Newer
Older
ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE];
PARTITION_CONTEXT seg_l[4], seg_a[4];
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(a + 16 * p, cm->above_context[p] +
(mi_col * 4 >> (CONFIG_SB8X8 + xd->plane[p].subsampling_x)),
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(l + 16 * p, cm->left_context[p],
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
memcpy(&seg_a, cm->above_seg_context + (mi_col >> CONFIG_SB8X8),
sizeof(seg_a));
memcpy(&seg_l, cm->left_seg_context, sizeof(seg_l));
const int x_idx = (i & 1) << (1 + CONFIG_SB8X8);
const int y_idx = (i & 2) << CONFIG_SB8X8;
int sb32_rate = 0, sb32_dist = 0;
int splitmodes_used = 0;
int sb32_skip = 0;
ENTROPY_CONTEXT l2[8 * MAX_MB_PLANE], a2[8 * MAX_MB_PLANE];
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
/* Function should not modify L & A contexts; save and restore on exit */
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(l2 + 8 * p,
cm->left_context[p] +
(y_idx * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_y)),
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(a2 + 8 * p,
cm->above_context[p] +
((mi_col + x_idx) * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_x)),
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
/* Encode MBs in raster order within the SB */
sb_partitioning[i] = BLOCK_SIZE_MB16X16;
for (j = 0; j < 4; j++) {
const int x_idx_m = x_idx + ((j & 1) << CONFIG_SB8X8);
const int y_idx_m = y_idx + ((j >> 1) << CONFIG_SB8X8);
int r, d;
if (mi_row + y_idx_m >= cm->mi_rows ||
mi_col + x_idx_m >= cm->mi_cols) {
// MB lies outside frame, move on
continue;
}
// Index of the MB in the SB 0..3
xd->mb_index = j;
splitmodes_used += pick_mb_mode(cpi, mi_row + y_idx_m,
mi_col + x_idx_m, tp, &r, &d);
sb32_rate += r;
sb32_dist += d;
// Dummy encode, do not do the tokenization
#if CONFIG_SB8X8
update_state(cpi, &x->mb_context[xd->sb_index][xd->mb_index],
BLOCK_SIZE_MB16X16, 0);
#endif
encode_macroblock(cpi, tp, 0, mi_row + y_idx_m,
mi_col + x_idx_m);
}
/* Restore L & A coding context to those in place on entry */
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_y)),
l2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx) * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_x)),
a2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
sb32_rate += x->partition_cost[pl][PARTITION_SPLIT];
if (cpi->sf.splitmode_breakout) {
sb32_skip = splitmodes_used;
sb64_skip += splitmodes_used;
}
// check 32x16
if (mi_col + x_idx + (2 << CONFIG_SB8X8) <= cm->mi_cols) {
int r, d;
xd->mb_index = 0;
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
tp, &r, &d, BLOCK_SIZE_SB32X16,
&x->sb32x16_context[xd->sb_index][xd->mb_index]);
if (mi_row + y_idx + (1 << CONFIG_SB8X8) < cm->mi_rows) {
int r2, d2;
update_state(cpi, &x->sb32x16_context[xd->sb_index][xd->mb_index],
BLOCK_SIZE_SB32X16, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx, mi_col + x_idx,
BLOCK_SIZE_SB32X16);
xd->mb_index = 1;
pick_sb_modes(cpi, mi_row + y_idx + (1 << CONFIG_SB8X8),
mi_col + x_idx, tp, &r2, &d2, BLOCK_SIZE_SB32X16,
&x->sb32x16_context[xd->sb_index][xd->mb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
r += x->partition_cost[pl][PARTITION_HORZ];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
sb32_rate = r;
sb32_dist = d;
sb_partitioning[i] = BLOCK_SIZE_SB32X16;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_y)),
l2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx) * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_x)),
a2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
}
// check 16x32
if (mi_row + y_idx + (2 << CONFIG_SB8X8) <= cm->mi_rows) {
