"README.md" did not exist on "c8994e77dcc5e0d3303fffccd1edfa1ce6a74c22"
Newer
Older
const uint8_t *data_end = pbi->source + pbi->source_sz;
const size_t partition_size = data_end - data;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
if (vp9_start_decode(r, data, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
vp9_setup_past_independence(pc, xd);
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
#if CONFIG_CODE_NONZEROCOUNT
static void read_nzc_probs_common(VP9_COMMON *cm,
BOOL_DECODER* const bc,
int c, r, b, t;
int tokens, nodes;
vp9_prob *nzc_probs;
vp9_prob upd;
if (!get_nzc_used(tx_size)) return;
if (!vp9_read_bit(bc)) return;
if (tx_size == TX_32X32) {
tokens = NZC32X32_TOKENS;
nzc_probs = cm->fc.nzc_probs_32x32[0][0][0];
upd = NZC_UPDATE_PROB_32X32;
} else if (tx_size == TX_16X16) {
tokens = NZC16X16_TOKENS;
nzc_probs = cm->fc.nzc_probs_16x16[0][0][0];
upd = NZC_UPDATE_PROB_16X16;
} else if (tx_size == TX_8X8) {
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
tokens = NZC8X8_TOKENS;
nzc_probs = cm->fc.nzc_probs_8x8[0][0][0];
upd = NZC_UPDATE_PROB_8X8;
} else {
tokens = NZC4X4_TOKENS;
nzc_probs = cm->fc.nzc_probs_4x4[0][0][0];
upd = NZC_UPDATE_PROB_4X4;
}
nodes = tokens - 1;
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b;
int offset_nodes = offset * nodes;
for (t = 0; t < nodes; ++t) {
vp9_prob *p = &nzc_probs[offset_nodes + t];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
}
static void read_nzc_pcat_probs(VP9_COMMON *cm, BOOL_DECODER* const bc) {
int c, t, b;
vp9_prob upd = NZC_UPDATE_PROB_PCAT;
if (!(get_nzc_used(TX_4X4) || get_nzc_used(TX_8X8) ||
get_nzc_used(TX_16X16) || get_nzc_used(TX_32X32)))
return;
if (!vp9_read_bit(bc)) {
return;
}
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (t = 0; t < NZC_TOKENS_EXTRA; ++t) {
int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA];
for (b = 0; b < bits; ++b) {
vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b];
if (vp9_read(bc, upd)) {
*p = read_prob_diff_update(bc, *p);
}
}
}
}
}
static void read_nzc_probs(VP9_COMMON *cm,
BOOL_DECODER* const bc) {
read_nzc_probs_common(cm, bc, TX_4X4);
if (cm->txfm_mode != ONLY_4X4)
read_nzc_probs_common(cm, bc, TX_8X8);
if (cm->txfm_mode > ALLOW_8X8)
read_nzc_probs_common(cm, bc, TX_16X16);
if (cm->txfm_mode > ALLOW_16X16)
read_nzc_probs_common(cm, bc, TX_32X32);
#ifdef NZC_PCAT_UPDATE
read_nzc_pcat_probs(cm, bc);
#endif
}
#endif // CONFIG_CODE_NONZEROCOUNT
static void read_coef_probs_common(BOOL_DECODER* const bc,
vp9_coeff_probs *coef_probs,
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
#if CONFIG_CODE_NONZEROCOUNT
const int mstart = get_nzc_used(tx_size);
#else
const int mstart = 0;
#endif
if (l >= 3 && k == 0)
continue;
for (m = mstart; m < entropy_nodes_update; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(bc, vp9_coef_update_prob[m])) {
*p = read_prob_diff_update(bc, *p);
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j);
#endif
static void read_coef_probs(VP9D_COMP *pbi, BOOL_DECODER* const bc) {
VP9_COMMON *const pc = &pbi->common;
read_coef_probs_common(bc, pc->fc.coef_probs_4x4, TX_4X4);
read_coef_probs_common(bc, pc->fc.coef_probs_8x8, TX_8X8);
read_coef_probs_common(bc, pc->fc.coef_probs_16x16, TX_16X16);
read_coef_probs_common(bc, pc->fc.coef_probs_32x32, TX_32X32);
static void update_frame_size(VP9D_COMP *pbi) {
VP9_COMMON *cm = &pbi->common;
const int width = multiple16(cm->width);
const int height = multiple16(cm->height);
cm->mb_rows = height / 16;
cm->mb_cols = width / 16;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
}
static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
xd->segmentation_enabled = vp9_read_bit(r);
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly updated
// this frame.
