Newer
Older
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
#include "vp9/encoder/vp9_encodeframe.h"
#include "vp9/encoder/vp9_encodemb.h"
#include "vp9/encoder/vp9_encodemv.h"
#include "vp9/encoder/vp9_onyx_int.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vp9/encoder/vp9_segmentation.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/encoder/vp9_encodeintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include <limits.h>
#include "vpx_ports/vpx_timer.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_mvref_common.h"
static void encode_macroblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled, int mb_row, int mb_col);
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled, int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize);
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x);
unsigned int inter_y_modes[MB_MODE_COUNT];
unsigned int inter_uv_modes[VP9_UV_MODES];
unsigned int inter_b_modes[B_MODE_COUNT];
unsigned int y_modes[VP9_YMODES];
unsigned int i8x8_modes[VP9_I8X8_MODES];
unsigned int uv_modes[VP9_UV_MODES];
unsigned int uv_modes_y[VP9_YMODES][VP9_UV_MODES];
unsigned int b_modes[B_MODE_COUNT];
/* activity_avg must be positive, or flat regions could get a zero weight
* (infinite lambda), which confounds analysis.
* This also avoids the need for divide by zero checks in
* vp9_activity_masking().
/* This is used as a reference when computing the source variance for the
* purposes of activity masking.
* Eventually this should be replaced by custom no-reference routines,
* which will be faster.
*/
static const uint8_t VP9_VAR_OFFS[16] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
// Original activity measure from Tim T's code.
static unsigned int tt_activity_measure(VP9_COMP *cpi, MACROBLOCK *x) {
unsigned int act;
unsigned int sse;
/* TODO: This could also be done over smaller areas (8x8), but that would
* require extensive changes elsewhere, as lambda is assumed to be fixed
* over an entire MB in most of the code.
* Another option is to compute four 8x8 variances, and pick a single
* lambda using a non-linear combination (e.g., the smallest, or second
* smallest, etc.).
*/
act = vp9_variance16x16(x->src.y_buffer, x->src.y_stride, VP9_VAR_OFFS, 0,
/* If the region is flat, lower the activity some more. */
if (act < 8 << 12)
act = act < 5 << 12 ? act : 5 << 12;
return act;
// Stub for alternative experimental activity measures.
static unsigned int alt_activity_measure(VP9_COMP *cpi,
return vp9_encode_intra(cpi, x, use_dc_pred);
}
// Measure the activity of the current macroblock
// What we measure here is TBD so abstracted to this function
static unsigned int mb_activity_measure(VP9_COMP *cpi, MACROBLOCK *x,
if (ALT_ACT_MEASURE) {
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
// Or use and alternative.
mb_activity = alt_activity_measure(cpi, x, use_dc_pred);
} else {
// Original activity measure from Tim T's code.
mb_activity = tt_activity_measure(cpi, x);
}
if (mb_activity < VP9_ACTIVITY_AVG_MIN)
mb_activity = VP9_ACTIVITY_AVG_MIN;
}
// Calculate an "average" mb activity value for the frame
static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) {
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// Find median: Simple n^2 algorithm for experimentation
{
unsigned int median;
unsigned int i, j;
unsigned int *sortlist;
unsigned int tmp;
// Create a list to sort to
CHECK_MEM_ERROR(sortlist,
vpx_calloc(sizeof(unsigned int),
cpi->common.MBs));
// Copy map to sort list
vpx_memcpy(sortlist, cpi->mb_activity_map,
sizeof(unsigned int) * cpi->common.MBs);
// Ripple each value down to its correct position
for (i = 1; i < cpi->common.MBs; i ++) {
for (j = i; j > 0; j --) {
if (sortlist[j] < sortlist[j - 1]) {
// Swap values
tmp = sortlist[j - 1];
sortlist[j - 1] = sortlist[j];
sortlist[j] = tmp;
} else
break;
}
}
// Even number MBs so estimate median as mean of two either side.
median = (1 + sortlist[cpi->common.MBs >> 1] +
sortlist[(cpi->common.MBs >> 1) + 1]) >> 1;
// Simple mean for now
cpi->activity_avg = (unsigned int)(activity_sum / cpi->common.MBs);
if (cpi->activity_avg < VP9_ACTIVITY_AVG_MIN)
cpi->activity_avg = VP9_ACTIVITY_AVG_MIN;
// Experimental code: return fixed value normalized for several clips
if (ALT_ACT_MEASURE)
cpi->activity_avg = 100000;
// Calculate an activity index for each mb
static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) {
VP9_COMMON *const cm = &cpi->common;
FILE *f = fopen("norm_act.stt", "a");
fprintf(f, "\n%12d\n", cpi->activity_avg);
// Reset pointers to start of activity map
x->mb_activity_ptr = cpi->mb_activity_map;
// Calculate normalized mb activity number.
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
// Read activity from the map
act = *(x->mb_activity_ptr);
// Calculate a normalized activity number
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (b >= a)
*(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1;
else
*(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b);
// Increment activity map pointers
x->mb_activity_ptr++;
}
// Loop through all MBs. Note activity of each, average activity and
// calculate a normalized activity for each
static void build_activity_map(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx];
int recon_yoffset;
int recon_y_stride = new_yv12->y_stride;
int mb_row, mb_col;
unsigned int mb_activity;
int64_t activity_sum = 0;
x->mb_activity_ptr = cpi->mb_activity_map;
// for each macroblock row in image
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
// reset above block coeffs
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
// for each macroblock col in image
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset;
xd->left_available = (mb_col != 0);
recon_yoffset += 16;
// measure activity
mb_activity = mb_activity_measure(cpi, x, mb_row, mb_col);
// Store MB level activity details.
*x->mb_activity_ptr = mb_activity;
// Increment activity map pointer
x->mb_activity_ptr++;
// adjust to the next column of source macroblocks
x->src.y_buffer += 16;
}
// adjust to the next row of mbs
x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols;
vp9_extend_mb_row(new_yv12, xd->dst.y_buffer + 16,
// Calculate an "average" MB activity
calc_av_activity(cpi, activity_sum);
// Calculate an activity index number of each mb
calc_activity_index(cpi, x);
void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) {
x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + (2 * cpi->activity_avg);
b = (2 * act) + cpi->activity_avg;
x->rdmult = (unsigned int)(((int64_t)x->rdmult * b + (a >> 1)) / a);
x->errorperbit = x->rdmult * 100 / (110 * x->rddiv);
x->errorperbit += (x->errorperbit == 0);
// Activity based Zbin adjustment
adjust_act_zbin(cpi, x);
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
#if CONFIG_NEW_MVREF
static int vp9_cost_mv_ref_id(vp9_prob * ref_id_probs, int mv_ref_id) {
int cost;
// Encode the index for the MV reference.