int r, d;
xd->mb_index = 0;
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
tp, &r, &d, BLOCK_SIZE_SB16X32,
&x->sb16x32_context[xd->sb_index][xd->mb_index]);
if (mi_col + x_idx + (1 << CONFIG_SB8X8) < cm->mi_cols) {
int r2, d2;
update_state(cpi, &x->sb16x32_context[xd->sb_index][xd->mb_index],
BLOCK_SIZE_SB16X32, 0);
encode_superblock(cpi, tp,
0, mi_row + y_idx, mi_col + x_idx,
BLOCK_SIZE_SB16X32);
xd->mb_index = 1;
pick_sb_modes(cpi, mi_row + y_idx,
mi_col + x_idx + (1 << CONFIG_SB8X8),
tp, &r2, &d2, BLOCK_SIZE_SB16X32,
&x->sb16x32_context[xd->sb_index][xd->mb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
r += x->partition_cost[pl][PARTITION_VERT];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
sb32_rate = r;
sb32_dist = d;
sb_partitioning[i] = BLOCK_SIZE_SB16X32;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
vpx_memcpy(cm->left_context[p] +
(y_idx * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_y)),
l2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_y);
vpx_memcpy(cm->above_context[p] +
((mi_col + x_idx) * 4 >> (CONFIG_SB8X8 +
xd->plane[p].subsampling_x)),
a2 + 8 * p,
sizeof(ENTROPY_CONTEXT) * 8 >> xd->plane[p].subsampling_x);
}
}
if (!sb32_skip &&
mi_col + x_idx + (2 << CONFIG_SB8X8) <= cm->mi_cols &&
mi_row + y_idx + (2 << CONFIG_SB8X8) <= cm->mi_rows) {
int r, d;
/* Pick a mode assuming that it applies to all 4 of the MBs in the SB */
pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx,
tp, &r, &d, BLOCK_SIZE_SB32X32,
&x->sb32_context[xd->sb_index]);
set_partition_seg_context(cpi, mi_row + y_idx, mi_col + x_idx);
pl = partition_plane_context(xd, BLOCK_SIZE_SB32X32);
r += x->partition_cost[pl][PARTITION_NONE];
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb32_rate, sb32_dist)) {
sb32_rate = r;
sb32_dist = d;
sb_partitioning[i] = BLOCK_SIZE_SB32X32;
}
// If we used 16x16 instead of 32x32 then skip 64x64 (if enabled).
if (cpi->sf.mb16_breakout && sb_partitioning[i] != BLOCK_SIZE_SB32X32) {
++sb64_skip;
sb64_rate += sb32_rate;
sb64_dist += sb32_dist;
/* Encode SB using best computed mode(s) */
// FIXME(rbultje): there really shouldn't be any need to encode_mb/sb
// for each level that we go up, we can just keep tokens and recon
// pixels of the lower level; also, inverting SB/MB order (big->small
// instead of small->big) means we can use as threshold for small, which
// may enable breakouts if RD is not good enough (i.e. faster)
encode_sb(cpi, mi_row + y_idx, mi_col + x_idx, 0, tp,
sb_partitioning[i]);
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(cm->above_context[p] +
(mi_col * 4 >> (CONFIG_SB8X8 + xd->plane[p].subsampling_x)),
a + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(cm->left_context[p], l + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
memcpy(cm->above_seg_context + (mi_col >> CONFIG_SB8X8), &seg_a,
sizeof(seg_a));
memcpy(cm->left_seg_context, &seg_l, sizeof(seg_l));
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
sb64_rate += x->partition_cost[pl][PARTITION_SPLIT];
// check 64x32
if (mi_col + (4 << CONFIG_SB8X8) <= cm->mi_cols && !(cm->mb_rows & 1)) {
int r, d;
xd->sb_index = 0;
pick_sb_modes(cpi, mi_row, mi_col,
tp, &r, &d, BLOCK_SIZE_SB64X32,
&x->sb64x32_context[xd->sb_index]);
if (mi_row + (2 << CONFIG_SB8X8) != cm->mi_rows) {
int r2, d2;
update_state(cpi, &x->sb64x32_context[xd->sb_index],
BLOCK_SIZE_SB64X32, 0);
encode_superblock(cpi, tp,
0, mi_row, mi_col, BLOCK_SIZE_SB64X32);
xd->sb_index = 1;
pick_sb_modes(cpi, mi_row + (2 << CONFIG_SB8X8), mi_col,
tp, &r2, &d2, BLOCK_SIZE_SB64X32,
&x->sb64x32_context[xd->sb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