xd->update_mb_segmentation_map = vp9_read_bit(r);
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled. Read the probs used to
// decode the segment id for each macro block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255;
// Read the prediction probs needed to decode the segment id
pc->temporal_update = vp9_read_bit(r);
if (pc->temporal_update) {
const vp9_prob *p = xd->mb_segment_tree_probs;
vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs;
const int c0 = p[0] * p[1];
const int c1 = p[0] * (256 - p[1]);
const int c2 = (256 - p[0]) * p[2];
const int c3 = (256 - p[0]) * (256 - p[2]);
p_mod[0] = get_binary_prob(c1, c2 + c3);
p_mod[1] = get_binary_prob(c0, c2 + c3);
p_mod[2] = get_binary_prob(c0 + c1, c3);
p_mod[3] = get_binary_prob(c0 + c1, c2);
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = 255;
xd->update_mb_segmentation_data = vp9_read_bit(r);
if (xd->update_mb_segmentation_data) {
xd->mb_segment_abs_delta = vp9_read_bit(r);
vp9_clearall_segfeatures(xd);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_read_bit(r);
if (feature_enabled) {
vp9_enable_segfeature(xd, i, j);
data = vp9_decode_unsigned_max(r, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j) && vp9_read_bit(r)) {
data = -data;
}
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
}
static void setup_pred_probs(VP9_COMMON *pc, vp9_reader *r) {
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = 120;
pc->ref_pred_probs[1] = 80;
pc->ref_pred_probs[2] = 40;
} else {
int i;
for (i = 0; i < PREDICTION_PROBS; ++i)
if (vp9_read_bit(r))
pc->ref_pred_probs[i] = vp9_read_prob(r);
}
}
static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
pc->filter_type = (LOOPFILTER_TYPE) vp9_read_bit(r);
pc->filter_level = vp9_read_literal(r, 6);
pc->sharpness_level = vp9_read_literal(r, 3);
#if CONFIG_LOOP_DERING
if (vp9_read_bit(r))
pc->dering_enabled = 1 + vp9_read_literal(r, 4);
else
pc->dering_enabled = 0;
#endif
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_enabled) {
xd->mode_ref_lf_delta_update = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_update) {
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
int value = vp9_read_literal(r, 6);
if (vp9_read_bit(r))
value = -value;
xd->ref_lf_deltas[i] = value;
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
int value = vp9_read_literal(r, 6);
if (vp9_read_bit(r))
value = -value;
xd->mode_lf_deltas[i] = value;
}
}
}
}
}
static const uint8_t *read_frame_size(VP9_COMMON *const pc, const uint8_t *data,
const uint8_t *data_end,
int *width, int *height) {
if (data + 4 < data_end) {
*width = read_le16(data);
*height = read_le16(data + 2);
data += 4;
} else {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to read frame size");
}
return data;
}
static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active,
const uint8_t *data,
const uint8_t *data_end) {
// If error concealment is enabled we should only parse the new size
// if we have enough data. Otherwise we will end up with the wrong size.