switch (mv_ref_id) {
case 0:
cost = vp9_cost_zero(ref_id_probs[0]);
break;
case 1:
cost = vp9_cost_one(ref_id_probs[0]);
cost += vp9_cost_zero(ref_id_probs[1]);
break;
case 2:
cost = vp9_cost_one(ref_id_probs[0]);
cost += vp9_cost_one(ref_id_probs[1]);
cost += vp9_cost_zero(ref_id_probs[2]);
break;
case 3:
cost = vp9_cost_one(ref_id_probs[0]);
cost += vp9_cost_one(ref_id_probs[1]);
cost += vp9_cost_one(ref_id_probs[2]);
break;
// TRAP.. This should not happen
default:
assert(0);
break;
}
return cost;
}
// Estimate the cost of each coding the vector using each reference candidate
static unsigned int pick_best_mv_ref(MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame,
int_mv target_mv,
int_mv * mv_ref_list,
int_mv * best_ref) {
int i;
int best_index = 0;
int cost, cost2;
int zero_seen = (mv_ref_list[0].as_int) ? FALSE : TRUE;
MACROBLOCKD *xd = &x->e_mbd;
int max_mv = MV_MAX;
cost = vp9_cost_mv_ref_id(xd->mb_mv_ref_probs[ref_frame], 0) +
vp9_mv_bit_cost(&target_mv, &mv_ref_list[0], x->nmvjointcost,
x->mvcost, 96, xd->allow_high_precision_mv);
for (i = 1; i < MAX_MV_REF_CANDIDATES; ++i) {
// If we see a 0,0 reference vector for a second time we have reached
// the end of the list of valid candidate vectors.
if (zero_seen)
break;
else
zero_seen = TRUE;
// Check for cases where the reference choice would give rise to an
// uncodable/out of range residual for row or col.
if ((abs(target_mv.as_mv.row - mv_ref_list[i].as_mv.row) > max_mv) ||
(abs(target_mv.as_mv.col - mv_ref_list[i].as_mv.col) > max_mv)) {
continue;
}
cost2 = vp9_cost_mv_ref_id(xd->mb_mv_ref_probs[ref_frame], i) +
vp9_mv_bit_cost(&target_mv, &mv_ref_list[i], x->nmvjointcost,
x->mvcost, 96, xd->allow_high_precision_mv);
if (cost2 < cost) {
cost = cost2;
best_index = i;
}
}
best_ref->as_int = mv_ref_list[best_index].as_int;
return best_index;
}
#endif
static void update_state(VP9_COMP *cpi,
PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE_TYPE bsize,
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
int mb_mode = mi->mbmi.mode;
int mb_mode_index = ctx->best_mode_index;
const int mis = cpi->common.mode_info_stride;
const int bh = 1 << mb_height_log2(bsize), bw = 1 << mb_width_log2(bsize);
assert(mb_mode < MB_MODE_COUNT);
assert(mb_mode_index < MAX_MODES);
assert(mi->mbmi.ref_frame < MAX_REF_FRAMES);
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < bh; y++) {
for (x_idx = 0; x_idx < bw; x_idx++) {
if ((xd->mb_to_right_edge >> 7) + bw > x_idx &&
(xd->mb_to_bottom_edge >> 7) + bh > y) {
MODE_INFO *mi_addr = xd->mode_info_context + x_idx + y * mis;
vpx_memcpy(mi_addr, mi, sizeof(MODE_INFO));
}
ctx->txfm_rd_diff[ALLOW_32X32] = ctx->txfm_rd_diff[ALLOW_16X16];
if (mb_mode == B_PRED) {
for (i = 0; i < 16; i++) {
xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode;
assert(xd->block[i].bmi.as_mode.first < B_MODE_COUNT);
} else if (mb_mode == I8X8_PRED) {
for (i = 0; i < 16; i++) {
xd->block[i].bmi = xd->mode_info_context->bmi[i];
} else if (mb_mode == SPLITMV) {
vpx_memcpy(x->partition_info, &ctx->partition_info,
sizeof(PARTITION_INFO));
mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int;
mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int;
x->skip = ctx->skip;
{
int segment_id = mbmi->segment_id;
if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) {
for (i = 0; i < NB_TXFM_MODES; i++) {
cpi->rd_tx_select_diff[i] += ctx->txfm_rd_diff[i];
}
}
}
if (cpi->common.frame_type == KEY_FRAME) {
// Restore the coding modes to that held in the coding context
// if (mb_mode == B_PRED)
// for (i = 0; i < 16; i++)
// {
// xd->block[i].bmi.as_mode =
// xd->mode_info_context->bmi[i].as_mode;
// assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT);
// }
#if CONFIG_INTERNAL_STATS
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D27_PRED /*D27_PRED*/,
THR_D63_PRED /*D63_PRED*/,
THR_TM /*TM_PRED*/,
THR_I8X8_PRED /*I8X8_PRED*/,
THR_B_PRED /*B_PRED*/,
};
cpi->mode_chosen_counts[kf_mode_index[mb_mode]]++;
} else {
/*
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[mb_mode_index] > 0) &&
(cpi->rd_baseline_thresh[mb_mode_index] < (INT_MAX >> 2)))
{
int best_adjustment = (cpi->rd_thresh_mult[mb_mode_index] >> 2);
cpi->rd_thresh_mult[mb_mode_index] =
(cpi->rd_thresh_mult[mb_mode_index]
>= (MIN_THRESHMULT + best_adjustment)) ?
cpi->rd_thresh_mult[mb_mode_index] - best_adjustment :
MIN_THRESHMULT;
cpi->rd_threshes[mb_mode_index] =
(cpi->rd_baseline_thresh[mb_mode_index] >> 7)
* cpi->rd_thresh_mult[mb_mode_index];
}
*/
// Note how often each mode chosen as best
cpi->mode_chosen_counts[mb_mode_index]++;
if (mbmi->mode == SPLITMV || mbmi->mode == NEWMV) {
int_mv best_mv, best_second_mv;
MV_REFERENCE_FRAME rf = mbmi->ref_frame;
MV_REFERENCE_FRAME sec_ref_frame = mbmi->second_ref_frame;
best_mv.as_int = ctx->best_ref_mv.as_int;
best_second_mv.as_int = ctx->second_best_ref_mv.as_int;
if (mbmi->mode == NEWMV) {
best_mv.as_int = mbmi->ref_mvs[rf][0].as_int;
best_second_mv.as_int = mbmi->ref_mvs[mbmi->second_ref_frame][0].as_int;
#if CONFIG_NEW_MVREF
best_index = pick_best_mv_ref(x, rf, mbmi->mv[0],
mbmi->ref_mvs[rf], &best_mv);
mbmi->best_index = best_index;
++cpi->mb_mv_ref_count[rf][best_index];
if (mbmi->second_ref_frame > 0) {
unsigned int best_index;
best_index =
pick_best_mv_ref(x, sec_ref_frame, mbmi->mv[1],
mbmi->ref_mvs[sec_ref_frame],
&best_second_mv);
mbmi->best_second_index = best_index;
++cpi->mb_mv_ref_count[sec_ref_frame][best_index];
}
#endif
}
mbmi->best_mv.as_int = best_mv.as_int;
mbmi->best_second_mv.as_int = best_second_mv.as_int;
vp9_update_nmv_count(cpi, x, &best_mv, &best_second_mv);
}
#if CONFIG_COMP_INTERINTRA_PRED
if (mbmi->mode >= NEARESTMV && mbmi->mode < SPLITMV &&
mbmi->second_ref_frame <= INTRA_FRAME) {
if (mbmi->second_ref_frame == INTRA_FRAME) {
++cpi->interintra_count[1];
++cpi->ymode_count[mbmi->interintra_mode];
#if SEPARATE_INTERINTRA_UV
++cpi->y_uv_mode_count[mbmi->interintra_mode][mbmi->interintra_uv_mode];
#endif
} else {
++cpi->interintra_count[0];
}
}
if (cpi->common.mcomp_filter_type == SWITCHABLE &&
mbmi->mode >= NEARESTMV &&
mbmi->mode <= SPLITMV) {
++cpi->switchable_interp_count
[vp9_get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)]
[vp9_switchable_interp_map[mbmi->interp_filter]];
}
cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff;
cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff;
cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff;