r += x->partition_cost[pl][PARTITION_HORZ];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
sb64_rate = r;
sb64_dist = d;
sb_partitioning[0] = BLOCK_SIZE_SB64X32;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(cm->above_context[p] +
(mi_col * 4 >> (CONFIG_SB8X8 + xd->plane[p].subsampling_x)),
a + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(cm->left_context[p], l + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
}
// check 32x64
if (mi_row + (4 << CONFIG_SB8X8) <= cm->mi_rows && !(cm->mb_cols & 1)) {
int r, d;
xd->sb_index = 0;
pick_sb_modes(cpi, mi_row, mi_col,
tp, &r, &d, BLOCK_SIZE_SB32X64,
&x->sb32x64_context[xd->sb_index]);
if (mi_col + (2 << CONFIG_SB8X8) != cm->mi_cols) {
int r2, d2;
update_state(cpi, &x->sb32x64_context[xd->sb_index],
BLOCK_SIZE_SB32X64, 0);
encode_superblock(cpi, tp,
0, mi_row, mi_col, BLOCK_SIZE_SB32X64);
xd->sb_index = 1;
pick_sb_modes(cpi, mi_row, mi_col + (2 << CONFIG_SB8X8),
tp, &r2, &d2, BLOCK_SIZE_SB32X64,
&x->sb32x64_context[xd->sb_index]);
r += r2;
d += d2;
}
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
r += x->partition_cost[pl][PARTITION_VERT];
/* is this better than MB coding? */
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
sb64_rate = r;
sb64_dist = d;
sb_partitioning[0] = BLOCK_SIZE_SB32X64;
}
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(cm->above_context[p] +
(mi_col * 4 >> (CONFIG_SB8X8 + xd->plane[p].subsampling_x)),
a + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_x);
memcpy(cm->left_context[p], l + 16 * p,
sizeof(ENTROPY_CONTEXT) * 16 >> xd->plane[p].subsampling_y);
}
}
if (!sb64_skip &&
mi_col + (4 << CONFIG_SB8X8) <= cm->mi_cols &&
mi_row + (4 << CONFIG_SB8X8) <= cm->mi_rows) {
int r, d;
pick_sb_modes(cpi, mi_row, mi_col, tp, &r, &d,
BLOCK_SIZE_SB64X64, &x->sb64_context);
set_partition_seg_context(cpi, mi_row, mi_col);
pl = partition_plane_context(xd, BLOCK_SIZE_SB64X64);
r += x->partition_cost[pl][PARTITION_NONE];
if (RDCOST(x->rdmult, x->rddiv, r, d) <
RDCOST(x->rdmult, x->rddiv, sb64_rate, sb64_dist)) {
sb64_rate = r;
sb64_dist = d;
sb_partitioning[0] = BLOCK_SIZE_SB64X64;
}
encode_sb64(cpi, mi_row, mi_col, tp, sb_partitioning);
static void init_encode_frame_mb_context(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
x->act_zbin_adj = 0;
cpi->seg0_idx = 0;
vpx_memset(cpi->ref_pred_count, 0, sizeof(cpi->ref_pred_count));
xd->mode_info_stride = cm->mode_info_stride;
xd->frame_type = cm->frame_type;
xd->frames_since_golden = cm->frames_since_golden;
xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame;
// reset intra mode contexts
if (cm->frame_type == KEY_FRAME)
vp9_init_mbmode_probs(cm);
// TODO(jkoleszar): are these initializations required?
setup_pre_planes(xd, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], NULL,
0, 0, NULL, NULL);
setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0);
vp9_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]);
vp9_build_block_offsets(x);
vp9_setup_block_dptrs(&x->e_mbd);
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_context->mbmi.uv_mode = DC_PRED;
vp9_zero(cpi->count_mb_ref_frame_usage)
vp9_zero(cpi->bmode_count)
vp9_zero(cpi->ymode_count)
vp9_zero(cpi->i8x8_mode_count)
vp9_zero(cpi->y_uv_mode_count)
vp9_zero(cpi->sub_mv_ref_count)
vp9_zero(cpi->mbsplit_count)
vp9_zero(cpi->common.fc.mv_ref_ct)
vp9_zero(cpi->sb_ymode_count)
#if CONFIG_COMP_INTERINTRA_PRED
vp9_zero(cpi->interintra_count);
vp9_zero(cpi->interintra_select_count);
#endif
// Note: this memset assumes above_context[0], [1] and [2]
// are allocated as part of the same buffer.
