xd->mi_stride];
sb_type = cur_mi ? cur_mi->mbmi.sb_type : 0;
min_size = MIN(min_size, sb_type);
max_size = MAX(max_size, sb_type);
}
}
// Find the min and max partition sizes used in the above SB64.
if (above_in_image) {
mi = &mi_8x8[-xd->mi_stride * MI_BLOCK_SIZE];
for (block = 0; block < MI_BLOCK_SIZE; ++block) {
sb_type = mi[block] ? mi[block]->mbmi.sb_type : 0;
min_size = MIN(min_size, sb_type);
max_size = MAX(max_size, sb_type);
}
}
min_size = min_partition_size[min_size];
max_size = find_partition_size(max_size, row8x8_remaining, col8x8_remaining,
&bh, &bw);
min_size = MIN(min_size, max_size);
min_size = MAX(min_size, BLOCK_8X8);
max_size = MIN(max_size, BLOCK_32X32);
} else {
min_size = BLOCK_8X8;
max_size = BLOCK_32X32;
}
*min_block_size = min_size;
*max_block_size = max_size;
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(VP9_COMP *cpi, const TileInfo *const tile,
TOKENEXTRA **tp, int mi_row,
int mi_col, BLOCK_SIZE bsize, int *rate,
int64_t *dist, int do_recon, int64_t best_rd,
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = num_8x8_blocks_wide_lookup[bsize] / 2;
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT sl[8], sa[8];
TOKENEXTRA *tp_orig = *tp;
PICK_MODE_CONTEXT *ctx = &pc_tree->none;
BLOCK_SIZE subsize;
int this_rate, sum_rate = 0, best_rate = INT_MAX;
int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX;
int do_split = bsize >= BLOCK_8X8;
int do_rect = 1;
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed = !force_vert_split && yss <= xss &&
bsize >= BLOCK_8X8;
int partition_vert_allowed = !force_horz_split && xss <= yss &&
bsize >= BLOCK_8X8;
assert(num_8x8_blocks_wide_lookup[bsize] ==
num_8x8_blocks_high_lookup[bsize]);
if (bsize == BLOCK_16X16) {
x->mb_energy = vp9_block_energy(cpi, x, bsize);
} else {
x->in_active_map = check_active_map(cpi, x, mi_row, mi_col, bsize);
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
partition_none_allowed &= (bsize <= cpi->sf.max_partition_size &&
bsize >= cpi->sf.min_partition_size);
partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_horz_split);
partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size &&
bsize > cpi->sf.min_partition_size) ||
force_vert_split);
do_split &= bsize > cpi->sf.min_partition_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize);
if (cpi->sf.disable_split_var_thresh && partition_none_allowed) {
unsigned int source_variancey;
vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col);
source_variancey = get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
if (source_variancey < cpi->sf.disable_split_var_thresh) {
if (source_variancey < cpi->sf.disable_split_var_thresh / 2)
do_rect = 0;
}
if (!x->in_active_map && (partition_horz_allowed || partition_vert_allowed))
do_split = 0;
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile, mi_row, mi_col, &this_rate, &this_dist, bsize,
if (this_rate != INT_MAX) {
if (bsize >= BLOCK_8X8) {
pl = partition_plane_context(xd, mi_row, mi_col, bsize);
this_rate += cpi->partition_cost[pl][PARTITION_NONE];
}
sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist);
if (sum_rd < best_rd) {