static unsigned find_seg_id(uint8_t *buf, BLOCK_SIZE_TYPE bsize,
int start_y, int height, int start_x, int width) {
const int bw = 1 << mb_width_log2(bsize), bh = 1 << mb_height_log2(bsize);
const int end_x = MIN(start_x + bw, width);
const int end_y = MIN(start_y + bh, height);
int x, y;
unsigned seg_id = -1;
buf += width * start_y;
for (y = start_y; y < end_y; y++, buf += width) {
for (x = start_x; x < end_x; x++) {
seg_id = MIN(seg_id, buf[x]);
}
}
return seg_id;
}
static void set_offsets(VP9_COMP *cpi,
int mb_row, int mb_col, BLOCK_SIZE_TYPE bsize) {
MACROBLOCK *const x = &cpi->mb;
VP9_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const int dst_fb_idx = cm->new_fb_idx;
const int idx_map = mb_row * cm->mb_cols + mb_col;
const int idx_str = xd->mode_info_stride * mb_row + mb_col;
const int bw = 1 << mb_width_log2(bsize), bh = 1 << mb_height_log2(bsize);
// entropy context structures
xd->above_context = cm->above_context + mb_col;
xd->left_context = cm->left_context + (mb_row & 3);
// GF active flags data structure
x->gf_active_ptr = (signed char *)&cpi->gf_active_flags[idx_map];
// Activity map pointer
x->mb_activity_ptr = &cpi->mb_activity_map[idx_map];
x->active_ptr = cpi->active_map + idx_map;
/* pointers to mode info contexts */
x->partition_info = x->pi + idx_str;
xd->mode_info_context = cm->mi + idx_str;
mbmi = &xd->mode_info_context->mbmi;
xd->prev_mode_info_context = cm->prev_mi + idx_str;
// Set up destination pointers
setup_pred_block(&xd->dst,
&cm->yv12_fb[dst_fb_idx],
/* Set up limit values for MV components to prevent them from
* extending beyond the UMV borders assuming 16x16 block size */
x->mv_row_min = -((mb_row * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_col_min = -((mb_col * 16) + VP9BORDERINPIXELS - VP9_INTERP_EXTEND);
x->mv_row_max = ((cm->mb_rows - mb_row) * 16 +
(VP9BORDERINPIXELS - 16 * bh - VP9_INTERP_EXTEND));
x->mv_col_max = ((cm->mb_cols - mb_col) * 16 +
(VP9BORDERINPIXELS - 16 * bw - VP9_INTERP_EXTEND));
// Set up distance of MB to edge of frame in 1/8th pel units
assert(!(mb_col & (bw - 1)) && !(mb_row & (bh - 1)));
set_mb_row(cm, xd, mb_row, bh);
set_mb_col(cm, xd, mb_col, bw);
setup_pred_block(&x->src, cpi->Source, mb_row, mb_col, NULL, NULL);
/* R/D setup */
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* segment ID */
if (xd->segmentation_enabled) {
if (xd->update_mb_segmentation_map) {
mbmi->segment_id = find_seg_id(cpi->segmentation_map, bsize,
mb_row, cm->mb_rows, mb_col, cm->mb_cols);
} else {
mbmi->segment_id = find_seg_id(cm->last_frame_seg_map, bsize,
mb_row, cm->mb_rows, mb_col, cm->mb_cols);
}
assert(mbmi->segment_id <= 3);
vp9_mb_init_quantizer(cpi, x);
if (xd->segmentation_enabled && cpi->seg0_cnt > 0 &&
!vp9_segfeature_active(xd, 0, SEG_LVL_REF_FRAME) &&
vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME) &&
vp9_check_segref(xd, 1, INTRA_FRAME) +
vp9_check_segref(xd, 1, LAST_FRAME) +
vp9_check_segref(xd, 1, GOLDEN_FRAME) +
vp9_check_segref(xd, 1, ALTREF_FRAME) == 1) {
cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt;
} else {
const int y = mb_row & ~3;
const int x = mb_col & ~3;
const int p16 = ((mb_row & 1) << 1) + (mb_col & 1);
const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1);
const int tile_progress = cm->cur_tile_mb_col_start * cm->mb_rows;
const int mb_cols = cm->cur_tile_mb_col_end - cm->cur_tile_mb_col_start;
((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs;
}
} else {
mbmi->segment_id = 0;
}
}
static int pick_mb_modes(VP9_COMP *cpi,
int mb_row,
int mb_col,
TOKENEXTRA **tp,
int *totalrate,
int *totaldist) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
set_offsets(cpi, mb_row, mb_col, BLOCK_SIZE_MB16X16);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
mbmi = &xd->mode_info_context->mbmi;
mbmi->sb_type = BLOCK_SIZE_MB16X16;
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (cm->frame_type == KEY_FRAME) {
vp9_rd_pick_intra_mode(cpi, x, totalrate, totaldist);
// Save the coding context
vpx_memcpy(&x->mb_context[xd->sb_index][xd->mb_index].mic,
xd->mode_info_context, sizeof(MODE_INFO));
// Dummy encode, do not do the tokenization
encode_macroblock(cpi, tp, 0, mb_row, mb_col);
} else {
int seg_id;
vp9_pick_mode_inter_macroblock(cpi, x, mb_row, mb_col,
totalrate, totaldist);
splitmodes_used += (mbmi->mode == SPLITMV);
// Dummy encode, do not do the tokenization
encode_macroblock(cpi, tp, 0, mb_row, mb_col);
seg_id = mbmi->segment_id;
if (cpi->mb.e_mbd.segmentation_enabled && seg_id == 0) {
cpi->seg0_idx++;
}
if (!xd->segmentation_enabled ||
!vp9_segfeature_active(xd, seg_id, SEG_LVL_REF_FRAME) ||
vp9_check_segref(xd, seg_id, INTRA_FRAME) +
vp9_check_segref(xd, seg_id, LAST_FRAME) +
vp9_check_segref(xd, seg_id, GOLDEN_FRAME) +
vp9_check_segref(xd, seg_id, ALTREF_FRAME) > 1) {
// Get the prediction context and status
int pred_flag = vp9_get_pred_flag(xd, PRED_REF);
int pred_context = vp9_get_pred_context(cm, xd, PRED_REF);
// Count prediction success
cpi->ref_pred_count[pred_context][pred_flag]++;
static void pick_sb_modes(VP9_COMP *cpi, int mb_row, int mb_col,
TOKENEXTRA **tp, int *totalrate, int *totaldist,
BLOCK_SIZE_TYPE bsize, PICK_MODE_CONTEXT *ctx) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
set_offsets(cpi, mb_row, mb_col, bsize);
xd->mode_info_context->mbmi.sb_type = bsize;
vp9_activity_masking(cpi, x);
/* Find best coding mode & reconstruct the MB so it is available
* as a predictor for MBs that follow in the SB */
vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx);
vp9_rd_pick_inter_mode_sb(cpi, x, mb_row, mb_col, totalrate, totaldist,
static void update_stats(VP9_COMP *cpi, int mb_row, int mb_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (cm->frame_type == KEY_FRAME) {
#ifdef MODE_STATS
y_modes[mbmi->mode]++;
} else {
int segment_id, seg_ref_active;
if (mbmi->ref_frame) {
int pred_context = vp9_get_pred_context(cm, xd, PRED_COMP);
if (mbmi->second_ref_frame <= INTRA_FRAME)
cpi->single_pred_count[pred_context]++;
else
cpi->comp_pred_count[pred_context]++;
#ifdef MODE_STATS
inter_y_modes[mbmi->mode]++;
for (b = 0; b < x->partition_info->count; b++) {
inter_b_modes[x->partition_info->bmi[b].mode]++;
}
}
#endif
// If we have just a single reference frame coded for a segment then
// exclude from the reference frame counts used to work out
// probabilities. NOTE: At the moment we dont support custom trees
// for the reference frame coding for each segment but this is a
// possible future action.