vpx_memset(cm->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 4 *
MAX_MB_PLANE * mb_cols_aligned_to_sb(cm));
vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) *
mb_cols_aligned_to_sb(cm));
static void switch_lossless_mode(VP9_COMP *cpi, int lossless) {
if (lossless) {
cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4;
cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_iwalsh4x4;
cpi->mb.optimize = 0;
cpi->common.filter_level = 0;
cpi->zbin_mode_boost_enabled = 0;
cpi->common.txfm_mode = ONLY_4X4;
} else {
cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4;
cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4;
cpi->mb.e_mbd.inv_txm4x4_1 = vp9_short_idct4x4_1;
cpi->mb.e_mbd.inv_txm4x4 = vp9_short_idct4x4;
static void encode_frame_internal(VP9_COMP *cpi) {
VP9_COMMON *const cm = &cpi->common;
// fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n",
// cpi->common.current_video_frame, cpi->common.show_frame,
// cm->frame_type);
// Compute a modified set of reference frame probabilities to use when
// prediction fails. These are based on the current general estimates for
// this frame which may be updated with each iteration of the recode loop.
{
FILE *statsfile;
statsfile = fopen("segmap2.stt", "a");
fprintf(statsfile, "\n");
fclose(statsfile);
}
totalrate = 0;
// Reset frame count of inter 0,0 motion vector usage.
cpi->inter_zz_count = 0;
cpi->skip_true_count[0] = cpi->skip_true_count[1] = cpi->skip_true_count[2] = 0;
cpi->skip_false_count[0] = cpi->skip_false_count[1] = cpi->skip_false_count[2] = 0;
vp9_zero(cpi->switchable_interp_count);
vp9_zero(cpi->best_switchable_interp_count);
xd->mode_info_context = cm->mi;
xd->prev_mode_info_context = cm->prev_mi;
vp9_zero(cpi->coef_counts_4x4);
vp9_zero(cpi->coef_counts_8x8);
vp9_zero(cpi->coef_counts_16x16);
vp9_zero(cm->fc.eob_branch_counts);
#if CONFIG_CODE_ZEROGROUP
vp9_zero(cm->fc.zpc_counts_4x4);
vp9_zero(cm->fc.zpc_counts_8x8);
vp9_zero(cm->fc.zpc_counts_16x16);
vp9_zero(cm->fc.zpc_counts_32x32);
#endif
cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 &&
cm->uv_ac_delta_q == 0);
vp9_frame_init_quantizer(cpi);
vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q);
vp9_initialize_me_consts(cpi, cm->base_qindex);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Initialize encode frame context.
// Build a frame level activity map
build_activity_map(cpi);
}
// re-initencode frame context.
init_encode_frame_mb_context(cpi);
vpx_memset(cpi->rd_comp_pred_diff, 0, sizeof(cpi->rd_comp_pred_diff));
vpx_memset(cpi->single_pred_count, 0, sizeof(cpi->single_pred_count));
vpx_memset(cpi->comp_pred_count, 0, sizeof(cpi->comp_pred_count));
vpx_memset(cpi->txfm_count_32x32p, 0, sizeof(cpi->txfm_count_32x32p));
vpx_memset(cpi->txfm_count_16x16p, 0, sizeof(cpi->txfm_count_16x16p));
vpx_memset(cpi->txfm_count_8x8p, 0, sizeof(cpi->txfm_count_8x8p));
vpx_memset(cpi->rd_tx_select_diff, 0, sizeof(cpi->rd_tx_select_diff));
{
struct vpx_usec_timer emr_timer;
vpx_usec_timer_start(&emr_timer);
// Take tiles into account and give start/end MB
int tile_col, tile_row;
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(cm, tile_row);
for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) {
TOKENEXTRA *tp_old = tp;
// For each row of SBs in the frame
vp9_get_tile_col_offsets(cm, tile_col);
for (mi_row = cm->cur_tile_mi_row_start;
mi_row < cm->cur_tile_mi_row_end;
mi_row += (4 << CONFIG_SB8X8)) {
encode_sb_row(cpi, mi_row, &tp, &totalrate);
}
cpi->tok_count[tile_col] = (unsigned int)(tp - tp_old);
assert(tp - cpi->tok <=
get_token_alloc(cm->mb_rows, cm->mb_cols));
vpx_usec_timer_mark(&emr_timer);
cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer);
}
// 256 rate units to the bit,
// projected_frame_size in units of BYTES
cpi->projected_frame_size = totalrate >> 8;