VP9_COMMON *const pc = &pbi->common;
int display_width = pc->display_width;
int display_height = pc->display_height;
int width = pc->width;
int height = pc->height;
if (scaling_active)
data = read_frame_size(pc, data, data_end, &display_width, &display_height);
data = read_frame_size(pc, data, data_end, &width, &height);
if (pc->width != width || pc->height != height) {
if (width <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, width, height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
pc->width = width;
pc->height = height;
pc->display_width = scaling_active ? display_width : width;
pc->display_height = scaling_active ? display_height : height;
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
update_frame_size(pbi);
}
return data;
}
static void update_frame_context(VP9D_COMP *pbi, vp9_reader *r) {
FRAME_CONTEXT *const fc = &pbi->common.fc;
vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4);
vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8);
vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16);
vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32);
vp9_copy(fc->pre_ymode_prob, fc->ymode_prob);
vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob);
vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob);
vp9_copy(fc->pre_bmode_prob, fc->bmode_prob);
vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob);
vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob);
vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob);
fc->pre_nmvc = fc->nmvc;
vp9_zero(fc->coef_counts_4x4);
vp9_zero(fc->coef_counts_8x8);
vp9_zero(fc->coef_counts_16x16);
vp9_zero(fc->coef_counts_32x32);
vp9_zero(fc->eob_branch_counts);
vp9_zero(fc->ymode_counts);
vp9_zero(fc->sb_ymode_counts);
vp9_zero(fc->uv_mode_counts);
vp9_zero(fc->bmode_counts);
vp9_zero(fc->i8x8_mode_counts);
vp9_zero(fc->sub_mv_ref_counts);
vp9_zero(fc->mbsplit_counts);
vp9_zero(fc->NMVcount);
vp9_zero(fc->mv_ref_ct);
#if CONFIG_COMP_INTERINTRA_PRED
fc->pre_interintra_prob = fc->interintra_prob;
vp9_zero(fc->interintra_counts);
#endif
#if CONFIG_CODE_NONZEROCOUNT
vp9_copy(fc->pre_nzc_probs_4x4, fc->nzc_probs_4x4);
vp9_copy(fc->pre_nzc_probs_8x8, fc->nzc_probs_8x8);
vp9_copy(fc->pre_nzc_probs_16x16, fc->nzc_probs_16x16);
vp9_copy(fc->pre_nzc_probs_32x32, fc->nzc_probs_32x32);
vp9_copy(fc->pre_nzc_pcat_probs, fc->nzc_pcat_probs);
vp9_zero(fc->nzc_counts_4x4);
vp9_zero(fc->nzc_counts_8x8);
vp9_zero(fc->nzc_counts_16x16);
vp9_zero(fc->nzc_counts_32x32);
vp9_zero(fc->nzc_pcat_counts);
#endif
read_coef_probs(pbi, r);
#if CONFIG_CODE_NONZEROCOUNT
read_nzc_probs(&pbi->common, r);
#endif
}
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
static void decode_tiles(VP9D_COMP *pbi,
const uint8_t *data, int first_partition_size,
BOOL_DECODER *header_bc, BOOL_DECODER *residual_bc) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data_ptr = data + first_partition_size;
int tile_row, tile_col, delta_log2_tiles;
int mb_row;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
}
pc->log2_tile_rows = vp9_read_bit(header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
pc->tile_rows = 1 << pc->log2_tile_rows;
vpx_memset(pc->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const uint8_t *data_ptr2[4][1 << 6];
BOOL_DECODER UNINITIALIZED_IS_SAFE(bc_bak);
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_le32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc);
// Decode a row of superblocks
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, mb_row, residual_bc);
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
}
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = *residual_bc;
}
}
*residual_bc = bc_bak;
} else {
int has_more;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
has_more = tile_col < pc->tile_columns - 1 ||
tile_row < pc->tile_rows - 1;
// Setup decoder
setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc);
// Decode a row of superblocks
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
decode_sb_row(pbi, mb_row, residual_bc);
}
if (has_more) {
const int size = read_le32(data_ptr);
data_ptr += 4 + size;
}
}
}
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data = pbi->source;
const uint8_t *data_end = data + pbi->source_sz;
// printf("Decoding frame %d\n", pc->current_video_frame);
xd->corrupted = 0; // start with no corruption of current frame
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
scaling_active = (data[0] >> 5) & 1;
first_partition_size = read_le16(data + 1);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
// When error concealment is enabled we should only check the sync
// code if we have enough bits available
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data = setup_frame_size(pbi, scaling_active, data, data_end);
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->width == 0 || pc->height == 0) {
// Reset the frame pointers to the current frame size
vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx],
if (vp9_start_decode(&header_bc, data, first_partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
setup_segmentation(pc, xd, &header_bc);
setup_pred_probs(pc, &header_bc);
pc->prob_sb64_coded = vp9_read_prob(&header_bc);
pc->prob_sb32_coded = vp9_read_prob(&header_bc);
pc->txfm_mode = xd->lossless ? ONLY_4X4 : read_txfm_mode(&header_bc);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_prob(&header_bc);
pc->prob_tx[1] = vp9_read_prob(&header_bc);
pc->prob_tx[2] = vp9_read_prob(&header_bc);
setup_loopfilter(pc, xd, &header_bc);
// Read the default quantizers.
int q_update = 0;
pc->base_qindex = vp9_read_literal(&header_bc, QINDEX_BITS);
// AC 1st order Q = default
q_update = get_delta_q(&header_bc, &pc->y1dc_delta_q) |
get_delta_q(&header_bc, &pc->uvdc_delta_q) |
get_delta_q(&header_bc, &pc->uvac_delta_q);
vp9_init_de_quantizer(pbi);
// MB level dequantizer setup
// Determine if the golden frame or ARF buffer should be updated and how.