segment_id = mbmi->segment_id;
seg_ref_active = vp9_segfeature_active(xd, segment_id,
SEG_LVL_REF_FRAME);
if (!seg_ref_active ||
((vp9_check_segref(xd, segment_id, INTRA_FRAME) +
vp9_check_segref(xd, segment_id, LAST_FRAME) +
vp9_check_segref(xd, segment_id, GOLDEN_FRAME) +
vp9_check_segref(xd, segment_id, ALTREF_FRAME)) > 1)) {
cpi->count_mb_ref_frame_usage[mbmi->ref_frame]++;
// Count of last ref frame 0,0 usage
if ((mbmi->mode == ZEROMV) && (mbmi->ref_frame == LAST_FRAME))
cpi->inter_zz_count++;
}
#if CONFIG_CODE_NONZEROCOUNT
vp9_update_nzc_counts(&cpi->common, xd, mb_row, mb_col);
#endif
static void encode_sb(VP9_COMP *cpi,
int mb_row,
int mb_col,
int output_enabled,
TOKENEXTRA **tp, int is_sb) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
set_offsets(cpi, mb_row, mb_col, BLOCK_SIZE_SB32X32);
update_state(cpi, &x->sb32_context[xd->sb_index],
BLOCK_SIZE_SB32X32, output_enabled);
encode_superblock(cpi, tp,
output_enabled, mb_row, mb_col, BLOCK_SIZE_SB32X32);
if (output_enabled) {
update_stats(cpi, mb_row, mb_col);
}
if (output_enabled) {
(*tp)->Token = EOSB_TOKEN;
(*tp)++;
}
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
if ((mb_row + y_idx >= cm->mb_rows) || (mb_col + x_idx >= cm->mb_cols)) {
// MB lies outside frame, move on
continue;
set_offsets(cpi, mb_row + y_idx, mb_col + x_idx, BLOCK_SIZE_MB16X16);
update_state(cpi, &x->mb_context[xd->sb_index][i],
BLOCK_SIZE_MB16X16, output_enabled);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM)
vp9_activity_masking(cpi, x);
encode_macroblock(cpi, tp,
output_enabled, mb_row + y_idx, mb_col + x_idx);
if (output_enabled) {
update_stats(cpi, mb_row + y_idx, mb_col + x_idx);
}
if (output_enabled) {
(*tp)->Token = EOSB_TOKEN;
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
#endif
}
static void encode_sb64(VP9_COMP *cpi,
int mb_row,
int mb_col,
TOKENEXTRA **tp, int is_sb[4]) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
cpi->sb64_count[is_sb[0] == 2]++;
if (is_sb[0] == 2) {
set_offsets(cpi, mb_row, mb_col, BLOCK_SIZE_SB64X64);
update_state(cpi, &x->sb64_context, BLOCK_SIZE_SB64X64, 1);
encode_superblock(cpi, tp,
1, mb_row, mb_col, BLOCK_SIZE_SB64X64);
update_stats(cpi, mb_row, mb_col);
(*tp)->Token = EOSB_TOKEN;
(*tp)++;
} else {
int i;
for (i = 0; i < 4; i++) {
const int x_idx = i & 1, y_idx = i >> 1;
if (mb_row + y_idx * 2 >= cm->mb_rows ||
mb_col + x_idx * 2 >= cm->mb_cols) {
// MB lies outside frame, move on
continue;
}
xd->sb_index = i;
encode_sb(cpi, mb_row + 2 * y_idx, mb_col + 2 * x_idx, 1, tp,
static void encode_sb_row(VP9_COMP *cpi,
int mb_row,
TOKENEXTRA **tp,
int *totalrate) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int mb_col;
// Initialize the left context for the new SB row
vpx_memset(cm->left_context, 0, sizeof(cm->left_context));
for (mb_col = cm->cur_tile_mb_col_start;
mb_col < cm->cur_tile_mb_col_end; mb_col += 4) {
int i;
int sb32_rate = 0, sb32_dist = 0;
int is_sb[4];
int sb64_rate = INT_MAX, sb64_dist;
ENTROPY_CONTEXT_PLANES l[4], a[4];
TOKENEXTRA *tp_orig = *tp;
memcpy(&a, cm->above_context + mb_col, sizeof(a));
memcpy(&l, cm->left_context, sizeof(l));
for (i = 0; i < 4; i++) {
const int x_idx = (i & 1) << 1, y_idx = i & 2;
int mb_rate = 0, mb_dist = 0;
int sb_rate = INT_MAX, sb_dist;
int splitmodes_used = 0;
int sb32_skip = 0;
int j;
ENTROPY_CONTEXT_PLANES l2[2], a2[2];
if (mb_row + y_idx >= cm->mb_rows || mb_col + x_idx >= cm->mb_cols)
continue;
xd->sb_index = i;
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
/* Function should not modify L & A contexts; save and restore on exit */
vpx_memcpy(l2, cm->left_context + y_idx, sizeof(l2));
vpx_memcpy(a2, cm->above_context + mb_col + x_idx, sizeof(a2));
/* Encode MBs in raster order within the SB */
for (j = 0; j < 4; j++) {
const int x_idx_m = x_idx + (j & 1), y_idx_m = y_idx + (j >> 1);
int r, d;
if (mb_row + y_idx_m >= cm->mb_rows ||
mb_col + x_idx_m >= cm->mb_cols) {
// MB lies outside frame, move on
continue;
}
// Index of the MB in the SB 0..3
xd->mb_index = j;
splitmodes_used += pick_mb_modes(cpi, mb_row + y_idx_m,
mb_col + x_idx_m, tp, &r, &d);
mb_rate += r;
mb_dist += d;
}
/* Restore L & A coding context to those in place on entry */
vpx_memcpy(cm->left_context + y_idx, l2, sizeof(l2));
vpx_memcpy(cm->above_context + mb_col + x_idx, a2, sizeof(a2));
mb_rate += vp9_cost_bit(cm->prob_sb32_coded, 0);
if (cpi->sf.splitmode_breakout) {
sb32_skip = splitmodes_used;
sb64_skip += splitmodes_used;
}
if (!sb32_skip && !(mb_col + x_idx + 1 >= cm->mb_cols ||
mb_row + y_idx + 1 >= cm->mb_rows)) {
/* Pick a mode assuming that it applies to all 4 of the MBs in the SB */
pick_sb_modes(cpi, mb_row + y_idx, mb_col + x_idx,
tp, &sb_rate, &sb_dist, BLOCK_SIZE_SB32X32,
&x->sb32_context[xd->sb_index]);
sb_rate += vp9_cost_bit(cm->prob_sb32_coded, 1);
}
/* Decide whether to encode as a SB or 4xMBs */
if (sb_rate < INT_MAX &&
RDCOST(x->rdmult, x->rddiv, sb_rate, sb_dist) <
RDCOST(x->rdmult, x->rddiv, mb_rate, mb_dist)) {
is_sb[i] = 1;
sb32_rate += sb_rate;
sb32_dist += sb_dist;
is_sb[i] = 0;
sb32_rate += mb_rate;
sb32_dist += mb_dist;
// If we used 16x16 instead of 32x32 then skip 64x64 (if enabled).