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
static int check_dual_ref_flags(VP9_COMP *cpi) {
MACROBLOCKD *xd = &cpi->mb.e_mbd;
int ref_flags = cpi->ref_frame_flags;
if (vp9_segfeature_active(xd, 1, SEG_LVL_REF_FRAME)) {
if ((ref_flags & (VP9_LAST_FLAG | VP9_GOLD_FLAG)) == (VP9_LAST_FLAG | VP9_GOLD_FLAG) &&
vp9_check_segref(xd, 1, LAST_FRAME))
if ((ref_flags & (VP9_GOLD_FLAG | VP9_ALT_FLAG)) == (VP9_GOLD_FLAG | VP9_ALT_FLAG) &&
vp9_check_segref(xd, 1, GOLDEN_FRAME))
if ((ref_flags & (VP9_ALT_FLAG | VP9_LAST_FLAG)) == (VP9_ALT_FLAG | VP9_LAST_FLAG) &&
vp9_check_segref(xd, 1, ALTREF_FRAME))
return (!!(ref_flags & VP9_GOLD_FLAG) +
!!(ref_flags & VP9_LAST_FLAG) +
!!(ref_flags & VP9_ALT_FLAG)) >= 2;
Ronald S. Bultje
committed
}
static int get_skip_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs) {
int x, y;
for (y = 0; y < ymbs; y++) {
for (x = 0; x < xmbs; x++) {
if (!mi[y * mis + x].mbmi.mb_skip_coeff)
return 0;
}
}
return 1;
}
static void set_txfm_flag(MODE_INFO *mi, int mis, int ymbs, int xmbs,
TX_SIZE txfm_size) {
int x, y;
for (y = 0; y < ymbs; y++) {
mi[y * mis + x].mbmi.txfm_size = txfm_size;
}
}
static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO *mi,
int mis, TX_SIZE txfm_max,
int bw, int bh, int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
if (mbmi->txfm_size > txfm_max) {
MACROBLOCK *const x = &cpi->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int segment_id = mbmi->segment_id;
const int ymbs = MIN(bh, cm->mi_rows - mi_row);
const int xmbs = MIN(bw, cm->mi_cols - mi_col);
assert(vp9_segfeature_active(xd, segment_id, SEG_LVL_SKIP) ||
get_skip_flag(mi, mis, ymbs, xmbs));
set_txfm_flag(mi, mis, ymbs, xmbs, txfm_max);
}
}
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO *mi,
TX_SIZE txfm_max,
int mi_row, int mi_col,
BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
int bwl, bhl;
const int bsl = mi_width_log2(bsize), bs = 1 << (bsl - 1);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols)
return;
bwl = mi_width_log2(mi->mbmi.sb_type);
bhl = mi_height_log2(mi->mbmi.sb_type);
if (bwl == bsl && bhl == bsl) {
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, 1 << bsl,
mi_row, mi_col, bsize);
} else if (bwl == bsl && bhl < bsl) {
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, 1 << bsl, bs,
mi_row, mi_col, bsize);
reset_skip_txfm_size_b(cpi, mi + bs * mis, mis, txfm_max, 1 << bsl, bs,
mi_row + bs, mi_col, bsize);
} else if (bwl < bsl && bhl == bsl) {
reset_skip_txfm_size_b(cpi, mi, mis, txfm_max, bs, 1 << bsl,
mi_row, mi_col, bsize);
reset_skip_txfm_size_b(cpi, mi + bs, mis, txfm_max, bs, 1 << bsl,
mi_row, mi_col + bs, bsize);
} else {
BLOCK_SIZE_TYPE subsize;
int n;
assert(bwl < bsl && bhl < bsl);
if (bsize == BLOCK_SIZE_SB64X64) {
subsize = BLOCK_SIZE_SB32X32;
} else {
assert(bsize == BLOCK_SIZE_SB32X32);
subsize = BLOCK_SIZE_MB16X16;
}
for (n = 0; n < 4; n++) {
const int y_idx = n >> 1, x_idx = n & 0x01;
reset_skip_txfm_size_sb(cpi, mi + y_idx * bs * mis + x_idx * bs,
txfm_max, mi_row + y_idx * bs,
mi_col + x_idx * bs, subsize);
}
}
}
static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) {
VP9_COMMON *const cm = &cpi->common;
const int mis = cm->mode_info_stride;
MODE_INFO *mi, *mi_ptr = cm->mi;
for (mi_row = 0; mi_row < cm->mi_rows;
mi_row += (4 << CONFIG_SB8X8), mi_ptr += (4 << CONFIG_SB8X8) * mis) {
mi = mi_ptr;
for (mi_col = 0; mi_col < cm->mi_cols;
mi_col += (4 << CONFIG_SB8X8), mi += (4 << CONFIG_SB8X8)) {
reset_skip_txfm_size_sb(cpi, mi, txfm_max,
mi_row, mi_col, BLOCK_SIZE_SB64X64);
}
}
}
void vp9_encode_frame(VP9_COMP *cpi) {
int i, frame_type, pred_type;
/*
* This code does a single RD pass over the whole frame assuming
* either compound, single or hybrid prediction as per whatever has
* worked best for that type of frame in the past.