// For all non key frames the GF and ARF refresh flags and sign bias
// flags must be set explicitly.
if (pc->frame_type == KEY_FRAME) {
pc->active_ref_idx[0] = pc->new_fb_idx;
pc->active_ref_idx[1] = pc->new_fb_idx;
pc->active_ref_idx[2] = pc->new_fb_idx;
} else {
// Should the GF or ARF be updated from the current frame
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
// Select active reference frames
for (i = 0; i < 3; i++) {
int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num];
}
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
// Is high precision mv allowed
xd->allow_high_precision_mv = vp9_read_bit(&header_bc);
pc->mcomp_filter_type = vp9_read_bit(&header_bc)
? SWITCHABLE
: vp9_read_literal(&header_bc, 2);
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
/* Calculate scaling factors for each of the 3 available references */
for (i = 0; i < 3; ++i) {
if (pc->active_ref_idx[i] >= NUM_YV12_BUFFERS) {
memset(&pc->active_ref_scale[i], 0, sizeof(pc->active_ref_scale[i]));
continue;
}
vp9_setup_scale_factors_for_frame(&pc->active_ref_scale[i],
&pc->yv12_fb[pc->active_ref_idx[i]],
pc->width, pc->height);
}
// To enable choice of different interploation filters
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
if (!pc->error_resilient_mode) {
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_entropy_probs = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx],
sizeof(pc->fc));
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < 4; ++j)
if (vp9_read(&header_bc, 252))
pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc);
#if CONFIG_MODELCOEFPROB && ADJUST_KF_COEF_PROBS
if (pc->frame_type == KEY_FRAME)
vp9_adjust_default_coef_probs(pc);
#endif
#if CONFIG_NEW_MVREF
// If Key frame reset mv ref id probabilities to defaults
if (pc->frame_type != KEY_FRAME) {
// Read any mv_ref index probability updates
int i, j;
for (i = 0; i < MAX_REF_FRAMES; ++i) {
// Skip the dummy entry for intra ref frame.
continue;
// Read any updates to probabilities
for (j = 0; j < MAX_MV_REF_CANDIDATES - 1; ++j)
if (vp9_read(&header_bc, VP9_MVREF_UPDATE_PROB))
xd->mb_mv_ref_probs[i][j] = vp9_read_prob(&header_bc);
update_frame_context(pbi, &header_bc);
// Initialize xd pointers. Any reference should do for xd->pre, so use 0.
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]],
sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx],
sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
// set up frame new frame for intra coded blocks
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp9_setup_block_dptrs(xd);
vp9_build_block_doffsets(xd);
vpx_memset(xd->plane[0].qcoeff, 0, sizeof(xd->plane[0].qcoeff));
vpx_memset(xd->plane[1].qcoeff, 0, sizeof(xd->plane[1].qcoeff));
vpx_memset(xd->plane[2].qcoeff, 0, sizeof(xd->plane[2].qcoeff));
// Read the mb_no_coeff_skip flag
pc->mb_no_coeff_skip = vp9_read_bit(&header_bc);
vp9_decode_mode_mvs_init(pbi, &header_bc);
decode_tiles(pbi, data, first_partition_size, &header_bc, &residual_bc);
// keep track of the last coded dimensions
pc->last_width = pc->width;
pc->last_height = pc->height;
// Collect information about decoder corruption.
// 1. Check first boolean decoder for errors.
// 2. Check the macroblock information
pc->yv12_fb[pc->new_fb_idx].corrupted = bool_error(&header_bc) |
corrupt_tokens;
if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
#if CONFIG_CODE_NONZEROCOUNT
vp9_adapt_nzc_probs(pc);
#endif
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(&pbi->common);
}
vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc,
sizeof(pc->fc));
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
while (residual_bc.count > CHAR_BIT &&
residual_bc.count < VP9_BD_VALUE_SIZE) {
residual_bc.count -= CHAR_BIT;
residual_bc.user_buffer--;
}
*p_data_end = residual_bc.user_buffer;