if (cpi->sf.mb16_breakout) {
++sb64_skip;
}
/* Encode SB using best computed mode(s) */
// FIXME(rbultje): there really shouldn't be any need to encode_mb/sb
// for each level that we go up, we can just keep tokens and recon
// pixels of the lower level; also, inverting SB/MB order (big->small
// instead of small->big) means we can use as threshold for small, which
// may enable breakouts if RD is not good enough (i.e. faster)
encode_sb(cpi, mb_row + y_idx, mb_col + x_idx, 0, tp, is_sb[i]);
memcpy(cm->above_context + mb_col, &a, sizeof(a));
memcpy(cm->left_context, &l, sizeof(l));
sb32_rate += vp9_cost_bit(cm->prob_sb64_coded, 0);
if (!sb64_skip && !(mb_col + 3 >= cm->mb_cols ||
mb_row + 3 >= cm->mb_rows)) {
pick_sb_modes(cpi, mb_row, mb_col, tp, &sb64_rate, &sb64_dist,
BLOCK_SIZE_SB64X64, &x->sb64_context);
sb64_rate += vp9_cost_bit(cm->prob_sb64_coded, 1);
if (sb64_rate < INT_MAX &&
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
is_sb[0] = 2;
*totalrate += sb64_rate;
encode_sb64(cpi, mb_row, mb_col, tp, is_sb);
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count));
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
xd->pre = cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]];
vp9_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp9_build_block_offsets(x);
vp9_setup_block_dptrs(&x->e_mbd);
vp9_setup_block_ptrs(x);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->count_mb_ref_frame_usage)
vp9_zero(cpi->bmode_count)
vp9_zero(cpi->ymode_count)
vp9_zero(cpi->i8x8_mode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cpi->sub_mv_ref_count)
vp9_zero(cpi->mbsplit_count)
vp9_zero(cpi->common.fc.mv_ref_ct)
vp9_zero(cpi->sb_ymode_count)
vp9_zero(cpi->sb32_count);
vp9_zero(cpi->sb64_count);
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(cpi->interintra_count);
vp9_zero(cpi->interintra_select_count);
#endif
vpx_memset(cm->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols);
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4;
cpi->mb.optimize = 0;
cpi->common.filter_level = 0;
cpi->zbin_mode_boost_enabled = FALSE;
cpi->common.txfm_mode = ONLY_4X4;
} else {
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4;
static void encode_frame_internal(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
// Compute a modified set of reference frame probabilities to use when
// prediction fails. These are based on the current general estimates for
// this frame which may be updated with each iteration of the recode loop.
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
totalrate = 0;
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0;
cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0;
vp9_zero(cpi->switchable_interp_count);
vp9_zero(cpi->best_switchable_interp_count);
xd->mode_info_context = cm->mi;
xd->prev_mode_info_context = cm->prev_mi;
vp9_zero(cpi->coef_counts_4x4);
vp9_zero(cpi->coef_counts_8x8);
vp9_zero(cpi->coef_counts_16x16);
vp9_zero(cm->fc.eob_branch_counts);
#if CONFIG_CODE_NONZEROCOUNT
vp9_zero(cm->fc.nzc_counts_4x4);
vp9_zero(cm->fc.nzc_counts_8x8);
vp9_zero(cm->fc.nzc_counts_16x16);
vp9_zero(cm->fc.nzc_counts_32x32);
vp9_zero(cm->fc.nzc_pcat_counts);
#if CONFIG_NEW_MVREF
vp9_zero(cpi->mb_mv_ref_count);
#endif
cpi->mb.e_mbd.lossless = (cm->base_qindex == 0 &&
cm->y1dc_delta_q == 0 &&
cm->uvdc_delta_q == 0 &&
cm->uvac_delta_q == 0);
switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff));
vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count));
vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count));
vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p));
vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p));
vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p));
vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff));
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
// Take tiles into account and give start/end MB
int tile_col, tile_row;
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_get_tile_col_offsets(cm, tile_col);
for (mb_row = cm->cur_tile_mb_row_start;
mb_row < cm->cur_tile_mb_row_end; mb_row += 4) {
encode_sb_row(cpi, mb_row, &tp, &totalrate);
}
cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old);
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
static int check_dual_ref_flags(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) {
if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) &&
vp9_check_segref(xd, 1, LAST_FRAME))
if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) &&
vp9_check_segref(xd, 1, GOLDEN_FRAME))
if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) &&
vp9_check_segref(xd, 1, ALTREF_FRAME))
return (!!(ref_flags & VP9_GOLD_FLAG) +
!!(ref_flags & VP9_LAST_FLAG) +
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
Ronald S. Bultje
committed
}
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi[y * mis + x].mbmi.mb_skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
TX_SIZE txfm_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
mi[y * mis + x].mbmi.txfm_size = txfm_size;
}
}
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi,
int mis, TX_SIZE txfm_max,
int mb_rows_left, int mb_cols_left,
BLOCK_SIZE_TYPE bsize) {
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (mbmi->txfm_size > txfm_max) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = mbmi->segment_id;
const int bh = 1 << mb_height_log2(bsize), bw = 1 << mb_width_log2(bsize);
const int ymbs = MIN(bh, mb_rows_left);
const int xmbs = MIN(bw, mb_cols_left);
assert((vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)) ||
(cm->mb_no_coeff_skip && get_skip_flag(mi, mis, ymbs, xmbs)));
set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max);
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON *const cm = &cpi->common;
int mb_row, mb_col;
const int mis = cm->mode_info_stride;
MODE_INFO *mi, *mi_ptr = cm->mi;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) {
mi = mi_ptr;
for (mb_col = 0; mb_col < cm->mb_cols; mb_col += 4, mi += 4) {
if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) {
reset_skip_txfm_size_sb(cpi, mi, mis, txfm_max,
cm->mb_rows - mb_row, cm->mb_cols - mb_col,
BLOCK_SIZE_SB64X64);
int i;
for (i = 0; i < 4; i++) {
const int x_idx_sb = (i & 1) << 1, y_idx_sb = i & 2;
MODE_INFO *sb_mi = mi + y_idx_sb * mis + x_idx_sb;
if (mb_row + y_idx_sb >= cm->mb_rows ||
mb_col + x_idx_sb >= cm->mb_cols)
continue;
if (sb_mi->mbmi.sb_type) {
reset_skip_txfm_size_sb(cpi, sb_mi, mis, txfm_max,
cm->mb_rows - mb_row - y_idx_sb,
cm->mb_cols - mb_col - x_idx_sb,
BLOCK_SIZE_SB32X32);
int m;
for (m = 0; m < 4; m++) {
const int x_idx = x_idx_sb + (m & 1), y_idx = y_idx_sb + (m >> 1);
MODE_INFO *mb_mi;
if (mb_col + x_idx >= cm->mb_cols ||
mb_row + y_idx >= cm->mb_rows)
continue;
mb_mi = mi + y_idx * mis + x_idx;
assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16);
reset_skip_txfm_size_sb(cpi, mb_mi, mis, txfm_max,
cm->mb_rows - mb_row - y_idx,
cm->mb_cols - mb_col - x_idx,
BLOCK_SIZE_MB16X16);
}
}
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
int i, frame_type, pred_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][0] &&
cpi->rd_prediction_type_threshes[frame_type][2] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */
if (cpi->oxcf.lossless) {
txfm_type = ONLY_4X4;
/* FIXME (rbultje): this code is disabled until we support cost updates
* while a frame is being encoded; the problem is that each time we
* "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities
* for 16x16 (and 8x8) start lagging behind, thus leading to them lagging