* It also predicts whether another coding mode would have worked
* better that this coding mode. If that is the case, it remembers
* that for subsequent frames.
* It does the same analysis for transform size selection also.
*/
if (cpi->common.frame_type == KEY_FRAME)
frame_type = 0;
else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame)
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
/* prediction (compound, single or hybrid) mode selection */
if (frame_type == 3)
pred_type = SINGLE_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][1] >
cpi->rd_prediction_type_threshes[frame_type][0] &&
cpi->rd_prediction_type_threshes[frame_type][2] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
pred_type = COMP_PREDICTION_ONLY;
else if (cpi->rd_prediction_type_threshes[frame_type][0] >
cpi->rd_prediction_type_threshes[frame_type][2])
pred_type = SINGLE_PREDICTION_ONLY;
else
pred_type = HYBRID_PREDICTION;
/* transform size (4x4, 8x8, 16x16 or select-per-mb) selection */
if (cpi->oxcf.lossless) {
txfm_type = ONLY_4X4;
/* FIXME (rbultje): this code is disabled until we support cost updates
* while a frame is being encoded; the problem is that each time we
* "revert" to 4x4 only (or even 8x8 only), the coefficient probabilities
* for 16x16 (and 8x8) start lagging behind, thus leading to them lagging
* further behind and not being chosen for subsequent frames either. This
* is essentially a local minimum problem that we can probably fix by
* estimating real costs more closely within a frame, perhaps by re-
* calculating costs on-the-fly as frame encoding progresses. */
if (cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] &&
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = TX_MODE_SELECT;
} else if (cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]
&& cpi->rd_tx_select_threshes[frame_type][ONLY_4X4] >
cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16]
) {
txfm_type = ONLY_4X4;
} else if (cpi->rd_tx_select_threshes[frame_type][ALLOW_16X16] >=
cpi->rd_tx_select_threshes[frame_type][ALLOW_8X8]) {
txfm_type = ALLOW_16X16;
} else
txfm_type = ALLOW_8X8;
#else
txfm_type = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] >=
cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ?
ALLOW_32X32 : TX_MODE_SELECT;
#endif
cpi->common.txfm_mode = txfm_type;
if (txfm_type != TX_MODE_SELECT) {
cpi->common.prob_tx[0] = 128;
cpi->common.prob_tx[1] = 128;
}
cpi->common.comp_pred_mode = pred_type;
encode_frame_internal(cpi);
for (i = 0; i < NB_PREDICTION_TYPES; ++i) {
const int diff = (int)(cpi->rd_comp_pred_diff[i] / cpi->common.MBs);
cpi->rd_prediction_type_threshes[frame_type][i] += diff;
cpi->rd_prediction_type_threshes[frame_type][i] >>= 1;
}
for (i = 0; i < NB_TXFM_MODES; ++i) {
int64_t pd = cpi->rd_tx_select_diff[i];
int diff;
if (i == TX_MODE_SELECT)
pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv,
2048 * (TX_SIZE_MAX_SB - 1), 0);
cpi->rd_tx_select_threshes[frame_type][i] += diff;
cpi->rd_tx_select_threshes[frame_type][i] /= 2;
}
if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_PRED_CONTEXTS; i++) {
single_count_zero += cpi->single_pred_count[i];
comp_count_zero += cpi->comp_pred_count[i];
}
if (comp_count_zero == 0) {
cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY;
} else if (single_count_zero == 0) {
cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY;
}
if (cpi->common.txfm_mode == TX_MODE_SELECT) {
const int count4x4 = cpi->txfm_count_16x16p[TX_4X4] +
cpi->txfm_count_32x32p[TX_4X4] +
cpi->txfm_count_8x8p[TX_4X4];
const int count8x8_lp = cpi->txfm_count_32x32p[TX_8X8] +
cpi->txfm_count_16x16p[TX_8X8];
const int count8x8_8x8p = cpi->txfm_count_8x8p[TX_8X8];
const int count16x16_16x16p = cpi->txfm_count_16x16p[TX_16X16];
const int count16x16_lp = cpi->txfm_count_32x32p[TX_16X16];
const int count32x32 = cpi->txfm_count_32x32p[TX_32X32];
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32 == 0) {
reset_skip_txfm_size(cpi, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) {
reset_skip_txfm_size(cpi, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) {
cpi->common.txfm_mode = ALLOW_16X16;
reset_skip_txfm_size(cpi, TX_16X16);
// Update interpolation filter strategy for next frame.