* further behind and not being chosen for subsequent frames either. This
* is essentially a local minimum problem that we can probably fix by
* estimating real costs more closely within a frame, perhaps by re-
* calculating costs on-the-fly as frame encoding progresses. */
if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = TX_MODE_SELECT;
} else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
&& cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
) {
txfm_type = ONLY_4X4;
} else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = ALLOW_16X16;
} else
txfm_type = ALLOW_8X8;
#else
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >=
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
#endif
cpi->common.txfm_mode = txfm_type;
if (txfm_type != TX_MODE_SELECT) {
cpi->common.prob_tx[0] = 128;
cpi->common.prob_tx[1] = 128;
}
cpi->common.comp_pred_mode = pred_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < NB_TXFM_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZE_MAX_SB - 1), 0);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
single_count_zero += cpi->single_pred_count[i];
comp_count_zero += cpi->comp_pred_count[i];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
}
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4];
const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8];
const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8];
const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16];
const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16];
const int count32x32 = cpi->txfm_count_32x32p[TX_32X32];
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
reset_skip_txfm_size(cpi, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
reset_skip_txfm_size(cpi, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_16X16;
reset_skip_txfm_size(cpi, TX_16X16);
// Update interpolation filter strategy for next frame.
if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter))
void vp9_setup_block_ptrs(MACROBLOCK *x) {
x->block[r * 4 + c].src_diff = x->src_diff + r * 4 * 16 + c * 4;
}
x->block[16 + r * 2 + c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4;
}
x->block[20 + r * 2 + c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4;
}
void vp9_build_block_offsets(MACROBLOCK *x) {
vp9_build_block_doffsets(&x->e_mbd);
for (br = 0; br < 4; br++) {
for (bc = 0; bc < 4; bc++) {
BLOCK *this_block = &x->block[block];
// this_block->base_src = &x->src.y_buffer;
// this_block->src_stride = x->src.y_stride;
// this_block->src = 4 * br * this_block->src_stride + 4 * bc;
this_block->base_src = &x->src.y_buffer;
this_block->src_stride = x->src.y_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
}
// u blocks
for (br = 0; br < 2; br++) {
for (bc = 0; bc < 2; bc++) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.u_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
}
// v blocks
for (br = 0; br < 2; br++) {
for (bc = 0; bc < 2; bc++) {
BLOCK *this_block = &x->block[block];
this_block->base_src = &x->src.v_buffer;
this_block->src_stride = x->src.uv_stride;
this_block->src = 4 * br * this_block->src_stride + 4 * bc;
++block;
static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) {
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
++ uv_modes_y[m][uvm];
if (m == B_PRED) {
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
do {
++ bct[xd->block[b].bmi.as_mode.first];
} while (++b < 16);
}
if (m == I8X8_PRED) {
i8x8_modes[xd->block[0].bmi.as_mode.first]++;
i8x8_modes[xd->block[2].bmi.as_mode.first]++;
i8x8_modes[xd->block[8].bmi.as_mode.first]++;
i8x8_modes[xd->block[10].bmi.as_mode.first]++;
}
if (m != I8X8_PRED)
++cpi->y_uv_mode_count[m][uvm];
else {
cpi->i8x8_mode_count[xd->block[0].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[2].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[8].bmi.as_mode.first]++;
cpi->i8x8_mode_count[xd->block[10].bmi.as_mode.first]++;
}
if (m == B_PRED) {
int b = 0;
do {
int m = xd->block[b].bmi.as_mode.first;
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
++cpi->bmode_count[m];
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
#if CONFIG_CODE_NONZEROCOUNT
static void gather_nzcs_mb16(VP9_COMMON *const cm,
MACROBLOCKD *xd) {
int i;
vpx_memset(xd->mode_info_context->mbmi.nzcs, 0,
384 * sizeof(xd->mode_info_context->mbmi.nzcs[0]));
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_4X4:
for (i = 0; i < 24; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_8X8:
for (i = 0; i < 16; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
if (xd->mode_info_context->mbmi.mode == I8X8_PRED ||
xd->mode_info_context->mbmi.mode == SPLITMV) {
for (i = 16; i < 24; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
} else {
for (i = 16; i < 24; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
}
break;
case TX_16X16:
xd->mode_info_context->mbmi.nzcs[0] = xd->nzcs[0];
for (i = 16; i < 24; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
default:
break;
}
}
static void gather_nzcs_sb32(VP9_COMMON *const cm,
MACROBLOCKD *xd) {
MODE_INFO *m = xd->mode_info_context;
int mis = cm->mode_info_stride;
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
vpx_memset(m->mbmi.nzcs, 0,
384 * sizeof(xd->mode_info_context->mbmi.nzcs[0]));
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_4X4:
for (i = 0; i < 96; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_8X8:
for (i = 0; i < 96; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_16X16:
for (i = 0; i < 96; i += 16) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_32X32:
xd->mode_info_context->mbmi.nzcs[0] = xd->nzcs[0];
for (i = 64; i < 96; i += 16) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
default:
break;
}
for (i = 0; i < 2; ++i)
for (j = 0; j < 2; ++j) {
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
}
static void gather_nzcs_sb64(VP9_COMMON *const cm,
MACROBLOCKD *xd) {
MODE_INFO *m = xd->mode_info_context;
int mis = cm->mode_info_stride;
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
vpx_memset(xd->mode_info_context->mbmi.nzcs, 0,
384 * sizeof(xd->mode_info_context->mbmi.nzcs[0]));
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_4X4:
for (i = 0; i < 384; ++i) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_8X8:
for (i = 0; i < 384; i += 4) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_16X16:
for (i = 0; i < 384; i += 16) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
case TX_32X32:
for (i = 0; i < 384; i += 64) {
xd->mode_info_context->mbmi.nzcs[i] = xd->nzcs[i];
}
break;
default:
break;
}
for (i = 0; i < 4; ++i)
for (j = 0; j < 4; ++j) {
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
}
#endif
static void encode_macroblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled,
int mb_row, int mb_col) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const int mis = cm->mode_info_stride;
assert(!xd->mode_info_context->mbmi.sb_type);
enc_debug = (cpi->common.current_video_frame == 11 && cm->show_frame &&
mb_row == 8 && mb_col == 0 && output_enabled);
if (enc_debug)
printf("Encode MB %d %d output %d\n", mb_row, mb_col, output_enabled);
#endif
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM && output_enabled) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (mbmi->ref_frame != INTRA_FRAME) {
if (mbmi->mode == ZEROMV) {
if (mbmi->ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else {
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
vp9_update_zbin_extra(cpi, x);
// SET VARIOUS PREDICTION FLAGS
// Did the chosen reference frame match its predicted value.
ref_pred_flag = ((mbmi->ref_frame == vp9_get_pred_ref(cm, xd)));
vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag);
}
if (enc_debug) {
printf("Mode %d skip %d tx_size %d\n", mbmi->mode, x->skip,
mbmi->txfm_size);
}
#endif
vp9_encode_intra16x16mbuv(cm, x);
vp9_encode_intra8x8mby(x);
vp9_encode_intra8x8mbuv(x);
vp9_encode_intra16x16mbuv(cm, x);
vp9_encode_intra16x16mby(cm, x);
if (output_enabled)
sum_intra_stats(cpi, x);
} else {
int ref_fb_idx;
#ifdef ENC_DEBUG
if (enc_debug)
printf("Mode %d skip %d tx_size %d ref %d ref2 %d mv %d %d interp %d\n",
mbmi->mode, x->skip, mbmi->txfm_size,
mbmi->ref_frame, mbmi->second_ref_frame,
mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
mbmi->interp_filter);
assert(cm->frame_type != KEY_FRAME);
ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
setup_pred_block(&xd->pre,
&cpi->common.yv12_fb[ref_fb_idx],
mb_row, mb_col,
&xd->scale_factor[0], &xd->scale_factor_uv[0]);
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
setup_pred_block(&xd->second_pre,
&cpi->common.yv12_fb[second_ref_fb_idx],
mb_row, mb_col,
&xd->scale_factor[1], &xd->scale_factor_uv[1]);
vp9_encode_inter16x16(cm, x, mb_row, mb_col);
// Clear mb_skip_coeff if mb_no_coeff_skip is not set
if (!cpi->common.mb_no_coeff_skip)
vp9_build_inter16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride,
mb_row, mb_col);
#if CONFIG_COMP_INTERINTRA_PRED
if (xd->mode_info_context->mbmi.second_ref_frame == INTRA_FRAME) {
vp9_build_interintra_16x16_predictors_mb(xd,
xd->dst.y_buffer,
xd->dst.u_buffer,
xd->dst.v_buffer,
xd->dst.y_stride,
xd->dst.uv_stride);
}
#endif
int i, j;
printf("\n");
printf("qcoeff\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->qcoeff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
printf("predictor\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->predictor[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("src_diff\n");
for (i = 0; i < 384; i++) {
printf("%3d ", x->src_diff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("diff\n");
for (i = 0; i < 384; i++) {
printf("%3d ", xd->block[0].diff[i]);
if (i % 16 == 15) printf("\n");
}
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
#if CONFIG_CODE_NONZEROCOUNT
gather_nzcs_mb16(cm, xd);
#endif
vp9_tokenize_mb(cpi, xd, t, !output_enabled);
// FIXME(rbultje): not tile-aware (mi - 1)
int mb_skip_context = cpi->common.mb_no_coeff_skip ?
(mi - 1)->mbmi.mb_skip_coeff + (mi - mis)->mbmi.mb_skip_coeff : 0;
if (cm->mb_no_coeff_skip) {
if (output_enabled)
cpi->skip_true_count[mb_skip_context]++;
vp9_stuff_mb(cpi, xd, t, !output_enabled);
if (output_enabled)
cpi->skip_false_count[mb_skip_context]++;
if (output_enabled) {
int segment_id = mbmi->segment_id;
if (cpi->common.txfm_mode == TX_MODE_SELECT &&
!((cpi->common.mb_no_coeff_skip && mbmi->mb_skip_coeff) ||
(vp9_segfeature_active(&x->e_mbd, segment_id, SEG_LVL_SKIP)))) {
assert(mbmi->txfm_size <= TX_16X16);
if (mbmi->mode != B_PRED && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV) {
cpi->txfm_count_16x16p[mbmi->txfm_size]++;
} else if (mbmi->mode == I8X8_PRED ||
(mbmi->mode == SPLITMV &&
mbmi->partitioning != PARTITIONING_4X4)) {
cpi->txfm_count_8x8p[mbmi->txfm_size]++;
} else if (mbmi->mode != B_PRED && mbmi->mode != I8X8_PRED &&
mbmi->mode != SPLITMV && cpi->common.txfm_mode >= ALLOW_16X16) {
mbmi->txfm_size = TX_16X16;
} else if (mbmi->mode != B_PRED &&
!(mbmi->mode == SPLITMV &&
mbmi->partitioning == PARTITIONING_4X4) &&
cpi->common.txfm_mode >= ALLOW_8X8) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
}
static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled, int mb_row, int mb_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const uint8_t *src = x->src.y_buffer;
uint8_t *dst = xd->dst.y_buffer;
const uint8_t *usrc = x->src.u_buffer;
uint8_t *udst = xd->dst.u_buffer;
const uint8_t *vsrc = x->src.v_buffer;
uint8_t *vdst = xd->dst.v_buffer;
int src_y_stride = x->src.y_stride, dst_y_stride = xd->dst.y_stride;
int src_uv_stride = x->src.uv_stride, dst_uv_stride = xd->dst.uv_stride;
unsigned char ref_pred_flag;
int n;
MODE_INFO *mi = x->e_mbd.mode_info_context;
unsigned int segment_id = mi->mbmi.segment_id;
const int mis = cm->mode_info_stride;
const int bwl = mb_width_log2(bsize);
const int bw = 1 << bwl, bh = 1 << mb_height_log2(bsize);
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) {
if (xd->mode_info_context->mbmi.mode == ZEROMV) {
if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else if (xd->mode_info_context->mbmi.mode == SPLITMV) {
} else {
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
} else {
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
}
}
vp9_update_zbin_extra(cpi, x);
// Did the chosen reference frame match its predicted value.