if ((cpi->common.frame_type != KEY_FRAME) && (cpi->sf.search_best_filter))
void vp9_build_block_offsets(MACROBLOCK *x) {
static void sum_intra_stats(VP9_COMP *cpi, MACROBLOCK *x) {
const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode;
const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode;
++ (is_key ? uv_modes : inter_uv_modes)[uvm];
++ uv_modes_y[m][uvm];
unsigned int *const bct = is_key ? b_modes : inter_b_modes;
do {
++ bct[xd->block[b].bmi.as_mode.first];
} while (++b < 16);
}
if (m == I8X8_PRED) {
i8x8_modes[xd->block[0].bmi.as_mode.first]++;
i8x8_modes[xd->block[2].bmi.as_mode.first]++;
i8x8_modes[xd->block[8].bmi.as_mode.first]++;
i8x8_modes[xd->block[10].bmi.as_mode.first]++;
}
if (xd->mode_info_context->mbmi.sb_type > BLOCK_SIZE_MB16X16) {
if (m != I8X8_PRED)
++cpi->y_uv_mode_count[m][uvm];
else {
cpi->i8x8_mode_count[xd->mode_info_context->bmi[0].as_mode.first]++;
cpi->i8x8_mode_count[xd->mode_info_context->bmi[2].as_mode.first]++;
cpi->i8x8_mode_count[xd->mode_info_context->bmi[8].as_mode.first]++;
cpi->i8x8_mode_count[xd->mode_info_context->bmi[10].as_mode.first]++;
int m = xd->mode_info_context->bmi[b].as_mode.first;
#if CONFIG_NEWBINTRAMODES
if (m == B_CONTEXT_PRED) m -= CONTEXT_PRED_REPLACEMENTS;
#endif
++cpi->bmode_count[m];
// Experimental stub function to create a per MB zbin adjustment based on
// some previously calculated measure of MB activity.
static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) {
int64_t a;
int64_t b;
int64_t act = *(x->mb_activity_ptr);
// Apply the masking to the RD multiplier.
a = act + 4 * cpi->activity_avg;
b = 4 * act + cpi->activity_avg;
if (act > cpi->activity_avg)
x->act_zbin_adj = (int)(((int64_t)b + (a >> 1)) / a) - 1;
else
x->act_zbin_adj = 1 - (int)(((int64_t)a + (b >> 1)) / b);
static void encode_macroblock(VP9_COMP *cpi, TOKENEXTRA **t,
int output_enabled,
VP9_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->mb;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
const int mis = cm->mode_info_stride;
#if CONFIG_SB8X8
int n;
#endif
assert(xd->mode_info_context->mbmi.sb_type == BLOCK_SIZE_MB16X16);
enc_debug = (cpi->common.current_video_frame == 11 && cm->show_frame &&
mb_row == 8 && mb_col == 0 && output_enabled);
if (enc_debug)
printf("Encode MB %d %d output %d\n", mb_row, mb_col, output_enabled);
#endif
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.tuning == VP8_TUNE_SSIM && output_enabled) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
vp9_update_zbin_extra(cpi, x);
}
} else {
vp9_setup_interp_filters(xd, mbmi->interp_filter, cm);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) {
// Adjust the zbin based on this MB rate.
adjust_act_zbin(cpi, x);
}
// Experimental code. Special case for gf and arf zeromv modes.
// Increase zbin size to suppress noise
cpi->zbin_mode_boost = 0;
if (cpi->zbin_mode_boost_enabled) {
if (mbmi->ref_frame != INTRA_FRAME) {
if (mbmi->mode == ZEROMV) {
if (mbmi->ref_frame != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
} else {
cpi->zbin_mode_boost = INTRA_ZBIN_BOOST;
vp9_update_zbin_extra(cpi, x);