ref_pred_flag = ((xd->mode_info_context->mbmi.ref_frame ==
vp9_get_pred_ref(cm, xd)));
vp9_set_pred_flag(xd, PRED_REF, ref_pred_flag);
}
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (bsize == BLOCK_SIZE_SB32X32) {
vp9_build_intra_predictors_sby_s(&x->e_mbd);
vp9_build_intra_predictors_sbuv_s(&x->e_mbd);
} else {
vp9_build_intra_predictors_sb64y_s(&x->e_mbd);
vp9_build_intra_predictors_sb64uv_s(&x->e_mbd);
}
if (output_enabled)
sum_intra_stats(cpi, x);
int ref_fb_idx;
assert(cm->frame_type != KEY_FRAME);
if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)
ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
setup_pred_block(&xd->pre,
&cpi->common.yv12_fb[ref_fb_idx],
mb_row, mb_col,
&xd->scale_factor[0], &xd->scale_factor_uv[0]);
if (xd->mode_info_context->mbmi.second_ref_frame > 0) {
int second_ref_fb_idx;
if (xd->mode_info_context->mbmi.second_ref_frame == LAST_FRAME)
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->lst_fb_idx];
else if (xd->mode_info_context->mbmi.second_ref_frame == GOLDEN_FRAME)
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->gld_fb_idx];
second_ref_fb_idx = cpi->common.ref_frame_map[cpi->alt_fb_idx];
setup_pred_block(&xd->second_pre,
&cpi->common.yv12_fb[second_ref_fb_idx],
mb_row, mb_col,
&xd->scale_factor[1], &xd->scale_factor_uv[1]);
if (bsize == BLOCK_SIZE_SB32X32) {
vp9_build_inter32x32_predictors_sb(xd, mb_row, mb_col);
} else {
vp9_build_inter64x64_predictors_sb(xd, mb_row, mb_col);
}
if (!x->skip) {
vp9_subtract_sby_s_c(x->src_diff, src, src_y_stride, dst, dst_y_stride,
bsize);
vp9_subtract_sbuv_s_c(x->src_diff, usrc, vsrc, src_uv_stride,
udst, vdst, dst_uv_stride, bsize);
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_32X32:
vp9_transform_sby_32x32(x, bsize);
vp9_quantize_sby_32x32(x, bsize);
if (bsize == BLOCK_SIZE_SB64X64) {
vp9_transform_sbuv_32x32(x, bsize);
vp9_quantize_sbuv_32x32(x, bsize);
} else {
vp9_transform_sbuv_16x16(x, bsize);
vp9_quantize_sbuv_16x16(x, bsize);
}
if (x->optimize) {
vp9_optimize_sby_32x32(cm, x, bsize);
if (bsize == BLOCK_SIZE_SB64X64)
vp9_optimize_sbuv_32x32(cm, x, bsize);
else
vp9_optimize_sbuv_16x16(cm, x, bsize);
vp9_inverse_transform_sby_32x32(xd, bsize);
if (bsize == BLOCK_SIZE_SB64X64)
vp9_inverse_transform_sbuv_32x32(xd, bsize);
else
vp9_inverse_transform_sbuv_16x16(xd, bsize);
break;
case TX_16X16:
vp9_transform_sby_16x16(x, bsize);
vp9_quantize_sby_16x16(x, bsize);
if (bsize >= BLOCK_SIZE_SB32X32) {
vp9_transform_sbuv_16x16(x, bsize);
vp9_quantize_sbuv_16x16(x, bsize);
} else {
vp9_transform_sbuv_8x8(x, bsize);
vp9_quantize_sbuv_8x8(x, bsize);
}
if (x->optimize) {
vp9_optimize_sby_16x16(cm, x, bsize);
if (bsize >= BLOCK_SIZE_SB32X32)
vp9_optimize_sbuv_16x16(cm, x, bsize);
else
vp9_optimize_sbuv_8x8(cm, x, bsize);
vp9_inverse_transform_sby_16x16(xd, bsize);
if (bsize >= BLOCK_SIZE_SB32X32)
vp9_inverse_transform_sbuv_16x16(xd, bsize);
else
vp9_inverse_transform_sbuv_8x8(xd, bsize);
break;
case TX_8X8:
vp9_transform_sby_8x8(x, bsize);
vp9_transform_sbuv_8x8(x, bsize);
vp9_quantize_sby_8x8(x, bsize);
vp9_quantize_sbuv_8x8(x, bsize);
if (x->optimize) {
vp9_optimize_sby_8x8(cm, x, bsize);
vp9_optimize_sbuv_8x8(cm, x, bsize);
vp9_inverse_transform_sby_8x8(xd, bsize);
vp9_inverse_transform_sbuv_8x8(xd, bsize);
break;
case TX_4X4:
vp9_transform_sby_4x4(x, bsize);
vp9_transform_sbuv_4x4(x, bsize);
vp9_quantize_sby_4x4(x, bsize);
vp9_quantize_sbuv_4x4(x, bsize);
if (x->optimize) {
vp9_optimize_sby_4x4(cm, x, bsize);
vp9_optimize_sbuv_4x4(cm, x, bsize);
vp9_inverse_transform_sby_4x4(xd, bsize);
vp9_inverse_transform_sbuv_4x4(xd, bsize);
break;
default: assert(0);
vp9_recon_sby_s_c(xd, dst, bsize);
vp9_recon_sbuv_s_c(&x->e_mbd, udst, vdst, bsize);
#if CONFIG_CODE_NONZEROCOUNT
if (bsize == BLOCK_SIZE_SB32X32) {
gather_nzcs_sb32(cm, &x->e_mbd);
} else {
gather_nzcs_sb64(cm, &x->e_mbd);
}
vp9_tokenize_sb(cpi, &x->e_mbd, t, !output_enabled, bsize);
// FIXME(rbultje): not tile-aware (mi - 1)
int mb_skip_context = cpi->common.mb_no_coeff_skip ?
(mi - 1)->mbmi.mb_skip_coeff + (mi - mis)->mbmi.mb_skip_coeff : 0;
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
if (cm->mb_no_coeff_skip) {
if (output_enabled)
cpi->skip_true_count[mb_skip_context]++;
vp9_reset_sb_tokens_context(xd, bsize);
vp9_stuff_sb(cpi, xd, t, !output_enabled, bsize);
if (output_enabled)
cpi->skip_false_count[mb_skip_context]++;
// copy skip flag on all mb_mode_info contexts in this SB
// if this was a skip at this txfm size
for (n = 1; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
if (mb_col + x_idx < cm->mb_cols && mb_row + y_idx < cm->mb_rows)
mi[x_idx + y_idx * mis].mbmi.mb_skip_coeff = mi->mbmi.mb_skip_coeff;
}
if (output_enabled) {
if (cm->txfm_mode == TX_MODE_SELECT &&
!((cm->mb_no_coeff_skip && mi->mbmi.mb_skip_coeff) ||
(vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP)))) {
if (bsize >= BLOCK_SIZE_SB32X32) {
cpi->txfm_count_32x32p[mi->mbmi.txfm_size]++;
} else {
cpi->txfm_count_16x16p[mi->mbmi.txfm_size]++;
}
TX_SIZE sz = (cm->txfm_mode == TX_MODE_SELECT) ? TX_32X32 : cm->txfm_mode;
if (sz == TX_32X32 && bsize < BLOCK_SIZE_SB32X32)
sz = TX_16X16;
for (y = 0; y < bh; y++) {
for (x = 0; x < bw; x++) {
if (mb_col + x < cm->mb_cols && mb_row + y < cm->mb_rows) {
mi[mis * y + x].mbmi.txfm_size = sz;
}
}
}